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Data assimilation (DA) was revealed as a highly efficient approach to enhance the prediction’s accuracy, demonstrating the
reliability of the simulation through uncertainty quantification analysis. However, in the numerical simulations, most of the
tasks are highly nonlinear relationships between the parameters that directly affect the efficiency of the DA such as the large
search space dimension, resulting in significant computational costs. This limitation can be overcome by implementing
machine learning (ML) predictions that can efficiently expand the DA search space. Therefore, this study is aimed at
enhancing the performance of DA by integrating ML and DA (IMD), proposing a new method to overcome the stand-alone
DA limitations. The approach involved implementing a stand-alone DA using the multidimensional analysis of reactor safety
(MARS) code to enhance the prediction of reflood tests. The output datasets obtained from the stand-alone DA were then
used to train the deep neural networks (DNNs), and the accuracy of the DNN’s prediction was thoroughly evaluated with
varying dataset sizes. This DNN subsequently can predict the enormous unobserved samples, enabling the identification and
investigation of the prospective candidates for the subsequent DA process. The results demonstrated that the stand-alone DA
achieved an accuracy enhancement of up to 41.3% in reflood test predictions, while the IMD yielded even more significant
improvements, with a performance enhancement of 47.0%. These findings reveal that the IMD approach outperformed the
stand-alone DA approach, particularly in the case of high flooding rate tests. In this context, the proposed integrating system
can effectively overcome the high computational cost and enhance the performance of stand-alone DA.

1. Introduction

In recent decades, investigations of a postulated accident, the
loss of coolant accident (LOCA), using numerical and exper-
imental methods have emerged. Experimentally, LOCAs and
the effectiveness of the emergency core cooling system

(ECCS) were comprehensively studied for the fuel bundle
such as full-length emergency core heat transfer separate
effects and systems effects tests (FLECHT SEASET) [1],
rod bundle heat transfer (RBHT) [2], and flooding experi-
ment with blocked arrays (FEBA) [3]. They focused on dif-
ferent initial boundary conditions and effects to enhance
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the knowledge of postulated conditions after LOCA, a so-
called reflooding phenomenon. To predict the complex heat
transfer modes in the reflooding phase [4], these reflood test
data can be used to evaluate and validate the physical models
in various advanced numerical computer codes such as
safety and performance analysis code (SPACE) [5], reactor
excursion and leak analysis program (RELAP5) [6], multidi-
mensional analysis of reactor safety (MARS) [7], coolant-
boiling in rod arrays - two fluids (COBRA-TF) [8], TRAC/
RELAP advanced computational engine (TRACE) [9], and
computational multifluid dynamics (CUPID) [10, 11].

Moreover, the accuracy of reflood phenomenon predic-
tion significantly depends on the correlated physical models
included in the system codes. Therefore, enhancing these
physical models can reduce the discrepancies between the
predicted and measured values in reflooding simulations
[4, 12, 13]. For example, using RELAP5, the effects of phys-
ical models and some sensitivity studies were investigated
for the FLECHT SEASET experiments [14]. This analysis
implied that the turnaround temperatures, turnaround
times, and film boiling heat transfer coefficients were under-
estimated, which needed to be improved in the RELAP5
model. In addition, an assessment of the RELAP5 code
against the FLECHT SEASET tests to seek the weaknesses
of the reflood models was comprehensively studied [15].
Based on these weaknesses, the physical models of the
RELAP5 code were justified to enhance the reflooding pre-
diction. These physical models included the adjustment of
droplet size in the dispersed flow regime and the modifica-
tions of reflood wall heat transfer. Moreover, a sensitivity
analysis was performed for FLECHT SEASET tests using
the CUPID code, which revealed that the film boiling was
the most sensitive physical model in the reflood simulations,
specifically for the peak cladding temperature prediction
[16]. Furthermore, the film boiling heat transfer was also
identified as the most crucial physical model in the SPACE
simulation for reflooding phenomena [17, 18]. In this con-
text, a method that propagates these physical models under
uncertainty ranges so-called data assimilation (DA) can
enhance the accuracy of the computer code prediction.

In 2022, the sampling method for highly nonlinear sys-
tem uncertainty analysis (STARU) [17], a DA framework,
was developed to deal with the highly nonlinear system
and the high-dimensional parameters. STARU can be imple-
mented to propagate the physical models and always find the
better candidates, resulting the improvements in the predic-
tions. It can be inferred that STARU enhanced the accuracy
of the predictions for the reflood tests and could identify the
most sensitive parameters after a dozen thousand computa-
tionally expensive samples. DA is consistently an excellent
approach to enhance prediction and validate the physical
models of simulations [17–22]. Even with the search space
being limited in DA execution, there are prospects of obtain-
ing valuable enhancements to the predictions. Moreover,
expanding the search space in DA can facilitate better
enhancements.

However, expanding the search space increases the com-
putational costs, which is one of the main limitations of the
stand-alone DA approach. Therefore, finding an integrated

approach that can expand the search space with acceptable
accuracy and minor computational costs is essential. In this
context, machine learning (ML) predictions can be appro-
priate to improve DA, because an ML-trained model can
predict the enormous unobserved samples while consuming
a minimal computation cost and attaining good agreement
with the actual values.

Furthermore, the ML predictions are practically revealed
as a vital computation model to predict the experiment data
within minor dissimilarities. For example, deep neural net-
works (DNNs) inML [23–25] are effectively applicable to pre-
dict the system behavior of computer code predictions such as
LOCA break size prediction using Cascaded fuzzy neural net-
works [26], reactor water level predictions [27], a minimum
departure from nucleate boiling ratio (DNBR) estimation
[28], and the wall heat transfer for boiling phenomenon pre-
diction using DNN as well as high-fidelity simulation results
[29]. Moreover, utilizing the dataset from the uncertainty
quantification process, time series response forecasting (e.g.,
temperature, pressure, break flow rate, and water level) was
adopted using long short-term memory (LSTM) and DNN
[30]. DNNs, which typically consist of feedforward networks
with multiple hidden layers, can effectively estimate the rela-
tionship between independent variables and dependent out-
puts, especially the highly nonlinear complex system states
generated through the propagation of DA parameters or the
uncertainty quantification process [30].

In addition, one of the significant efficiencies of DNN is
that the computational costs of DNN predictions are meager
compared to typical code simulations. This efficiency allows
DNNs to effectively expand the search space and approximate
nonlinear systems without relying on a deep understanding of
the system’s fundamental equations [31]. Expanding the search
space can facilitate finding the better system states of the DA
process [31, 32]. Conversely, high-quality datasets from DA
can significantly enhance the training process of DNNmodels,
leading to highly accurate predictions [33]. As a result, based
on the DNN predictions for many samples, potential candi-
dates can be identified and subsequently validated through DA.

In this context, the integrating system of ML and DA is
expected to enhance DA performance significantly. In this
study, we proposed an integrating ML and DA (IMD) sys-
tem to overcome the limited search space of DA. Therefore,
our proposed integrating system can enhance the DA per-
formance and reduce the computation costs for highly non-
linear systems and high-dimensional parameter problems.

In particular, we aimed to implement DNNs for predicting
the simulation accuracy of various responses, including cladding
temperature, steam temperature, pressure drop, and quenching
time, using the MARS code against the FLECHT SEASET
reflood tests. Subsequently, the IMD approach was applied to
enhance the performance of DA, which involved utilizing real
experimental results and stand-alone data assimilation out-
comes to evaluate the efficiency of the integrating system.

2. Methods and Materials

2.1. Problem Specification. The proposed solution can be
summarized as follows.
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(1) We perform a stand-alone DA, in which physical
model multipliers are assimilated using the STARU
to search for better physical models. The output of
this stand-alone DA is a set of different physical
model multipliers that correspond to their system
states

(2) These high-quality datasets are used to train DNN to
predict the system states corresponding to a given
physical model. The precision of this ML model is
verified using a test dataset excluded from the
DNN training process. This ML model is then
implemented to predict enormous unobserved sam-
ples; the system states are predicted without using
the MARS code

(3) Prospective samples can be obtained and imple-
mented in DA again to assimilate the multipliers of
the physical model

Therefore, it is expected that IMD could obtain better
enhancements, and its computational cost is extensively
lower than that of the stand-alone DA. The following two
subsections will describe the FLECHT SEASET reflood tests,
the reflood model in the MARS code, STARU, and DNN
hyperparameters.

2.2. The FLECHT SEASET Reflood Tests and the MARS
Model. The FLECHT SEASET test series [1] provides two-
phase flow and experimental heat transfer databases of
reflooding phenomena, which were crucial for model devel-
opers and users in reactor safety analysis. This test examined
many effects and two-phase databases, such as rod tempera-
tures, quenching times, heat transfer coefficients, inlet flood-
ing rates, overall mass balance, differential pressures, void
fractions, exhaust steam, and liquid carryover mass.

Accordingly, this test consisted of many valid tests such
as steam cooling, gravity refill, boiloff, and forced reflood
tests. However, in this study, we meticulously neglected the
cases with scrammed power, lower power decay than the
specified value, bundle distortion occurrence, unknown
initial coolant, missing housing temperatures, and suddenly
increasing flooding rate. As a result, nine forced reflood test
cases were carefully selected in this investigation (see
Table 1).

This study analyzed the reflood tests using the MARS
code developed by the Korea Atomic Energy Research
Institute and Korea Institute of Nuclear Safety. This code
was utilized with multidimensional analysis capacity and
updated realistic physical models to treat with the three-
dimensional two-fluid three-field formulation (liquid, vapor,
and droplet field). Although the MARS code was restruc-
tured from the original RELAP5, the legibility, maintenance,
and modification ability were enhanced.

The MARS model of the reflood test consisted of a lower
plenum (single volume with flow boundary condition), a sin-
gle pipe with twenty-axial cells, heat structures (the heated
rods, failed rods, thimbles, fillers, and housing), and an upper
plenum (single volume with pressure boundary condition)
(see Figure 1).

Table 1: The selected FLECHT SEASET reflood tests [34].

Test no. Flooding rate (mm/s) Power (kW/m) Initial clad temperature at 1.83m (K) Pressure (MPa)

F1-31021 38.6 1.3 1153 0.28

F2-31302 76.5 2.3 1142 0.28

F3-31504 24.0 2.3 1136 0.28

F4-33849 25.9 1.9 1018 0.28

F5-34103 38.1 2.4 1158 0.28

F6-34316 25.0 2.4 1162 0.28

F7-34420 38.9 2.4 1392 0.27

F8-34711 17.0 1.4 1161 0.13

F9-35050 25.9 1.6 1031 0.14
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Figure 1: The MARS code model for reflood tests. The test section
in the MARS code model was divided into 20 nodes. The heat
structures included heated rods, failed rods, thimbles, fillers, and
housing. The inlet of the test section was modeled using a time-
dependent volume and a time-dependent junction, while the
outlet used a single volume and junction, respectively.
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The investigations of these reflood tests would be verified
using the experimental data provided in the FLECHT
SEASET data report [1]. In this study, we investigated five
responses as follows:

(1) Cladding temperatures (K): we examined the clad-
ding temperatures of the heated rods at two different
elevations (1.83m and 2.44m linked with cell num-
ber 11 and cell number 14 in the MARS model,
respectively)

(2) Steam temperature (K): this response is the temper-
ature of the vapor at 2.82m that is associated with
cell number 16 of the MARS model

(3) Pressure drop (MPa): this response is the different
pressure between the inlet and outlet of the test
section

(4) Quenching time (s): this response displayed the
quench front location as a function of time; we
implemented the “ZQBOT” reflood quantity to iden-
tify the quench front location for all nodes in the test
section

2.3. The STARU Framework. It was clarified that the system
behaviors of the reflooding phenomenon predictions were
highly nonlinear, in which the dependency of prior and pos-
terior parameters was unpredictable [17, 18]. Applying
STARU can be a consistent approach for this nonlinear
system to obtain prediction enhancements. In the STARU
sampling algorithm, uniform and continuous samples can
facilitate the convergence of system states. We deployed both
the continuous and the uniform samples to sample the new
candidates; if xpi = xp1, x

p
2,⋯, xpn is the previously accepted

sample (with n as the number of parameters), the

Table 2: The physical models implemented in STARU for the MARS code.

No. Type Parameter descriptions Uncertainty (%)

1 Entrainment coefficient Multiplier for droplet We number for reflood 60

2 Dry/wet criteria Multiplier for dry/wet wall criteria 30°C 60

3 Wall friction factors Multiplier for the two-phase wall friction for the specified components 60

4 Interfacial drag model Multiplier for the interfacial drag model for the specified components 30

5 Interfacial heat transfer model Multiplier for the interfacial heat transfer model for the specified components 60

6

Correlations

Multiplier for liquid Dittus-Boelter correlation 60

7 Multiplier for Chen nucleate boiling model 60

8 Multiplier for AECL CHF value 60

9 Multiplier for Chen transition boiling model 60

10 Multiplier for Bromley film boiling model 60

11 Multiplier for vapor Dittus-Boelter correlation 60

12 Multiplier for Zuber CHF correlation 60

13 Multiplier for modified Weismann correlation 60

14 Multiplier for QF film boiling correlation 60

15 Multiplier for Forslund-Rohsenow correlation 60

16 Multiplier for reflood superheated vapor correlation 60
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Figure 2: The architecture of the DNN to predict the system state
(R). There are two hidden layers with 256 and 128 nodes,
respectively.

Table 3: The selection of the DNN hyperparameters.

Quantity Selected values

Number of hidden layers 2

Number of nodes in the hidden layer 256, 128

Loss function MSE

Activator ReLU

Optimizer Adam

Learning rate 0.01

Epochs 200

Validation split 10%
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continuous sample can be generated as the following
equation.

xcontii = xpi + rand −ε ; ε , 1

where ε is the step size of the continuous sample and rand
−ε ; ε is the random number from −ε to ε. On the other
hand, the uniform sample can be defined as

xunifi = rand σ ; τ , 2

where σ and τ were the uncertainty range’s lower and upper
bound, respectively. It deduced that the uniform samples in
Eq. (2) could be obtained at random values within the uncer-
tainty range, and it was not dependent on the previously
accepted sample. Conversely, the continuous samples (see
Eq. (1)) can only be obtained from values near the previous
state within a small-justified step size ε. In our implementa-
tion, the sampling algorithm, the accuracy evaluation
method, and the acceptance criteria were adapted from the
original STARU [18]. However, minor modifications were
made to fit the MARS code to be compatible with STARU.

One of the crucial tasks in the implementation of DA is
the selection of the physical models. In this investigation, we
selected sixteen physical models typically available in the
MARS code for uncertainty quantification analysis [35],
such as the multipliers for two-phase wall friction, the inter-
facial drag models, the interfacial heat transfer models, the
entrainment coefficient, the droplet We number, and the
multipliers of correlations along with their assumed uncer-
tainty range (see Table 2).

In this selection, we comprehensively investigated the
valid multipliers of these physical models before proposing
their assumed uncertainties. Thereby, we found that the
valid uncertainty range can be 60% for all the physical

models except the interfacial drag model, which is only valid
for 30% or less. Moreover, this physical model was also
confirmed as the most sensitive multiplier to predict the
quenching times in reflooding phenomena using the MARS
code [36].

Furthermore, the five responses were investigated and
compared with the corresponding experimental data using
the absolute relative difference (ARD) method in STARU
(see Eq. (3)). Accordingly, the system states that the discrep-
ancy between the current prediction and the experimental
data can be evaluated as follows.

R = 〠
m

j=1
〠
n

i=1

SjCi
− SjMi

∑n
i=1S
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Figure 3: The IMD scheme. The prior and posterior parameters in DA are referred to as the multipliers of the physical models before and
after the DA process. DA can provide high-quality datasets, including parameter distributions, to train the ML model to generate
prospective samples for the following DA process.
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Figure 4: Accepted samples in the stand-alone DA using STARU.
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where R is the system state; n is the total number of data; SjCi

and SjMi
are the calculated andmeasured values of the response

j and at data ith, respectively; j is the response; and kj is the
weighting factors associated with the response j.

2.4. DNNs. In this section, we described the generation and
structure of the training dataset for the ML model. Further-
more, we provide a clarification of the deep learning method
that was implemented and the selected hyperparameters for
the DNNs.

As depicted in Table 2, we employed sixteen adjustable
input parameters under their uncertainty range for the
stand-alone DA using the MARS code. These adjusted input
parameters and their corresponding system states were sub-
sequently incorporated into the DNNs as training datasets.
Specifically, in the stand-alone DA approach, system states
reflecting the accuracy of the MARS code predictions were
computed for 23,000 uniform samples. Each sample was
generated using the uniform sampling approach in STARU
and corresponded to a unique combination of values for six-
teen physical model multipliers within their uncertainty
range and their corresponding system state. It is important
to reveal that the computational cost associated with these
system states is very expensive, which has limited the
improvements achieved by the stand-alone DA approach,
presenting a significant challenge.

We proposed constructing a DNN model to address this
issue to replace the computationally expensive MARS code
calculations. DNNs are fundamental models in ML that
comprise multiple hidden layers between the input and out-
put layers. These models effectively estimate unknown
underlying functions, mapping inputs to outputs based on
provided datasets. By utilizing this DNN model, we can pre-
dict the accuracy of the MARS code simulation based on the
sixteen parameters. This approach enables us to overcome
the computational burden and enhance the efficiency of
the DA process.

Figure 2 illustrates the architecture of the DNNs to pre-
dict the value of the system state using 16 input parameters
as the input features to train. These DNNs comprised two
hidden layers of 256 and 128 neurons, respectively. The out-
put of these two hidden layers and the R can be determined
as the following equations.

h1 = f A WT
1X + b1 ,

h2 = f A WT
2 h1 + b2 ,

R = f B WT
3 h2 + b3 ,

4

where X is the input layer; f A and f B are the activation func-
tions; WT

1 , W
T
2 , and WT

3 are the weight matrixes whose sizes
are 16 × 256, 256 × 128, and 128 × 1, respectively; and b1, b2,
and b3 are biases.

For this activation function, we used the rectified linear
unit (ReLU) [37] as the nonlinear activation function
between hidden layers due to the consistency and simplicity
of the computation compared to the sigmoid or tanh func-
tion for the regression problems.

In addition, the accuracy of the DNN predictions relies
significantly on the size and quality of the datasets used, the
coverage range, and the selection of appropriate hyperpara-
meters [28–30, 33, 38]. Moreover, it has been observed that
the optimal values of hyperparameters are highly dependent
on the specific problem and dataset. Therefore, this topic
remains an active area of research within the deep learning
community, necessitating further investigations [29, 30, 38].

In this study, to ensure reliable DNN predictions, we
conducted numerous trial-and-error tests to determine
appropriate hyperparameters for our problem, as outlined
in Table 3. For instance, achieving good accuracy requires
a training dataset of over 20,000 samples. Furthermore, the
Adam optimizer was employed in the DNN to adjust the
weights and biases of the neurons in the hidden layers. The
Adam optimizer was selected based on its computational
efficiency, low memory requirements, and suitability for
handling complex systems with large amounts of data and
parameters [39]. Additionally, we observed that two hidden
layers outperformed three or four layers when the number of
nodes in the additional layers remained constant. Accordingly,
we selected 256 nodes for the first hidden layer and 128 nodes
for the second hidden layer. The training and testing datasets
were divided with a ratio of 95 : 5, while the validating dataset
was imposed to be 10% of the training datasets.

To prepare the training data for the neural network more
efficiently, we utilized standardization to transform the value
of the features so that they maintain similar scales. Standard-
izing the training data can enhance the model’s generalization

Table 4: The best enhancements for all the reflood tests.

Test case
System state (R value)

F1 F2 F3 F4 F5 F6 F7 F8 F9

Nominal 0.225 0.210 0.150 0.244 0.235 0.236 0.194 0.337 0.207

Stand-alone DA 0.188 0.192 0.088 0.201 0.197 0.156 0.179 0.301 0.189

IMD 0.180 0.111 0.116 0.185 0.211 0.100 0.186 0.294 0.199

Enhancement (%) 1-(Nominal)/(R∗)

Stand-alone DA 16.7 8.2 41.3 17.5 15.9 33.9 7.7 10.8 8.5

IMD 20.2 47.0 22.6 24.1 10.3 57.7 4.2 13.0 3.6
∗R value can be of either the stand-alone DA or the IMD.
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performance, and the training process converges faster.
During the training process, the mean squared error (MSE)
was utilized as the loss function, defined as the average
squared difference between the predicted and actual values
(see Eq. (5)). One advantage of the MSE loss was that it was
differentiable and could be used with gradient-based optimiza-
tion algorithms such as Stochastic gradient descent or Adam.
Accordingly, the model parameters can be easily optimized

by minimizing the MSE loss. The MSE loss for a single sample
is given by

MSE = 1
N
〠
N

i=1
yi − yi

2, 5

where y is the predicted value, y is the actual value, and N is

0.0 0.2 0.4 0.6 0.8
Actual values

1000

1.0 1.2
0.0

0.2

0.4

0.6

0.8

Pr
ed

ic
te

d 
va

lu
es

1.0

1.2

(a)

0.0 0.2 0.4 0.6 0.8
Actual values

5000

1.0 1.2
0.0

0.2

0.4

0.6

0.8

Pr
ed

ic
te

d 
va

lu
es

1.0

1.2

(b)

0.0 0.2 0.4 0.6 0.8
Actual values

10000

1.0 1.2
0.0

0.2

0.4

0.6

0.8

Pr
ed

ic
te

d 
va

lu
es

1.0

1.2

(c)

0.0 0.2 0.4 0.6 0.8
Actual values

15000

1.0 1.2
0.0

0.2

0.4

0.6

0.8
Pr

ed
ic

te
d 

va
lu

es

1.0

1.2

(d)

0.0 0.2 0.4 0.6 0.8
Actual values

20000

1.0 1.2
0.0

0.2

0.4

0.6

0.8

Pr
ed

ic
te

d 
va

lu
es

1.0

1.2

(e)

0.0 0.2 0.4 0.6 0.8
Actual values

23000

1.0 1.2
0.0

0.2

0.4

0.6

0.8

Pr
ed

ic
te

d 
va

lu
es

1.0

1.2

(f)

Figure 5: The ML predictions for the system state concerning the size of trained datasets. The actual values refer to the DA output values of
R, computed by the MARS code, which are not included in the trained datasets. The numbers 1,000; 5,000; 10,000; 15,000; 20,000; and
23,000 are the sizes of the samples in the training dataset on (a)–(f), respectively.
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the number of datasets. After the training process, the mean
absolute error (MAE) was also calculated as follows:

MAE = 1
N
〠
N

i=1
yi − yi 6

TheMAE is also used to evaluate the accuracy of the DNN
in Eq. (6). The lower MSE loss or MAE indicated the more
accurate prediction of the trained ML model. The selected
DNN hyperparameters are listed in Table 3.

2.5. The IMD Scheme. In this implementation, “stand-alone
DA” referred to the typical STARU process using the MARS
code to enhance the FLECHT SEASET reflood test predic-
tions. The high-quality output datasets from this stand-
alone DA can be effectively used to train DNNs to evaluate
unobserved samples. Thereby, this ML model can predict
enormous unobserved samples with acceptable accuracy;
this process refers to the expanding DA search space, which
can facilitate the discovery of new-better system states.
Therefore, we aimed to integrate DA and ML to find better
system states than the stand-alone DA computations. In this
integration, the first step will be the implementation of DA
for the MARS code against the FLECHT SEASET reflood
tests to generate high-quality datasets with the sixteen-
dimensional parameters (associated with the sixteen physical
models in Table 2) and their corresponding system state
values. In the second step, we utilized standardization to jus-
tify the data scales of the datasets to train DNNs effectively.
In the next step, after optimizing the ML model’s accuracy, it
can be used to predict the enormous unobserved samples
generated by the uniform sampling technique to avoid bias
in the value of the samples. Subsequently, the prospective
samples were rigorously selected based on the upper limit
value observed by the stand-alone DA process.

Accordingly, the performances of these prospective
candidates were evaluated in the subsequent DA process
(see Figure 3), in which the implementation of continuous
samples was concentrated. For instance, a prospective candi-
date was examined in DA as the first accepted system state,
and we used five continuous samples to enforce a high proba-
bility of finding the better system states. This justification can
facilitate finding better candidates than a stand-alone DA.

3. Results and Discussions

3.1. The Stand-Alone DA Result. The MARS model for the
reflood simulation, constructed in Section 2.1, was employed
to predict responses and provide information for evaluating
the system state using the ARD method in STARU (see
Eq. (3)). We used 5,000 iterations in this computation, and
about 2,100 samples were accepted. The accepted samples
are better candidates than the current system states, satisfying
the STARU framework’s alpha condition [18]. Note that using
the STARU sampling approach, the total samples will be
25,000 in 5,000 iterations. However, due to the computation
error of the MARS code, some of these samples were not suc-
cessfully computed; therefore, only about 23,000 samples were
validly obtained. We found that the system state strongly

decreased after the first few iterations and then typically con-
verged after about 300 iterations. It revealed that the enhance-
ments of theMARS code to predict the reflooding phenomena
were achieved (see Figure 4). These enhancements are quanti-
tatively displayed in Table 4. However, we found that the
enhancements of the steam temperature and pressure drop
predictions could have been better if their predicted results
had not fluctuated. The previous studies [17, 18] also indicated
the same consequence that the enhancements of the steam
temperature and pressure drop predictions were minor. Even-
tually, these stand-alone DA high-quality datasets were crucial
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to training the DNN, especially in determining its minimum
system state, which was used to select the prospective candi-
dates introduced in the next section.

3.2. The ML Prediction and Validation. In this section, we
first examined the data size effect to prepare an effective
ML model to predict our system states because the size of
the datasets considerably influenced the estimated target
function in the ML model. To examine the effect of data
size, we assessed the predictability of the trained ML model
by tracking the MAE and the MSE regarding the different
sizes of the training dataset (see Figures 5 and 6). Conse-
quently, we confirmed that for the reflooding simulations
using the MARS code, the ML model predictions agreed
reasonably with the actual values when the number of
trained data was greater than 20,000 samples. Furthermore,
the machine learning-predicted values and their relative
errors against the actual system state were evaluated using
23,000 trained samples and 1,000 test samples (refer to
Figures 7 and 8). In this study, this amount of training
and test datasets was subsequently implemented for further
investigations.

Figure 8 illustrates the actual value of the system states
corresponding to their relative errors in the ML predictions.
It is found that the accuracy of the ML prediction for low
system state is in good agreement (relative error less than
1.5%). These precise predictions allowed us to implement
the ML model to predict the system state for highly nonlin-
ear simulation results. Furthermore, this outcome facilitated
seeking the better system states described by the low values
in DA. Focusing on low system states is crucial in DA
because it reveals minor discrepancies between the simula-
tions and the experimental data.

Consequently, we implemented this ML model to
predict one million uniform random samples, which con-
sumed approximately two years of the stand-alone STARU

computation but only around two minutes using the ML
model prediction. These prediction values of the enormous
unobserved dataset were rearranged and displayed in
Figure 9. To select the suitable candidates effectively, we
assumed the upper limit value for the selected candidates
must be lower than the current minimum system state of
the stand-alone DA result. All these prospective candidates
were subsequently implemented in the following DA process
to find their best performance.
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3.3. The IMD Results. The comparison of the system state for
the IMD with the stand-alone STARU is illustrated in
Figure 10. Furthermore, their enhancements for all FLECHT
SEASET reflood tests are compared and displayed in
Table 4. It indicates that the IMD enhancements are better
than the stand-alone DA in finding the smaller system states.
Even with smaller system states, IMD enhancements were
sometimes not better than stand-alone DA.

In the case of stand-alone DA results, we also found that
the enhancements for the high flooding rate reflood tests

were challenging; this outcome was also indicated in the
previous study [16–18]. Notwithstanding this situation, the
IMD results indicated a better enhancement of the high
flooding rate test F2-31302 (see Table 4). Specifically,
we confirmed this enhancement by comparing the evolu-
tions in the cladding temperatures, quenching time, and
steam temperature prediction for the test F2-31302 (see
Figures 11, 12, 13, and 14) in which the posterior
responses of the stand-alone DA were compared with
the IMD results, as well as the experiment data and nom-
inal prediction of MARS code. Crucially, these results
demonstrated that the IMD was an excellent approach
to enhance the predictions of reflood tests.
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4. Conclusions

Our study is aimed at improving the prediction of reflood-
ing phenomena in thermal hydraulics simulations through
the integration of DA with ML, specifically employing
DNNs.

Initially, we utilized stand-alone DA to enhance the pre-
dictions of the MARS code. However, due to the limitations
of the search space, the effectiveness of stand-alone DA was
somewhat restricted, necessitating further improvement.

To overcome this limitation, we utilized the datasets gen-
erated by stand-alone DA to train a DNN-based ML model.
By expanding the search space, the ML model successfully
identified better system states, as demonstrated by the accu-
rate predictions which showed the effectiveness of the ML
model, particularly with training datasets exceeding 20,000
samples.

Additionally, it was found that the ML predictions of
the low system state value closely matched the actual sys-
tem state, with a relative error of 1.5% or less. This out-
come facilitated the identification of better system states
by the ML model. Consequently, we employed this ML
model to predict the large unobserved samples and care-
fully selected the prospective candidates for the subsequent
DA process.

As a result, the IMD enhancements generally outper-
formed stand-alone DA, particularly in predicting the high
flooding rate test. Specifically, the stand-alone DA achieved
an accuracy enhancement of up to 41.3% in reflood test pre-
dictions, while the IMD yielded even more significant
improvements, with a performance enhancement of 47.0%.
This finding holds significant promise for the application
and refinement of reflooding test predictions—an inherently
challenging task in thermal hydraulics simulations. More-
over, future studies should concentrate on improving the
hyperparameters of the DNN model to enhance its predic-
tion accuracy for a limited training dataset.

Nomenclature

Acronyms

ARD: Absolute relative difference
COBRA-TF: Coolant-boiling in rod arrays - two

fluids
CUPID: Computational multifluid dynamics

computer code developed by Korea
Atomic Energy Research Institute

DA: Data assimilation
DNBR: Departure from nucleate boiling ratio
DNN: Deep neural network
ECCS: Emergency core cooling system
FEBA: Flooding experiment with blocked arrays
FLECHT SEASET: Full-length emergency core heat

transfer separate effects and systems
effects tests

IMD: Integrating machine learning and data
assimilation

LOCA: Loss of coolant accident
LSTM: Long short-term memory
MAE: Mean absolute error
MARS: Multidimensional analysis of reactor

safety
ML: Machine learning
MSE: Mean squared error
RBHT: Rod bundle heat transfer
RELAP5: Reactor excursion and leak analysis

program
SPACE: Safety and performance analysis code

for nuclear power plants
STARU: Sampling method for highly nonlinear

system uncertainty analysis
TRACE: TRAC/RELAP advanced computational

engine.

Symbols

xpi : Previous accepted sample ith

xcontii : Continuous sample ith

xunifi : Uniform sample ith

ε: Step size of the continuous samples
σ: Lower bound of the parameter uncertainty

range
τ: Upper bound of the parameter uncertainty

range
R: System state
SjCi

: Calculated value of response j at data ith

SjMi
: Measured value of response j at data ith

h1, h2: Output of hidden layers
WT

1 ,WT
2 ,WT

3 : Weight matrixes
b1, b2, b3: Biases
X: Input layer
f A, f B: Activation functions
x: Input to the activation function
y: Predicted value of machine learning model
y: Actual value of the test data.
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Figure 14: The steam temperature comparison—test 31302.
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