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Energy storage systems (ESS) are seeing rapid market growth due to the changing worldwide landscape of electricity distribution and
consumption. An ESS must possess the capability to oversee the functioning of the system’s modules under abnormal circumstances,
while also having the ability to supervise, manage, and optimize the performance of one or more battery modules. At present, the
condition of batteries is assessed based on two factors: the level of charge (SOC) and the overall condition (SOH). By using these
two characteristics, it becomes feasible to compute the anticipated battery lifespan and evaluate a battery’s efficiency. The
assessment of SOH is a crucial determinant in guaranteeing the effectiveness, dependability, and security of batteries in electric
vehicles (EVs). Nevertheless, the safety issues resulting from the imprecise estimation and forecasting of battery health status have
garnered significant attention in academic circles. This study presents a comprehensive evaluation of several SOH monitoring
techniques. In order to achieve this objective, various scientific and technical literatures are examined and the corresponding
methodologies are categorized into distinct groupings. The groupings are categorized based on the manner in which the procedure
is executed: methods and techniques used in experiments and models. This paper provides a comprehensive overview of the
benefits and drawbacks of several SOH assessment and prediction techniques, along with the associated obstacles in SOH estimation.

1. Introduction

LIBs have found extensive use as energy storage devices in
many applications, including EVs andHEVs [1]. The deteriora-
tion of electrochemical components in LIBs leads to a decline in
their performance with time and with use, resulting in a
decrease in both capacity and power [2]. The demand for
energy is on the rise due to the significant growth in productiv-
ity and power consumption in the contemporary day. The
aforementioned factor has facilitated the continued develop-
ment of the energy and power sector [3]. LIBs have emerged
as a fundamental energy storage technology with extensive uti-
lization across several industries, rendering them a significant

component within the energy sector. Nevertheless, a significant
obstacle faced by LIBs in many applications, including power
grids, electric cars, and mobile phones, is deterioration. This
degradation plays a pivotal role in determining the cycle life
of LIBs. LIBs are widely used for their ability to effectively store
and deliver energy [4, 5]. LIBs are extensively used as power
sources in the EV power system owing to their notable benefits,
including high energy density, extended operational lifespan,
and little self-discharge rate. Nevertheless, it is important to
note that lithium-ion batteries have a steady degradation over
time as they are used. Battery degradation results in a rise in
electrical resistance and a decline in energy storage capacity,
thus resulting in a reduction in overall battery performance.

Hindawi
International Journal of Energy Research
Volume 2024, Article ID 6488186, 17 pages
https://doi.org/10.1155/2024/6488186

https://orcid.org/0009-0004-8195-4590
https://orcid.org/0009-0003-2963-2415
https://orcid.org/0000-0002-4530-9904
https://orcid.org/0009-0006-3587-130X
https://orcid.org/0000-0001-7298-7930
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Once the battery’s capacity declines to below 80% of its desig-
nated nominal capacity, it is regarded as reaching the termina-
tion of its lifespan. Consequently, this stage is associated with a
significant likelihood of encountering safety concerns such as
thermal runaway. A very effective and simple thermal manage-
ment technique, utilizing a minichannel cooling plate, is intro-
duced for the LiFePO4 pouch cell in [6]. The proposed design
significantly enhances the consistency of surface temperature
differential by over 100% when compared to available data on
similar designs. The authors in [7] conduct a computational
analysis of passive heating systems that utilize Fins and PCM
for thermal management of 18650 Li-ion batteries at low tem-
peratures. The analysis specifically focuses on battery module
analysis. An investigation is conducted using Ansys Fluent to
analyze the effect of changing the thickness of PCM on heat
transmission. The study is aimed at forecasting the distribution
of temperature and examining its influence on the performance
of the battery’s output. In [8], the researchers conducted a com-
puter study to examine the temperature distribution on the sur-
face of a liquid-cooled battery pack during discharge at current
rates ranging from 1C to 4C. They used an Al2O3/EG-water dis-
persion as the cooling medium. In [9], the authors investigating
the performance of a phase change material-based thermal bat-
tery management system for controlling battery temperature
and battery life. The applications of LIBs extend across several
sectors, including consumer electronics, stationary storage sys-
tems, electric automobiles, and aerospace vehicles [10, 11]. In
order to guarantee the safe and dependable functioning of a bat-
tery system over its entire lifespan, the implementation of a
BMS is used. This system is responsible for the measurement
and monitoring of battery parameters, as well as the regulation
of battery operation. The BMS is a compact electronic device
that facilitates the regulation and supervision of the battery sys-
tem, therefore guaranteeing both the safety and efficiency of
battery operations [12, 13]. Nevertheless, it is worth noting that
the power and energy attributes of LIBs experience a decline
over time due to ageing [14]. Additionally, their performance
is also affected by cyclic ageing, which is influenced by factors
such as environmental conditions and operational use [15,
16]. Battery deterioration results in an elevation of electrical
resistance and a reduction in energy storage capacity, thus
resulting in a decline in overall battery performance. Once the
battery’s capacity diminishes to below 80% of its designated
rated capacity, it is said to have reached the termination stage
of its lifespan. At this junction, there exists a significant likeli-
hood of encountering safety concerns such as thermal runaway
or other related hazards.

The demand for energy is on the rise due to the signifi-
cant growth in productivity and power consumption in the
contemporary day. The aforementioned phenomenon has
facilitated the continued development of the energy and
power sector. LIBs have emerged as a prominent energy
storage technology with extensive utilization across several
industries, making them a significant component in the field
of energy storage. Nevertheless, a significant obstacle faced
by LIBs in many applications, including power grids, electric
cars, and mobile phones, is the issue of deterioration. This
degradation significantly affects the cycle life of LIBs and is
thus of utmost importance to address. Research indicates

that the process of draining is often more detrimental than
its corresponding charging cycle [17]. The quantification of
battery deterioration is often done via the use of the SOH
indicator. SOH is a metric used to assess the current state
of a battery in relation to its nominal or design conditions.
By assessing the SOH of a battery, it is possible to enhance
the overall performance of the battery and perhaps extend
its lifespan [18]. Hence, the assessment of SOH has signifi-
cant importance in ensuring the optimum performance of
batteries across diverse applications that need extended bat-
tery lifespans, such as electric cars [19].

The utilization and acceptance of electric cars are seeing
a notable increase in both public interest and practical use.
The increasing popularity of EVs has led to a significant
focus on research pertaining to BMSs as a fundamental com-
ponent of their technology. SOH serves as a measure for
assessing the battery’s ageing process and plays a pivotal role
in establishing the appropriate time for battery replacement
or projecting the driving range. The measurement of SOH in
several research has mostly relied on two approaches: (1) the
EC model and (2) capacity fading. The EC model is used due
to the fact that the parameters of the model tend to vary and
the battery’s capacity tends to decline as it ages and
undergoes usage. Nevertheless, these metrics are defined
within stringent parameters by all of them, rendering them
unsuitable for evaluating the SOH of EV batteries. This is
due to the fact that EV batteries need real-time calculations
and are often subject to partial and dynamic charging and
discharging. Hence, it is essential to conduct a precise assess-
ment of the SOH of the battery in order to guarantee its opti-
mal performance and safety. Numerous approaches for
estimating the SOH have been developed over the years. A
frequently used approach involves the utilization of cellular
models to simulate cell behaviors, afterwards using diverse
optimization algorithms and observers, such as the KF fam-
ily [20] and particle filter [21], to ascertain the parameters
and SOH. One often used methodology is the utilization of
electrochemical models, which employ partial differential
equations to replicate the dynamics of mass and charge
transfer that are intricately linked to the process of ageing
[22]. Electrical models that include electrical-circuit ana-
logues, like as resistors and capacitors, are also prevalent.
In [23], the authors investigated the battery resistance char-
acteristics by performing EIS measurements. Then, the
extracted outcomes were connected with the heat generation
and used to explain the trends of the battery thermal charac-
teristics at different temperatures and current rates. These
models describe the dynamics of cells under various input
currents [24]. This area has shown notable vibrancy, as seen
by the existence of many review publications on this subject
[25, 26]. Nevertheless, precisely determining the SOH of a
battery may be challenging owing to the complex interplay
of several components, including internal side reactions,
diverse working environments, and varying operating cir-
cumstances of the battery. The existing approaches for esti-
mating the SOH of batteries may be categorized into three
main groups: direct measurement techniques, model-based
methods, and data-driven methods. In contrast, empirical
models exhibit superior online capacity, particularly when
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combined with techniques such as KFs [27, 28], enabling the
attainment of very precise SOH estimations. Typically,
experimental methodologies include offline and laboratory-
based investigations aimed at precisely assessing battery
deterioration via several metrics, including internal resis-
tance [29, 30], impedance [31, 32], and capacity levels [33,
34]. The primary drawbacks associated with experimental
methodologies are the considerable time required for con-
ducting the requisite measurements, as well as their inherent
limitation in terms of real-time estimation of SOH.

Model-based approaches use several variables to develop
models that effectively capture the behavior of battery SOH.
Frequently used methodologies include KF, observers, and
comparable ECM. The authors in reference [35] provide evi-
dence that the dual extended KF, which is often used SOC
and SOH estimates, encounters limitations throughout the
lifespan of the battery. The authors in reference [36] provide
a multi-time-scale observer that is suggested for the assess-
ment of both SOC and SOH. In the study conducted by the
authors in [37], they have successfully included the impact of
diminishing SOH into an ECM in order to precisely ascertain
Thevenin parameters. The use of model-based SOH estimate
has shown its capability to attain a notable level of accuracy
and precision. In [38], the authors first extract novel indirect
health indicators from the voltage and current curves while
the battery is being charged. They then optimize these indica-
tions using the KF. The PCA approach demonstrates a strong
link between the collected HIs and the capacity. The hyper-
parameters of the multikernel Gaussian process regression
(GPR) model are optimized using PSO to minimize mistakes
resulting frommanual adjustments. However, it often necessi-
tates substantial computing resources and may be reliant on
an extensive array of characteristics and variables.

Data-driven SOH estimate approaches, particularly
those based on ML techniques, are aimed at integrating the
benefits of both the aforementioned conventional methods.
The reliance on conventional approaches is inherent due to
their need for data, which is acquired by measurements or
models, in order to effectively train estimating models. Con-
sequently, the quality of this data becomes a crucial factor in
their dependency. Nevertheless, they have shown a remark-
able ability to provide accurate estimations while also being
very easy to execute. A diverse array of ML algorithms is
now being used for SOH estimation. The authors emphasize
the use of SVM [39, 40], fuzzy logic [41], and ANN. In [42],
the authors developed CNN-based battery SOH estimation
model trained to estimate SOH from constant current charge
and discharge data. The implementation of other models, such
as regression tree and random forest, has been explored in [43]
with varied levels of accuracy. The paper [44] discusses a tech-
nique for estimating the SOH of LIBs using an upgraded wide
learning system (BLS) network and ICA. Initially, the IC
curves are generated using the voltage data from the constant
current charging phase and then refined using the smoothing
spline filter to remove noise. Subsequently, the Pearson corre-
lation coefficient approach is used to identify the crucial health
markers from the characteristics derived from the IC curves.
The SOH is evaluated using an optimized BLS network with
L2 regularization and PSO in the SOH estimate model.

2. Definition of SOH for LIBs

The rate at which a battery is depleted in relation to its max-
imum capacity is known as the battery C rating. Battery C
rating regulates how quickly a battery charges and dis-
charges. Stated differently, it is the controlling factor that
determines the rate at which the intended batteries are
charged or discharged. In this work, the loss of rated capac-
ity, which can be provided as, is used to explain that the
SOH of the LIBs is calculated using the following equation:

SOH = current actual capacity
nominal capacity 1

2.1. Capacity Definition. SOH is one of the essential parame-
ters of LIBs, and it is calculated using the following equation:

SOH = Qm

Qr
∗ 100, 2

whereQm is the current maximum available capacity andQr is
the rated capacity of the battery [45, 46].

The values of SOH also exhibit substantial variation due to
the impact of the current multiplier and temperature used in
the measuring process [47, 48]. In order to guarantee the ful-
filment of performance criteria for LIBs, it is explicitly outlined
in IEEE standard 1188.1996 that if the SOH of the battery falls
below, certain measures need to be taken. When the battery
level reaches 80%, it signifies that the battery has reached the
end of its lifespan and necessitates replacement [49, 50].

2.2. Internal Resistance (IR). SOH is defined according to the
IR of the battery, which is calculated using the following
equation:

SOH = Re − R
Re − Rn

∗ 100% 3

The variables R, Re, and Rn represent the IR of the battery
under different conditions. R represents the IR in the current
state, Re represents the IR of the battery when it approaches
the end of its life, and Rn represents the IR of a fresh battery.
SOH is often defined by academics by the measurement of
IR. Additionally, scientists use the IR of the battery to estimate
and anticipate its SOH [51, 52]. The escalation of IR is a signif-
icant metric in assessing battery degradation and contributes
to the subsequent deterioration of battery SOH.

2.3. The Capacity Contained in the Electrode. The movement
of the LIB occurs concomitantly with the transfer of charge
when using LIBs. The assessment of the SOH of LIBs may
be determined by examining the aggregation of lithium ions
inside the electrode, as indicated by the electrochemical
reaction mechanism [53]. In the hypothetical state, the prin-
ciple of SOH can be mathematically represented as

SOH = Q
Qo

∗ 100%, 4
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where Q is rated capacity and Qo is the lithium concentra-
tion after multiple cycles.

3. SOH Estimation Methods

There are various techniques for determining the battery’s
health. In the given work, they are mainly classified into
experimental and model based which is further divided into
data driven and adaptive algorithms as shown in Figure 1.

3.1. Experimental Methods. The SOH evaluation of a battery
employs experimental techniques, which are crucial and require
numerous actions to gather the essential data. Every time, it is
unfeasible to collect useful data throughout the experiment
due to a variety of systematic errors and external effects. Capac-
ity analysis, internal resistance, impedance spectroscopy, and
voltage analysis are some of the experimental methods that
can be used to measure internal resistance. Model-based
approaches, employing data-driven techniques such as ML
and DL, are used to assess SOH. Adaptive algorithms, on the
other hand, include techniques like the Kalman filter, electro-
chemical method, and empirical fitting approaches.

3.1.1. IR Measurement. The battery’s SOH is greatly influenced
by internal resistance (Ri), which signals when a battery’s life is
ready to expire. Internal resistance is frequently described as the

material’s resistance to electrical current flow. Discharge rate,
temperature, SOC, and composition and structure of the battery
all have an impact on internal resistance. Consequently, some
traits become apparent that may be utilized to estimate the
battery’s lifespan. IR in batteries is primarily brought on by
two elements, namely, ohmic resistance (OR) and polarization
resistance (PR) [54]. In an electrochemical reaction, the polari-
zation resistance represents the state of conversion between the
electrolyte and electrodes. Internal resistance rises as the bat-
tery’s capacity and rate of discharge increase. Using the voltage
drop of the battery at a specific current value and the equation
below, thismethod calculatesRb (SOC,T) [55, 56] using the fol-
lowing equation:

Rb SOC, T = OCV SOC, T −Vbat SOC, T
Ipulse

, 5

where Rb is the IR of the battery, Vbat is the voltage of the bat-
tery, and Ipulse is the current. Delivering extremely precise out-
comes in a range of circumstances is one of this equation’s
key benefits.

3.1.2. IR Measurement Using A.C. Method. Power, energy
efficiency, and heat loss are all greatly affected by the bat-
tery’s internal resistance. Alternating current methods,

SoH estimation

Experimental method Model based method

Data drivenAdapative algorithm 
Internal resistance

measurement

Destructive methods

Incremental capacity
analysis (ICA) and
differential voltage

analysis (DVA)

Internal resistance
measurement using
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direct current

Electrochemical
impedance

spectroscopy

Kalman filter

Autoregressive
integrated moving
average (ARIMA)

Fuzzy logic

Empirical and fitting
methods

Electrochemical
method

Machine learning

Extreme learning
model

Support
vector machine

Deep learning

Figure 1: Classification of SOH estimation method.

4 International Journal of Energy Research



thermal loss methods, and electrochemical impedance spec-
troscopy are all methods use for determining the internal
resistance of the cell. By applying small current ripples with
an average frequency of 1 kHz, the A.C. technique is used to
measure the IR of LIBs. The ability to calculate through the
phase angle and suitability for complex measurements are
the key advantages of the AC approach [57, 58]. The fact
that the A.C. method is a nondestructive approach for mea-
suring IR is a considerable benefit. Due to the narrow voltage
range, this approach is not commercially viable for multicell
batteries [59].

3.1.3. IR Measurement Using D.C. Method. D.C. method is
the tried-and-true technique for calculating batteries’ IR
[60]. The D.C. method uses a set load with a known resis-
tance to deplete batteries quickly. The capacity of the batte-
ries affects the load current. The following algorithm
illustrates how to test the battery’s IR using direct current:

(i) In the absence of a load, the open-circuit voltage is
measured via use of voltmeter

(ii) After attaching the load, the voltage is measured
across it

(iii) Calculate the circuit’s internal resistance using
Kirchhoff’s law

Direct current measurement is effective for determining
internal resistance of batteries with large capacity. Their ohmic
values can be precisely and regularly monitored. A D.C.
method is used to quantify the voltage drop that takes place
as a cell receives current. The D.C. approach is among the
most often used method to figure out a battery’s SOH as it
cycles. One of the most popular techniques for determining
a battery’s SOH throughout the cycling process is the D.C.
method. The main benefit of using the D.C. method to mea-
sure internal resistance compared to the A.C. method lies in
the fact that it is more accurate because of diffusion polariza-
tion. The A.C. technique is limited to measuring low imped-
ance values of LIBs during diffusion polarization tests [61, 62].

3.1.4. Electrochemical Impedance Spectroscopy (EIS). EIS is
another well-liked nondestructive method for measuring
internal impedance. When measuring the electrical system
resistance, the experiments are always carried out using sinu-
soidal alternating current [63–65]. The frequency band range
should be as wide as possible. Numerous applications exist
for impedance measurements. At frequencies below 107-
108Hz, various bridges are widely utilized. Hand-balanced
bridges include the Wheatstone and Schering bridges [66].

3.1.5. Incremental Capacity Analysis (ICA) and Differential
Voltage Analysis (DVA). As the name suggests, the cycle
counting method counts the number of revolutions a battery
has gone through and compares it to the manufacturer’s
recommended value to assess the battery state of health. This
counting strategy takes the DOD into consideration [67, 68].
The differential voltage range has an impact on the IC
curves, which should be taken into account as inaccurate
analysis may ensue. The MA and Gaussian filters must be

used in conjunction with one another to solve this issue [69].
The power amplified as the voltage varies is shown by the IC
curve. Capacity and voltage of the battery are typically utilized
to find IC curves when utilizing the charging method which
are calculated using equations (6) and (7). The battery’s capac-
ity and voltage therefore must be determined first [70] which
is calculated using the following equations:

Q = I × t, 6

V = f Q , 7

Q = f −1 V 8

Hence, the following features of the IC curve can be
identified by

f −1 ′ = dQ
dV

= I × dT
dV

9

For the purpose of raising the accuracy of the battery’s
SOH evaluation, Gaussian process regression is used, which
assesses the resemblance of the input variables and builds a
covariance function, and is essential to SOH estimation.

3.1.6. Destructive Methods. Generally, in this method, the
precise value of the SOH is estimated because of the exact
deterioration information that was offered. However, the
battery must be disassembled on the back face in order to
examine the ageing process, as specified in the procedures
like scanning electron microscopy. Moreover, these methods
can damage the battery for lifelong, and hence, these
methods are not applicable in industrial applications. appli-
cations. Figure 2 illustrates a range of destructive methods,
encompassing Raman spectroscopy [71–80], X-ray diffrac-
tion [81, 82], scanning electron microscope [83, 84], X-ray
photoelectron spectroscopy [85–89], scanning transmission
electron microscope [90, 91], cyclic voltammetry [92, 93],
Auger electron spectroscopy [94, 95], and atomic force
microscopy [96–98]. Various destructive methods are listed
in Figure 2. Table 1 shows the advantages and drawbacks
of the various experimental-based methods.

3.2. Model-Based Methods. Model-based estimate is another
technique for assessing a battery’s SOH. With this method,
the goal is to ascertain how the battery’s crucial characteristics,
including current, voltage, and capacity, vary over time.
Therefore, battery management systems can use the tech-
nique. The fact that this method can be used in scientific pur-
suits sets it apart from the experimental estimating method.
Among the main categories of model-based estimates are
KF, electrochemical model-based techniques, empirical fitting
techniques, ML techniques, and DL strategies.

3.2.1. Adaptive Algorithm. The adaptive methods are self-
designing and may automatically normalize the SOH for dif-
ferent discharge situations.

(1) KF Method. The common KF is a filtering method that
bases its error on the least RMS variance and evaluates the
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present state of linear systems [99, 100]. The expanded Kal-
man filter technique is used by the battery health estimation
procedure to determine the model’s parameter after the pre-
vious health value [101]. To estimate health status, a model
needs to first be developed. The operational current, voltage,
and model parameters are contained in the recursive equa-
tion of the extended Kalman filter. Then, the model variables
are modified in real time in accordance with the value of the
enhanced battery SOH [102]. Utilizing a prediction
approach after looking at the outcomes is the next step.
Finding the reliance and eliminating the noises based on
the findings requires a filtering technique. The battery’s
charge and health can both be assessed simultaneously using
the Kalman filtering. A RC equivalent circuit model has been
built in [103], in which the recursive least squares approach
has been used to recognize the model’s parameters. Addi-
tionally, the AUKF technique simultaneously estimates the
SOH and SOC of the battery. In [104], the charging data
are used to produce the temperature difference curves, which
are then rounded using the Kalman filter. The connection
between temperature and ageing is then described by
extracting the capacity degradation-related health features
using differential temperature curves. The battery’s health
is then predicted using a deep learning model and hybrid
attention that combines the benefits of convolutional recur-
rent neural networks, neural networks, gated recurrent unit,
and attention mechanisms. A novel and efficient model-
based approach, called the state of X (SOX) estimation tech-
nique, is introduced in [105] to simultaneously estimate sev-

eral battery states, including SOC, state of energy (SOE),
state of power (SOP), and SOH. The estimate of SOC and
SOE is carried out using a novel approach that combines
both parameters. This method uses a multi-time-scale dual
EKF for accurate estimation. Next, the estimate of SOP is
conducted using the T-method and a 2RC battery model
in order to assess the noninstantaneous peak power during
charge and discharge. The battery’s current capacity is esti-
mated using a simple approach called coulomb counting.
This method uses a sliding window and has been shown to
have an experimental error of less than 1%. In [106], the
authors present a complete coestimation approach for accu-
rately determining the battery states, maximum accessible
capacity, and maximum available energy. The SOC and SOE
are estimated using the dual forgetting factor AEKF method,
which combines SOC and SOE estimation and utilizes exper-
imental quantitative linkages between SOC and SOE. The Rint
model is used for the estimate of SOP employing a multiple
constraint approach, mostly because to its cheap computing
cost and simplicity. The assessment of the maximum available
capacity and maximum available energy is carried out using a
novel approach called SW-AWTLS.

(2) Fuzzy Logic. Fuzzy logic processes data obtained from
intricate, nonlinear systems using a collection of fuzzy rules.
Afterwards, the data is separated into fuzzy subgroups. The
subgroup is then divided into groups based on the corre-
sponding uncertainties. The membership function to which
the members of the fuzzy sets belong determines the SOH

Destructive
methods

X-ray diffraction
[81-82]

Cyclic voltammetry
[92-93]

Raman spectroscopy
[71-80]

Scanning transmission
electron microscope

[90-91]

Atomic force
microscopy

[96-98]

Auger electron
spectroscopy

[94-95]

Scanning electron
microscope

[83-84]
X-ray photoelectron

spectroscopy
[85-89]

Figure 2: Different destructive methods.

Table 1: Advantages and drawbacks of the various experimental methods [63–70].

Model name Advantages Drawbacks and limitation

IRM Reliable Time consuming

EIS Nondestructive battery degradation prediction
Requires long time

Used for only specific environment

ICA and DVA Loss of battery, high accuracy robust, and reliable Suitable only for Li-ion battery

Destructive Precise estimation of value Can permanently damage cell
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precisely. It is not necessary to comprehend the equations
and system process in order to implement fuzzy logic. How-
ever, it enables the use of an advance level of abstraction that
results from experimental research and practical applica-
tions to represent complicated systems. This approach has
a higher accuracy but takes more processing because it is
entirely data driven. Shahriari and Farrokhi’s [107] investi-
gation into the SOH and SOC of valve-controlled lead acid
(VRLA) batteries is based on the electrochemical character-
istics of VRLA cells and the fluctuations in voltage and cur-
rent during discharge and charge. Based on observations of
numerous experiments conducted on VRLA cells of various
ages, the SOH is calculated from the relationship between
the stored charge and the curve representing the OCV of
the battery. The slope of the curve serves as the input value
to the planned fuzzy system, and the predicted SOH is the
system’s output. This method’s independence from the bat-
tery type is a key benefit. However, this approach necessi-
tates a prediction of the real battery power in prior. In
[108], a new neural network with conjectural jump places
and an interval fuzzy set is given. A graded membership
function is used by the quantum fuzzy set to improve class
overlap recognition. While employing the decoupled EKF
for parameter estimation in the quantum fuzzy set, the
quantity of rules is automatically modified and advanced.
The suggested approach estimates the capacity of NMC bat-
teries over 600 charging-discharging cycles using data on
voltage, current, and sampling time.

(3) ARIMA. All ARIMA needed is data from a previous time
series. In order to predict next points in the series, time series
data are fitted to this model. As a result, single-step estimate is
where ARIMA shines rather than multiple step prediction. In
an ARIMAmodel, the parameter selection is generally unique.
In this context, Long et al. replaced the ARIMA model with a
high-order autoregressive (AR) model and changed the chal-
lenge of searching nonlinear ARIMA model parameters into
searching linear ARmodel parameters [109]. In addition, they
suggested using the PSOmethod for the reduction of risk asso-
ciated with determining order subjectively by humans. The
data metabolic method is used to enable adaptive modification
of the AR model. In an effort to build-on the accuracy in the
long-term prediction process, Liu et al. present a determining
element to distinguish “accelerated” decay and merged this
element with the ARmodel [110]. To further increase the fore-
cast accuracy, they added a regularized particle filter in his
subsequent work [111].

(4) Electrochemical Model-Based Methods. When assessing a
battery’s health using the electrochemical model, it is impor-
tant to take into consideration the procedure that take place
while the battery is in use. As batteries age, IR increases and
battery capacity declines. Doyle et al. developed the initial
electrochemical representation of LIBs. This method is
known by the acronym Doyle-Fuller-Newman (DFN) model
[112, 113]. The battery parameter analysis is accurate. The
model’s construction was supported by the mass-charge con-
servation equations in electrolyte and solid interphases. The
chemical process that results in the production of the SEI, that

decreases LIB capacity, is also described as an outcome of the
synthesis of nonconsumable lithium ions. The formulae asso-
ciated with the DFN model are listed as follows:

∂Cs

∂t
= Ds

r2
∂
∂x

r2
∂Cs

∂r
, 10

where δ and δ + are the negative and positive electrode thick-
ness, respectively, and δCs is the mass in solid phase.

(5) Empirical and Fitting Methods. This method relies on
mathematical equations like polynomial and exponential func-
tions that can be fitted to the health battery’s status. This
method’s drawback is that the mathematical model does not
adequately capture the physical and chemical reactions that take
place inside the battery. Deshpande and Bernardi assert that by
using Equation (11), it is possible to develop a mathematical
model that has a capacity based on the DOD, the number of
phases (n), and the duration of storage time (t) [114]. Calendars
and cycle ageing are both considered in this calculation:

Qt =Q0 1 − B × DOD2 × n − Kt , 11

where Q0 represents the battery’s initial capacity, Qt represents
the calendar time, B represents the cycling ageing coefficient,
andKt represents the calendar ageing coefficient. Table 2 shows
the advantages and drawbacks of the various model-based
adaptive algorithm methods.

3.2.2. Data-Driven Methods. It is a technique that involves
developing a preliminary model and then improving it with lots
of data to make it compatible with the data. Model-based
methods are those where the starting model is an existing bat-
tery model; model-less methods are those where it is not.

(1) ML Method. The ML strategy focuses on making a com-
puter that has been taught to predict the battery’s health using
information previously obtained on battery ageing. The bene-
fit of this strategy is that machine learning may be applied
without taking into consideration the battery’s electrochemical
model. Based on the review of the literature, the following cat-
egories can be applied to machine learning techniques:

(i) The estimation of SOH is rooted on accurate measure-
ments of the battery temperature, voltage, and current

(ii) Based on the battery charge-discharge curve, the
SOH estimate is constructed. The training data in
the 20–60% capacity range is used to acquire and
choose data features on the battery’s charge-
discharge behavior. The battery’s health is finally
predicted using LSTM and CNN [115]

(iii) Charge-discharge characteristic analysis data which
has undergone processing, like IC analysis and DV
analysis, are used to estimate SOH

When building a model, parameter selection in it refers
to the process of selecting a subset of the features that are
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accessible or variables. The evaluation of the model is to be
revised by choosing factors that are most crucial to the bat-
tery’s health. Numerous techniques exist for selecting traits,
such as progressive calculation, which is just a derivation of
a function of parameters. The employment of a distinct
noise processing technique is required for the incremental
study of any parameter with diverse disturbances, which is
one disadvantage of this feature selection. In addition to
other algorithms, linear regression is one. This simple and
well-known method considers a linear correlation between
the desired variable and the attributes. The algorithm only
functions, though, if it has a sufficient number of features
as the battery is mostly determined by difficult equations.
Despite being used for binary classification issues; this is
analogous to linear regression. This tree-based technique
continuously separates the data into progressively combat
subgroups in accordance with the features via recursive par-
titioning. A random forest, a collection of decision trees,
produces a single forecast. SVMs are an effective technique
that may be used to solve classification and regression
problems.

(2) DL Method. The ANN is among the most popular algo-
rithms used for a number of applications, including pattern
recognition, optimization, and prediction. It was created to
mathematically duplicate the neural processes of the human
brain. Three layers make up a standard ANN: input, hidden,
and output layer. It is made up of “neurons” or points which
are interconnected in order to collaborate and process the
data arriving from the input layer. Lines connecting the dots
reflect the weights of the layers, which are essentially func-
tions. Before using the ANN for estimations, it must be
trained to determine optimal values for these weights. The
major drawback of an ANN is its training phase because it
requires a huge amount of various data to produce a net-
work that operates correctly. The IR is currently thought to
be the most accurate indicator of the battery’s SOH. The
connection between a battery SOH and its complex imped-
ance zero-phase crossover frequency was demonstrated by
Xia and Qahouq using FFNN [116]. An online solution for

SOH and RUL tracking basis on the merging of partial incre-
mental capacity and FFNN was proposed by Zhang et al.
[117]. After buffing the first partial progressive curve for
the Spearman correlation analysis, two strongly related fea-
tures were extracted as input from the partial progressive
curve, and two FFNN models were built for the simulta-
neous estimation of SOH and RUL. This led to a straightfor-
ward model structure that performed well in terms of
accuracy and generality. FFNNs are the source of the archi-
tecture of RNNs. The RNN, in contrast to the FFNN, has an
extra context unit for storing the past data. As a result, cer-
tain hidden layer outputs are returned back into the input
layer before them. With this innovation, RNNs become
strong models with a special ability to handle sequential
input. An estimated approach for accurately determining
the SOH of a battery is presented in [118]. This method uti-
lizes progressive decreasing current, double correlation anal-
ysis, and GRU to get precise estimates. The raw data consists
of the measurement of the steady decrease in current during
the constant voltage charging phase. Next, we suggest the
use of the double correlation analysis approach to pick a
combination of characteristics that accurately describe the
SOH of the battery. These features are chosen from several
categories of features. The GRU algorithm is used to estab-
lish a model for estimating the SOH. The learning rate of
this model is enhanced by using a sparrow search algorithm
(SSA), which aims to uncover the concealed correlation
between variables and SOH. Chen et al. used the EMD
approach to handle the unprocessed ageing data while
designing an Elman NN for estimating the SOH in [119].
As a result, two different kinds of sequences are produced,
one of which is the intrinsic mode function, which exhibits
significant disturbance and can be calculated using the auto-
regressive moving average model. This eliminates the prob-
lem of capacity regeneration. The further one is the final
remains, which may be calculated using an Elman NN that
has already been trained. It is a flat monotonous curve.
The fusion method is capable of precisely estimating the
SOH as well as reflecting local variations in capacity fading.
Elman NN is used in [120] for SOH estimation, which is

Table 2: Advantages and drawbacks of model-based adaptive algorithm methods [75–85].

Model name Advantages Drawbacks and limitation

Equivalent circuit model Nondestructive
Requirement of higher controller for identification of

ageing parameter of the battery

Electrochemical model
Nondestructive

Besides, it also gives measurement of
current, voltage, and temperature

Need for high computational efficiency

Empirical and fitting method
Nondestructive and require
low computational efficiency

Less reliable

Kalman filter
Accurate estimation

No initial data required
Easy data filter

Complex method
Requires large amount of computation

Fuzzy logic
Applicable for nonlinear and

complex system
High computation is required

ARIMA
For short-term forecasting
Only needs historical data

Poor at predicting turning point
Not for long-term forecasting
High computational required
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further applied to real-time battery SOC correction. In the
preliminary stages of qualification tests, this study suggests
using a CNN to predict the succeeding SOH value of LIBs.
To highlight the time series characteristics of the data,
capacity degradation data are first converted into two-
dimensional pictures using Gramian angular and recurrence
plot fields. In order to figure out Li-ion battery SOH values
for a specific cycle, five different types of convolutional neu-
ral network models are created. To illustrate how the models
arrive at their results, class activation maps are created in
this instance [121]. In [122], the optimal mix of features,
hyperparameters, and attention layer of the network are
simultaneously found using an evolutionary multiobjective
(EMO) technique, allowing for flexible SOH estimate under
a variety of operational scenarios. The partial voltage curve
is intended to be compressed while retaining its tendency
properties using a piecewise aggregate approximation. To
create the data-driven model, a LSTM is used, and to com-
plete the feature selection process, an attention layer is
added. In order to address the issue of battery capacity
regeneration in the assessment of SOH, Li et al. [123] pro-
vide a technique that utilizes IEA and bidirectional long
short-term memory (BiLSTM) to estimate battery SOH. Ini-
tially, the IE curve, which accurately characterizes the intri-
cate chemical properties of the battery, is derived based on
the energy data computed during the CC charging phase.
Subsequently, an examination is conducted on the correla-
tion between the IE curve and the deterioration attributes
of battery SOH. The peak magnitude of the IE curve is then
isolated as the indicative feature of battery ageing. Addition-
ally, PCA is used to ascertain the linear link between the sug-
gested ageing features and the SOH of the battery. The
findings show that the suggested approach successfully cal-
culates the SOH of the battery under two distinct charging
scenarios, achieving a root mean square error of less than
0.5% and a coefficient of determination above 98%.

(3) SVM Method. The SVM examines the given data and
assists to figure out the pattern for nonlinear systems. SVM
is also use for various classification problem in pattern anal-
ysis and more. SVM is broadly used because of its potential
of managing small datasets. Although when the data size
increases the number of support vector rises, hence the com-
putation cost also rises. For SOH estimation, an SVM with a
kernel function based on a RBF is used. An improved SVM
based on PCA was suggested [124] to optimize the extracted
dataset, remove noise, and apply a PSO method to fulfil the
vector machine’s global optimization, which further reduces
prediction accuracy and calculation speed. A better learning
machine built on sparse Bayesian theory is the relevance vec-
tor machine (RVM). It has less reliance on the kernel func-
tion and choice of penalty factor than the support vector
machine. Adjusting parameters allows for flexible manage-
ment of underfitting and overfitting problem, and the com-
putation is made simpler. The SOH estimation for LIB
using the RVM method is covered in the following pertinent
literature [125–129]. Widodo et al. applied the sample
entropy to check the SVM and RVM execution. The results
unveil that the RVM surpass SVM-based health prognostics

in the view of precision [130]. The benefits of low high spar-
sity, parameter identification, and variable kernel function
allow RVM to precisely calculate the probability of findings’
uncertainty. However, if the data are too sparsely collected, it
can easily result in small stability and poor swift repeatability
of the RVM algorithm’s outputs. While this is going on,
more research needs to be done on how accurate forecast
and estimation of long-term trends are [131].

(4) Extreme Learning Model. However, ANNs frequently
experience issues with sluggish training speed and large
computing demands. As a result, an ELM-style quick learn-
ing model has been suggested for on-board estimate. In con-
trast to previous ANNs, the threshold of the hidden layer
and the connection weight between the hidden layer and
the input layer can both be set arbitrarily with no subsequent
adjustment needed. Additionally, the generalized inverse
matrix must be solved in order to establish the connection
weights between the output and the hidden layer. Thus,
the learning model gives more accuracy the traditional neu-
ral network. With easily observed terminal ambient temper-
ature, load current, and voltage, Pan et al. employed the
Thevenin equivalent model to determine the ohmic IR and
polarization IR of the battery [132]. Online battery life esti-
mates were made using the ELM approach by taking the
addition of two resistance values as health factor. In compar-
ison to the traditional FFNN, the results show that the esti-
mation error is decreased with training speed. Table 3
shows the merits and drawbacks of the data-driven methods.

Table 4 provides a comprehensive collection of relevant
academic publications focusing on the evaluation of the var-
ious SOH methodologies, accompanied with the average
error value. The papers have been categorized based on the
classification provided in this review from differen SOH
methods [133–148].

3.3. SOH Estimation Challenges. In the context of automo-
tive applications, the dynamic nature of operating circum-
stances, such as temperature fluctuations, poses significant
challenges to the real-time viability of identification opera-
tions. Presently, significant progress has been made in the
assessment and prognostication of the SOH pertaining to
LIBs. However, in practical vehicle operation conditions or
other real-world environments, the promptness and preci-
sion of the algorithm’s prediction outcome remain the pri-
mary challenges in research based on the conventional
forecasting model. The SOH estimation and the prediction
of the future trajectory of LIB primarily depend on the fol-
lowing three aspects:

(i) Extraction of feature parameters related to the cou-
pling process at the micro- and macrolevels: param-
eters such as current, voltage, resistance, and
temperature are often used to evaluate the degree
of battery degradation throughout different stages
of battery health. In essence, the battery is often
seen as an enigmatic entity, as the emphasis is only
on the relationship between the inputs and outputs.
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Nevertheless, as the theoretical study progresses, the
macrocharacterization of response intensity in bat-
teries is emerging as a vital area of investigation.
This is due to its ability to more accurately and
effectively ascertain the overall health condition of
the battery

(ii) The use of multialgorithm cross fusion technology:
batteries in real-world applications are continually
affected by factors like as temperature, loading
mode, and other external impacts, including cou-
pling interference. The internal structure of batte-
ries is complex due to variations in their charged
state and ageing features. As a result, the character-
ization of parameters exhibits variability, hence pos-
ing a challenge for a singular algorithm to effectively
predict the specific state or attributes of the battery
at any given moment. The use of cross fusion tech-
nology in various algorithms has the potential to

provide advantages for each respective approach,
hence resulting in improved precision in estimation
and prediction

(iii) The implementation of innovative 5G and cloud plat-
form technologies: the utilization of 5G communica-
tion technology and advancements in cloud platform
technology has facilitated the overcoming of compu-
tational processing limitations. This has enabled var-
ious applications, such as mobile communication
interface-based downloads and the transmission of
online processing outcomes to the BMS. Conse-
quently, these developments have enhanced the sys-
tem’s capacity for state parameter identification and
strength calculation, as well as the implementation

Table 5 presents the recent research trends in SOH esti-
mate during the last three years. The trends can be summa-
rized as consisting of five topics: correlation analysis between

Table 4: Average error of different SOH methods.

Model Error rate (in %) Error type Reference

Elman NN 1.29 MAE [133]

Semisupervised transfer
component analysis

1.29 MAE [134]

ICA 2.99 RMSE [135]

RF 3.58 RMSE [136]

SVM 3.62 RMSE [137]

SVM 0.13 and 024 MAE and RMSE [138]

CNN 1 and 2 MAE and RMSE [139]

RNN 0.72-1.37 RMSE [140]

ELM 2 RMSE [141]

ELM 1.93 MAE [142]

ELM 0.4 MAE [143]

ELM 1 MAE [144]

LSTM 0.23 RMSE [145]

LSTM 4.26 MAE [146]

LSTM 2.16 Average RMSE [147]

LSTM 2 MAE [148]

Table 3: Merits and drawbacks of the data-driven methods [86–103].

Model name Merits Drawbacks and limitation

Neural network (NN)
Ideal for parameter estimation,
requires less data, accurate

Needs a large set of training data as it
depends on historic data

Recurrent neural network (RNN) Efficient for sequential data Gradient explosion or disappearance

Support vector machine (SVM)
Suitable for both high and nonlinear
dimensional model, fast, and accurate

Sophisticated computational technique

ELM
Requires less computation
Learning model is fast

Delicate to the number of hidden neurons

RVM
Better sparsity

Avoids overfitting and underfitting of data
Lack of stability

Not feasible for long-term prediction

Elman NN
Adaptive to time fluctuating features,

quick approaching speed
Easy to fall in local optimality
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capacity and other variables [149–152], different conditions
[124], highly precise data-driven methods [154, 155], parame-
ter identification through new correlations for SOH [156,
157], and real-time implementation [158]. The research trends
in SOH estimate align with the following development needs.

(1) Newly introduced feature variables have strong asso-
ciations with battery capacity

(2) Accurate determination of capacity using battery
models and simultaneous estimate with SOC

(3) Methods that use data to make accurate predictions
and can handle nonlinear relationships

(4) Estimation of the SOH under different environmen-
tal and operational situations

(5) Estimation of the SOH in real time for the purpose
of updating other indications of battery status

4. Conclusions

This paper reviewed various methods available for SOH esti-
mation. The prospective SOH estimate systems for EV batte-
ries are examined in this study with an emphasis on the last
few years’ worth of advancements. Real-time SOH estimate
techniques using the experimental method and model-
based methods are examined. Several methods are used to
get information about the lifetime of lithium-ion batteries.
In this paper, the rapid SOH estimation methods for EV bat-
teries are reviewed and discussed. Although the model-based
methods can better reflect the variation law of internal bat-
tery decay, most models are complex, with many parame-
ters, weak online estimation, and prediction ability. Their
advantages and disadvantages are discussed in consideration
for the practical application. This review offers the following
advice on how to get through the difficulties:

(i) A more realistic model that can adapt to the real-
world environment’s complexity may be created
using the genetic multiphysical modelling approach
in conjunction with comparable circuit modelling,
temperature, and electrochemical analysis

(ii) There is a need to enhance the computational effi-
ciency, estimation accuracy, and practical applica-
tions of parameter determination techniques

(iii) To increase estimation accuracy, coupled SOH esti-
mation algorithms can be created. To accomplish

quick state estimate, it is specifically recommended
that the EIS model-based and data-driven-based
approaches be supplementary investigated

(iv) In order to enable the batteries in various applica-
tions, such as the battery pack in electric vehicles
and charging systems, estimate techniques should be
created

(v) To enhance estimation of accuracy and efficiency
using data-driven approaches, it is important to
investigate efficient estimation techniques and fea-
ture selection based on sample data. And it is hoped
that the big data platform-based data-driven meth-
odologies would be created to enable real-world
applications

(vi) In conclusion, developing the SOH estimation tak-
ing into account the real-world applications of LIBs
is still a popular study area. For diverse application
contexts, specific estimating approaches might be
chosen

Nomenclature

ESS: Energy storage systems
BMS: Battery management system
EVs: Electric vehicles
LIBs: Lithium-ion batteries
HEVs: Hybrid electric vehicles
SOC: State of charge
SOH: State of health
EC: Equivalent circuit
KF: Kalman filter
AUKF: Adaptive unscented Kalman kilter
EKF: Extended Kalman filter
ECM: Enhanced cyclic mat
ML: Machine learning
SVM: Support vector machine
ANN: Artificial neural networks
IR: Internal resistance
DL: Deep learning
ICA: Incremental capacity analysis
DVA: Differential voltage analysis
ARIMA: Autoregressive integrated moving average
A.C.: Alternating current
D.C.: Direct current
EIS: Electrochemical impedance spectroscopy
DVA: Differential voltage analysis
DOD: Depth of discharge
SOX: State of X estimation technique
SOE: State of energy
SOP: State of power
SW-AWTLS: Sliding window-approximate weighted total

least square
VRLA: Valve-controlled lead acid batteries
AR: Autoregressive
DFN: Doyle-Fuller-Newman
LSTM: Long short-term memory
CNN: Convolutional neural network

Table 5: Trends in research for SOH methods.

Trends References

Correlation analysis [149–152]

Considering various conditions [153]

Data-driven methods [154, 155]

Parameter identification [156, 157]

Real-time estimation [158]
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FFNN: Feed forward neural networks
RUL: Remaining useful life
RNN: Recurrent neural network
EDM: Electric discharge machining
Elman NN: Elman neural network
EMO: Evolutionary multiobjective
PCA: Principal component analysis
PSO: Particle swarm optimization
RVM: Relevance vector machine
RF: Random forest
MAE: Mean absolute error
RMSE: Root mean squared error
PCM: Phase change materials
GPR: Gaussian process regression
BLS: Broad learning system
SSA: Sparrow search algorithm
GRU: Gated recurrent unit
ELM: Extreme learning machine
Qm: Current maximum available capacity
Qr : Rated capacity of the battery
R: IR in the current state
Re: IR of the battery when it approaches the end

of its life
Rn: IR of a fresh battery
Q: Rated capacity
Q0: Lithium concentration after multiple cycles
Ri: Internal resistance
OR: Ohmic resistance
PR: Polarization resistance
Rb: IR of the battery
Vbat: Voltage of the battery
Ipulse: Current
δCs: Mass in solid phase
Q0: Initial capacity
Qt : Calendar time
B: Cycling ageing coefficient
Kt : Calendar ageing coefficient.
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