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Interwell connectivity assessment in polymer-driven reservoirs is critical for setting appropriate injection rates and improving oil
recovery. Traditional deep learning techniques often lack accuracy and reliability when applied to short-term oilfield production
data. In response, the A-LSTM algorithm is proposed, which integrates the attention mechanism with a long- and short-term
memory network (LSTM). The predictive accuracy of A-LSTM is assessed and juxtaposed with LSTM and support vector
regression (SVR) algorithms for short-term single-well daily oil production analysis. The Huber loss function was utilized to
quantify the difference between predicted and actual results, resulting in a dynamic production prediction model. An interwell
connectivity (IWC) assessment model is then obtained by fusing the dynamic production prediction model with the EFAST
method, thus demonstrating the superior prediction accuracy of A-LSTM in oil production prediction and connectivity
assessment. Moreover, the credibility of the assessment is further corroborated through numerical simulations and interwell
tracer tests. The study results showed that the interwell connectivity evaluation model based on the A-LSTM algorithm and
EFAST method is not only capable of accurately predicting the single-well daily oil production using a small sample dataset
but also a highly reliable method for interwell connectivity evaluation, and the application of the interwell connectivity
assessment model can further guide polymer flooding work in oilfields.

1. Introduction

Interwell connectivity (IWC) represents a crucial measure to
determine the equilibrium between reservoir injection and
recovery and serves as a primary reference for guiding the
development plans of oilfields. Study on IWC in oil reser-
voirs encompasses predicting the daily oil production of
producing wells, quantitative description of IWC, and anal-
ysis of dynamic changes [1]. Traditional IWC study methods
typically involve tracer testing, pressure testing, well testing,
and other complex and costly means [2]. In order to overcome
these drawbacks, scholars have established mathematical-
physical models for IWC analysis, utilizing static and dynamic
parameters and production measures derived from oilfield
production data. The models include the Spearman rank

correlation analysis model [3], multiple linear regression
model [4], capacitance and resistancemodel [5], andmultiwell
production index model [6]. However, these methods suffer
from lower accuracy of calculation and insufficient consider-
ation of production parameters in the model calculation
equation. Furthermore, the diversity in reservoir geological
conditions and development methods introduces uniqueness,
thereby diminishing the adaptability and generalizability
of early-established IWC analysis models. This limitation
restricts field application to only a subset of fields.

In recent years, machine learning has been widely used
in linguistics, clinical medicine, computer science, and other
fields of data processing and analysis work. It is an impor-
tant means of data classification. Regression, using computer
programs to simulate human learning, can be used to
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analyze and mine the actual oilfield production data to
obtain the hidden relationships between the data and
achieve the learning objectives. Scholars in the field of oil
and gas exploration and development have been inspired
by machine learning algorithms to carry out a series of
IWC research work based on the combination of static and
dynamic oilfield data and machine learning algorithms.
Panda and Chopra [7] first applied the artificial neural net-
work (ANN) algorithm to fluid flow simulation and inter-
well interaction prediction in inhomogeneous permeable
media in 1998. Demiryurek et al. [8] proposed a sensitivity
analysis method based on the partial derivatives of the out-
put variables with respect to the input variables to quantita-
tively describe the production rate of production wells. The
method compensated for the inability to quantify the con-
nectivity between injection and extraction wells in a single
direction in earlier IWC studies using neural network algo-
rithms, but the study did not consider the complex interwell
interference effects between multiple injection wells. For
some time afterward, fewer scholars utilized the ANN algo-
rithm for interwell connectivity studies due to its poor fitting
to time series data. Instead, most scholars focused their
research efforts on improving the capacitance model and
its application process [9–11]. In 2016, Elons et al. [12] first
introduced the long short-term memory (LSTM) algorithm
for dynamic prediction of daily oil production in oilfields
using time series data. The LSTM algorithm demonstrated
superior applicability for time series prediction tasks, leading
to its gradual replacement of the ANN algorithm in this
domain. Then, Cheng et al. [13] used the Extended Fourier
Amplitude Sensitivity Test (EFAST) method to perform
global sensitivity analysis on the production prediction
model based on the LSTM algorithm, which fully considered
the nonlinearity of the injection and extraction relationship,
the coupling effect between multiple injection wells and a
single production well, and computed the yield of the LSTM
algorithm. Jiang et al. [14] combined the material balance
equation in CRM with ANN algorithm to propose a physical
knowledge interaction neural network for daily oil produc-
tion prediction work, and this method increased the inter-
pretability of the model. Data quality is also particularly
important in the IWC research process, which determines
the accuracy and reliability of the model analysis results.
Albertoni and Lake [4] constructed a nonlinear filter for
daily oil production data. This filter takes into account the
time lag and decay of the flow and propagation process of
injected water in the formation. It is based on the principle
of pressure drop superposition. However, this method is
not applicable to special reservoir environments such as
low and ultralow permeability, tight reservoirs, and other
reservoir types where the internal seepage pattern is non-
Darcy seepage. Liu et al. [15] used the integrated empirical
mode decomposition (EEMD) method which was used to
preprocess the daily oil production time series data to obtain
the intrinsic mode function (IMF), and the DTW algorithm
was used to select the IMF as the input of the LSTM to pre-
dict the daily oil production. The method decomposes the
wave function of daily oil production data over time from
the perspective of improving model data quality, so that

the data signal, which is inherently nonlinear and non-
smooth, is transformed into multiple smooth wave func-
tions. Wang et al. [16] preprocess the raw data into a
custom form so that each sample contains additional local
wave information and historical residual energy information,
and in predicting long-term production data of bottomhole
pressure (BHP), data performed better. However, it is difficult
to obtain production data continuously and for a long period
of time in the actual production process of oilfields, and there
is an urgent need to further optimize and improve the tradi-
tional LSTM algorithm so as to adapt it to the prediction work
of short-term production data. One promising approach to
address these study gaps is to incorporate the attention mech-
anism from natural language processing (NLP) into the LSTM
[17] to enhance the screening and focusing of key information
in features. This approach could potentially improve the pre-
diction accuracy of the model by accounting for factors that
were previously ignored.

To address the issues encountered in the aforementioned
study process, this study proposes a novel approach that
integrates the A-LSTM algorithm and EFAST to evaluate
interwell connectivity. The proposed method leverages
actual reservoir production data as the basis for feature
extraction and establishes a production dynamic time data-
set by screening and cleaning the data using various data
preprocessing techniques. The attention mechanism is then
incorporated into the LSTM algorithm by modifying the
weight coefficient search method within the LSTM gating
unit and utilizing the additive attention score function to
strategically search for weights. The resulting A-LSTM algo-
rithm, along with LSTM and SVR algorithms, is employed to
construct a single-well daily oil production prediction
model, with the Huber loss function serving as the error
metric to quantify the differences between predicted and
actual values. Finally, the superiority of the A-LSTM algo-
rithm in interwell connectivity assessment is verified
through numerical simulation and inter-well tracer testing.

2. Methodologies

2.1. Data Preprocessing

2.1.1. Feature Selection. Table 1 presents a range of basic
dynamic and static characteristic parameters of the oilfield
production process, which are available for consideration
in our IWC study. However, the selection of characteristic
parameters should follow certain principles to ensure the
validity of our IWC study.

(1) Static feature parameters are not considered during
the model learning process, as the data should
remain dynamic

(2) Dynamic characteristic parameters that do not
directly affect the connectivity between injectors
and producers, such as production time and well-
working mode, will not be studied

(3) The selected dynamic characteristic parameters
should reflect the internal energy changes of the
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reservoir between injectors and producers during the
polymer flooding process, thereby enabling the accu-
rate assessment of IWC

To ensure consistent production well capacity in oilfield
production, it is necessary to adjust the daily injection volume
of injectors. This adjustment is based on the bottomhole pres-
sure of injectors, which is considered the dependent variable of
the daily injection volume. However, the change in the daily
injection volume is generally minimal due to factors such as
well depth, well diameter, and physical parameters of the
injection polymer. On the other hand, the bottomhole pres-
sure of producers and the recovery rate typically exhibit a
linear and exponential relationship. Therefore, this paper
utilizes only the time series data of daily injection volume for
each injector as input data. The daily oil production of the
extraction well is used as the prediction target, enabling the
construction of a production dynamic time series dataset
for the daily oil production prediction of producers. This
approach reduces the feature dimensionality of the input
dataset and accelerates the model’s operation.

2.1.2. Data Cleaning and Transformation. After data feature
extraction, data cleaning, transformation, and statutes are
usually required to improve the quality of the time series
dataset for oil production. Data cleaning involves handling
missing and outlier values. Interpolation methods are com-
monly used to handle missing values, such as empirical
interpolation, multiple imputation by chained equation
(MICE) interpolation [18], K-nearest neighbor (KNN) inter-
polation [19], and random forest (RF) interpolation [20].
The handling of outlier values usually involves both super-
vised and unsupervised methods [21]. For datasets with

small sample sizes and few features, unsupervised detection
methods are usually preferred. In this paper, statistical
methods such as boxplots and clustering-based outlier
detection are used, along with professional experience to
analyze the causes of outliers and determine the appropriate
outlier handling method. The changes in oilfield production
dynamic data over a short period of time are often not sig-
nificant, so empirical interpolation can be used to estimate
missing data by using data from adjacent time nodes. If
missing data cannot be estimated using empirical interpola-
tion, the KNN interpolation method can be used to estimate
the value of missing data points by identifying K similar or
nearby samples in the dataset. This method is simple and
more suitable for continuous data types. Deletion of missing
records is generally not preferred due to the limitations in
the sample size. To handle outlier values, we can intuitively
use boxplots to detect outliers, which are simple tools for
outlier detection. Outliers are more likely to appear in the
daily polymer injection feature parameters, and the treat-
ment method is usually to consider them as missing values
or not to handle them. Data transformation is a data nor-
malization technique that aims to eliminate differences in
feature dimensions. For oilfield production data, such as
daily polymer injection of injectors and daily oil productions
of producers, features exhibit nonuniformity in dimension-
ality and nonlinear and nonsmooth variation over time.
Therefore, it is necessary to normalize production dynamic
data using data transformation methods to make the data
dimensionless, improve data quality, and accelerate model
training and prediction speeds. In this paper, the minimum-
maximum normalization method in Equation (1) is used to
scale production dynamic time series to the range of [0,1] by
linear transformation. The purpose of this approach is to
address potential numerical issues that may arise during
LSTM operation, satisfy the requirements of the tanh activa-
tion function, and accelerate model computation.

xstd =
x − xmin

xmax − xmin
1

The aim of this study is to enhance efficiency by reducing
the dimensionality of the data and identifying the minimal
input data subset through feature extraction. The initial step
involves data screening based on this principle, which leads
to low-dimensional dynamic time series data with small
sample sizes, eliminating the need for data statute processing.
Following this, dataset partitioning is required for data prepro-
cessing to segregate the dataset into training and testing sub-
sets to facilitate model training and testing.

2.2. Prediction Model Based on A-LSTM

2.2.1. The Structure of LSTM. The recurrent neural network
(RNN) algorithm, which effectively addresses the issues of
gradient disappearance and explosion in ANN algorithms,
as well as long-term time dependence in RNN algorithms,
serves as the predecessor of the LSTM [22–24]. Compared
to the common RNN recurrent network, the LSTM pos-
sesses a more complex hidden layer structure, and Figure 1

Table 1: The basic characteristic parameters of oilfield production
data.

Dynamic feature parameters

Single producer daily production time h

Wellhead tubing pressure MPa

Annulus pressure MPa

Casing pressure MPa

Hydrostatic pressure MPa

Daily liquid production m3/d

Daily oil production m3/d

Water cut %

Daily polymer injection m3/d

Static feature parameters

Mean temperature °C

Mean effective rock thickness m

Mean porosity %

Mean permeability cp

Mean oil saturation %

Pump discharge capacity m3/d

Stroke m

Okinawa once/min
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depicts the hidden layer cell structure of the LSTM. In this
figure, xt refers to the input of the current node’s LSTM unit;
ht−1 refers to the hidden state of the LSTM hidden layer unit
of the previous node; ct−1 refers to the unit state of the pre-
vious node; the σ and tanh functions denote the sigmoid
and inverse tangent activation functions, respectively. Fur-
thermore, f t denotes the output vector of the forgetting gate,
while it denotes the output vector of the input gate. The cur-
rent node input state ct is leveraged to extract valid informa-
tion from the current input, while ct denotes the current
node unit state, which is composed of the previous node unit
state and the current node input state. Finally, ot denotes the
output vector of the output gate, which is employed to regu-
late the impact of long-term memory on the current output,
and ht denotes the hidden state of the current node.

A representation of the forward propagation process in
the LSTM hidden layer can be expressed through Equations
(2)–(7), which calculates the hidden state of the t-node
within the hidden layer.

f t = σ Wf · ht−1, xt + bf , 2

it = σ Wi · ht−1, xt + bi , 3

ot = σ Wo · ht−1, xt + bo , 4

ct = tanh Wc · ht−1, xt + bc , 5

ct = f t · ct−1 + it · ct , 6

ht = ot · tanh ct 7

Wf , Wi, Wo, and Wc denote the weight coefficient
matrices associated with the oblivion gate, input gate, output
gate, and cell state, respectively. The parameters bf , bi, bo,
and bc are the biases connecting the corresponding gates
and cell states. Sigmoid activation function and tanh activa-
tion function are shown in the following equations:

σ x = sigmoid x = 1
1 + e−x

,

tanh x = ex − e−x

ex + e−x

8

In terms of activation function selection, the sigmoid
function used is a linear function that takes values in the
range of (0,1) which can control the gate opening well; the
tanh function is a nonlinear function that is used to control
the cell state ct and the hidden layer hidden state ht .

2.2.2. Proposed Structure of A-LSTM. The A-LSTM struc-
ture, as shown in Figure 2, incorporates an attention mech-
anism within the hidden layer of the LSTM. This integration
allows for the redistribution of weight coefficients in the
LSTM’s hidden layer, enabling strategic weight searching.
Consequently, this enhances the speed of operations and
augments the predictive accuracy of the model.

x1, x2, x3, …, xt−1 denote the history input sequence, xti
denotes the set of history input sequences, and xt denotes
the t-node input sequence; h1, h2, h3,…, ht−1 denote the his-

tory hidden state obtained after the history input sequence is
input to the LSTM hidden layer unit, hti denotes the set of
history hidden states, and ht′ denotes the set of t-node LSTM
hidden states with the attention mechanism added; s1, s2, s3,
…, st−1 denote the attention scoring function of historical
hidden states, and sti denotes the set of attention scoring
functions of historical hidden states; α1, α2, α3, …, αt−1
denote attention probability weights of historical input hid-
den states to current input, and C denotes the state of the
LSTM hidden layer input unit with the attention mechanism
added at node t. The process comprises four distinct
components.

(1) Calculating Attention Scores. The process begins with uti-
lizing the LSTM hidden layer to compute the historical hid-
den states. Next, an attention scoring function is employed
to allocate weights and biases to each of the historical hidden
states, thereby obtaining the attention score for each of
them. Various attention scoring functions are available for
selection, with different scoring functions categorized according
to the attention aggregation method. This selection process is
akin to the selection of activation functions in the LSTMhidden
layer cell. Equation (9) provides the scoring function, which
utilizes an additive attention mechanism and demonstrates
suitability for processing data of varying dimensionalities. The
additive attention mechanism is demonstrated to exhibit good
adaptability to low- and high-dimensional data [25].

sti = νT · tanh Wti · hti + bti 9

The scoring function, sti, is a component of a forward neu-
ral network that consists of a single hidden layer. The weight
coefficient matrix after activation by the hidden layer is denoted
by ν, and the transposition of this weight coefficient matrix is
denoted by νT . The weight coefficient matrix of hti before acti-
vation is denoted asWti, while bti denotes the bias of hti before
activation.

(2) Calculating Historical Attention Probability Weights. For
single-objective probability weight calculation problems,
such as in LSTM gating units, the sigmoid function can be
used to calculate the gate opening. In the context of comput-
ing probabilistic weights for multiple objectives, the applica-
tion of the softmax function, as shown in Equation (10),
becomes indispensable, which calculates the probability of
multiple variables between (0,1), and the sum of these prob-
abilities is number one.

αti = softmax sti = exp st−1
∑T−1

j=1 exp st j
10

The notation used in this context includes T − 1, which
denotes the number of hidden states from historical time
steps. Additionally, st j denotes the jth weight of attention
probability for the sti function, where j ranges from 1 to
T − 1. Finally, αti denotes the set of attention probability

4 International Journal of Energy Research



weights assigned to the historical input hidden states in
relation to the current input.

(3) Update the Cell State of the t-Node LSTM Hidden Layer
Input. The cell state of the new t-node LSTM hidden layer
input is obtained by weighting and summing all the atten-
tion probability weights αti with the corresponding historical
hidden states hti. This unit state reflects the process of redis-
tributing the attention probability weights of the historical
node hidden states to the t-node hidden states, i.e., state C
in the following equation:

C = 〠
T−1

i=1
αti · hti 11

(4) Update t-Node Hidden Layer State. Equation (12) illus-
trates that within the A-LSTM hidden layer, the hidden state
of node t undergoes an update process that incorporates the
cell state C, the previous time step’s hidden state ht−1, and
the present input xt . This process generates a feature vector
that contains information about the weights of the historical

input nodes. In order to integrate the attention mechanism
into the LSTM hidden layer cell structure, the feature vector
needs to be modified to include the weights of the historical
input nodes.

ht′=H C, ht−1 xt 12

2.3. The EFAST Analysis. The EFAST analysis technique
employs variance analysis for global sensitivity analysis to
assess the sensitivity of daily oil production to daily polymer
injection. Specifically, this study utilizes a variance decom-
position approach to determine the contribution of different
daily polymer injections from injectors to the total variance
of a trained daily oil production dynamic prediction model,
which yields the IWC coefficient. The dynamic prediction
model for daily oil productions is denoted as Y = f x1, x2,
⋯,xk , where x1, x2,⋯, xk refer to the first, second, and kth
input factors, each comprising multiple time nodes. The
model variance D quantifies the uncertainty associated with
the impact of daily polymer injection from injectors on the
daily oil production of extraction wells.

xt

ct–1

ht–1

σtanhσ

h

ht

ct
ct

ctft otit

tanh

σ

Figure 1: The structure of the LSTM hidden layer.
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Figure 2: The structure of A-LSTM.
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The process of mapping a multidimensional input time
series onto a one-dimensional search space s ∈ −∞, +∞ ,
denoted as Y = f x1, x2,⋯,xk , is transformed into a one-
dimensional representation Y = f s , where xk denotes the
kth dimensional input factor in the multidimensional input
time series. Equation (13) illustrates that each input factor
xk can be expressed as a specific frequency ωk.

xk s = Gk sin ωk∙s , ∀k = 1, 2,⋯, n 13

The search function Gk is determined by the probability
density function of the model input factor xk, as stated in
reference [26], where ωk denotes linearly uncorrelated posi-
tive integer frequencies. Equation (14) provides the Fourier
transform process of f s .

f s = 〠
+∞

j=−∞
Aj cos ωjs + Bj sin ωjs 14

If the function s is sampled at equal intervals n times in
the interval −π, π , resulting in the sampling points s0, s1,
…, sn−1, which are then inputted to the model, the
corresponding Fourier coefficients Aj and Bj for j ∈ Z =
−∞,+∞ can be approximated as shown in

Aj =
1
Ns

〠
Ns

n=1
f sn cos ωjsn ,

Bj =
1
Ns

〠
Ns

n=1
f sn sin ωjsn

15

The variable Ns denotes the sample size which can
be denoted by

Ns = 2Mωmax + 1, M ∈N∗ 16

M denotes the maximum number of harmonics,
which is usually taken as either 4 or 6. ωmax denotes
the maximum value in the set of frequencies ωk.

The expected variance Dk of the input factor xk can be
obtained using Parseval’s theorem. The expected variance
Dk of the input factor xk shown in Equation (17) is
calculated using Perceval’s theorem.

Dk = 2 〠
M

m=1
A2
mωk

+ B2
mωk

, m = 1, 2,⋯, n 17

The overall variance of the model is further obtained as
D shown in

D = 2 〠
M

m=1
A2
m + B2

m 18

m denotes the number of harmonics, and the parameters
Amωk

and Bmωk
denote the two Fourier coefficients corre-

sponding to the mth harmonic.

The first-order sensitivity index SFk shown in Equation
(19), which disregards the coupling effect of other input fac-
tors with xk, can be obtained using the expected variance of
xk and the overall variance of the model. This sensitivity
evaluation result can be referred to as the local sensitivity
analysis result. To obtain the global sensitivity analysis
result, the contribution of the coupling effect between the
input factor xk and other input factors x~k to the overall
variance of the model must be considered. Finally, the global
sensitivity index STk shown in Equation (20) of the input
factor xk can be obtained.

SFk =
Dk

D
, 19

STk = 1 − D~k
D

20

Dk denotes the variance of the input factor xk, and ~ k
denotes the values of all input factors except xk. Thus, D~k
denotes the sum of the total variance of all other input factors.

To visually compare the connectivity status between injec-
tors and producers, this paper maps the global sensitivity indi-
ces of all input factors to the [0, 1] interval. This mapping is
done to obtain the normalized global sensitivity index, which
is referred to as the IWC coefficient S∗Tk shown in

S∗Tk =
STk

∑n
k=1STk

, k = 1, 2,⋯, n 21

3. Experimental

3.1. Data Preprocessing

3.1.1. Data Acquisition and Feature Extraction. This paper
focuses on a test well group located in the S-well area of
the D field, which is characterized by medium to high per-
meability. The well group, featuring a typical five-point
method well network deployment, comprises of producers
labeled as P and surrounding injectors labeled as W1, W2,
…, and W4. Historical production data from the polymer
flooding phase of the well group were collected between
October 26, 2020, and June 10, 2022. The multidimensional
time series dataset comprises 5 dimensions and 593 time
nodes, arranged in chronological order, which includes
injection rate data from four injectors and recovery rate data
from one extraction well. These data provide insights into
the dynamic behavior of the oilfield’s production.

3.1.2. Data Cleaning and Normalization

(1) Data Cleaning.

(1) Missing Value Processing

The KNN interpolation method stands for K-nearest
neighbor interpolation. It is a simple and effective method
for filling in missing values in a dataset. The basic idea of
KNN interpolation is to find the K-nearest neighbors to
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the missing value and calculate the average of their values to
fill in the missing value. The distance between the missing
value and other data points is calculated using a distance
metric, such as Euclidean distance or Manhattan distance.
In the context of the study mentioned in the question, the
KNN interpolation method was used to fill the missing daily
polymer injection data, which was fluctuating and could not
be accurately filled using the empirical interpolation
method. The KNNImputer function from the scikit-learn in
Python 3.9 can be used to fill in the missing values in the data-
set. The n_neighbors parameter determines the number of
neighboring data points to use in the estimation process, and
the weight parameter can be set to “distance” to give more
weight to closer neighbors. Based on prior knowledge and
validation, setting n neighbors = 3 and weights = “distance”
is a reasonable choice for filling in missing values.

(2) Outlier Handling

The boxplot method was utilized to detect outliers in the
daily polymer injection of injectors shown in Figure 3 and
the daily oil production of producers shown in Figure 4. Fur-
ther analysis was conducted to determine the reason behind
the identified outliers. Based on the investigation results, a
decision was made to either treat the outliers as missing
values or retain them in the dataset due to the influence of
the injector production system.

Based on the box line diagram of daily polymer injection,
it is apparent that there are four anomalous values in the
daily polymer injection of injector W2. Upon analyzing the
dynamic data of daily polymer injection, it is possible to
determine the specific time period where these anomalous
values occurred. Further analysis reveals that during this
time period, the daily polymer injection of W2 well as a
whole was adjusted to over 95m3/day. Additionally, field
production measure records indicate that hydraulic fracturing
measures were conducted on the new production level of the
W2 well during this time period, leading to an increase in its
daily polymer injection. Therefore, there is no need to address
the anomalous values as they can be attributed to the afore-
mentioned hydraulic fracturing measures.

(2) Normalization. The normalization function was developed
in Python 3.9 within the Spyder integrated environment. Once
construction was completed, the cleaned production dynamic
data was normalized to mitigate potential numerical issues,
low model accuracy, and difficulty in model convergence.
However, whenmaking predictions, the predicted values must
be reverse normalized in order to compare and analyze the
results with the predicted target.

(3) Dataset Division. Following the normalization of the input
dataset, it is necessary to split the data into a training set and a
test set at an 8 : 2 ratio. Specifically, the first 475 timestamps of
data will comprise the training set data, while the remaining
118 timestamps of data will serve as the test set data.

3.2. A-LSTM Model Training and Optimization. During the
model training process, two key areas require attention:

(1) Model learning rate setting: this involves defining the
initial learning rate of the model, as well as selecting
a loss function that allows for dynamic adjustment of
the learning rate

(2) Model hyperparameter and structure optimization:
this encompasses selecting appropriate methods for
optimizing both the model’s hyperparameters and
its overall structure

3.2.1. A-LSTM Model Learning Rate Adjustment. The Adam
[27] adaptive optimizer is utilized to adjust the learning rate
of the training set during iterative updates of the A-LSTM
network weights, thereby minimizing the loss function and
increasing the model’s convergence speed. To ensure opti-
mal convergence, it is crucial to select an appropriate initial
learning rate, as values that are too large may cause the
model to fail to converge or skip optimal/suboptimal solu-
tions, while values that are too small can result in slow
convergence and increased training time. The selection of a
suitable loss function is also critical, as it serves as the learn-
ing rate adjustment evaluation function to estimate the devi-
ation of the model’s daily oil production prediction from the
actual value. In this study, we adopt the smoothed mean
absolute error (Huber loss) [28] as the loss function Lδ
shown in Equation (22), which combines the advantages of
mean square error (MSE) and mean absolute error (MAE).

Lδ y, f x =

1
2 yobsi − ypredi

2
, if yobsi − ypredi ≤ δ,

δ yobsi − ypredi −
1
2 δ

2, if yobsi − ypredi > δ,

22

where yobsi denotes the actual value of daily oil production,

ypredi denotes the predicted value of daily oil production,
and δ denotes the parameter obtained by cross-validation
of the Huber function; when δ ~ 0, the Huber loss will tend
to MAE; when δ ~∞, the Huber loss will tend to MSE.

3.2.2. A-LSTM Model Hyperparameter Optimization. The
Keras platform is used for hyperparameter optimization of
the IWC evaluation model in this study. The hyperpara-
meters that are optimized in the model include the number
of hidden layers of the A-LSTM and the number of nodes
within the hidden layers. The optimization of these hyperpara-
meters has a direct impact on the model’s ability to reflect the
complexity of IWC, as well as its accuracy and generalization
ability for prediction. To optimize these hyperparameters, we
use a genetic algorithm (GA) [29], which is known for its ease
of implementation, strong robustness, and ability to find
globally optimal solutions compared to gradient search-
based hyperparameter optimization algorithms.

3.3. Evaluation of Model Prediction Effectiveness. The effec-
tiveness of model prediction is evaluated through three met-
rics, the MAE, the root mean square error (RMSE), and the
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adjusted coefficient of determination (R2), as shown in the
following equations:

MAE = 1
n
〠
n

i=1
yobsi − ypredi ,

RMSE = 1
n
〠
n

i=1
yobsi − ypredi

2
,

R2 = 1 −
∑n

i=1 yobsi − ypredi

2

∑n
i=1 yobsi − yobsi

2 ,

R2 = 1 − 1 − R2 Ns − 1
Ns − p − 1

23

The actual daily oil productions are denoted as yobsi , the

predicted daily oil productions are denoted as ypredi , and
the number of independent variables is denoted as p.

3.4. Calculation of IWC Factor. The EFAST sensitivity anal-
ysis technique on a global scale necessitates the establish-

ment of diverse parameters, with preeminent emphasis
accorded to the identification of the search function and
the interference factor, as shown in Equations (24) and
(25). The search function implemented in the analysis is
predicated upon the G function adopted in Sobol’s sensitivity
analysis technique, which utilizes the Monte Carlo sampling
methodology [30].

G X1, X2,⋯, Xk, a1, a2,⋯, ak =
k

i=1
gi, 24

gi =
4Xi − 2 + ai

1 + ai
, i = 1, 2, 3⋯ k 25

ai denotes the minimum value of the ith input factor.
Based on the equations for determining the number of

sampling times and input factors (N = 2q + 1) and given that
there are 4 input factors, the number of sampling times was
set to 9. In consideration of the number of samples and data
dimension, an interference factor of M = 4 was employed.
First-order and global sensitivity indices were subsequently
calculated and mapped onto the interval [0,1] to provide a
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visual representation of the connectivity between injectors
and producers. This information can then be used to adjust
the development plan between injectors and producers in a
timely manner.

4. Results and Discussion

4.1. Results of A-LSTM Model Training and Optimization

4.1.1. Learning Rate Adjustment Results. The optimal value
for the hyperparameter δ is determined to be 0.3. Further-
more, the initial learning rate of 0.0015 is employed along
with exponential decay rates of 0.85 and 0.999 for the first-
order and second-order moment estimations, respectively.
The optimal values of the hyperparameters epochs and
batch_size are set to 35 and 16, respectively, via a combina-
tion of accuracy, Huber loss rate change curves, and results

obtained using an early stopping mechanism applied to both
the training and test sets. Figure 5 shows the learning rate
curve of the training set, while Figure 6 shows the accuracy
and Huber loss rate curves of both the training and test sets.

4.1.2. Model Hyperparameter Optimization Results. In order
to fit nonlinear data, the number of LSTM layers and dense
layers was explored in the range of 1-3. It was determined
that a 3-layer network was sufficient for this purpose. Using
a GA for hyperparameter optimization, the optimal number
of LSTM layers was determined to be 2, with a hidden layer
of 16 neurons. The input_shape required three input param-
eters, namely, sample, time steps, and feature, with values of
475, 1, and 4, respectively. In order to evaluate the accuracy
of the A-LSTM algorithm, this paper also optimizes the
LSTM and SVR algorithms. The optimized hyperparameters
of LSTM are as follows: the LSTM layer is still 2 layers, the
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optimal values of epochs and batch_size are set to 51 and 8,
respectively, and the change of the dynamic learning rate is
the same as that of the A-LSTM setup method, while the
SVR model chooses the commonly used Gaussian radial
basis function as the nonlinear kernel function. For SVR
model, Gaussian radial basis function is chosen as the non-
linear kernel function, and the optimized kernel function
parameter is 0.022 and the error boundary is 0.251, and
the penalty factor C and the window length are set to 3
and 12, respectively.

4.2. Prediction Results of Three Prediction Models, A-LSTM,
LSTM, and SVR. Figure 7 shows the A-LSTM model and
compares its performance to that of the LSTM model and
the SVR algorithm model in predicting the daily oil produc-
tion for the test set. The results clearly demonstrate that the
A-LSTM model outperforms both the LSTM model and the
SVR algorithm model in predicting the daily oil production
of a single well.

The predicted daily oil production curve generated by
the A-LSTM model is smoother and flatter compared to
the curves produced by the other two models. However, it

was observed that the LSTM model generated a high anom-
aly in the test data at day 51, which did not correspond to
any significant abrupt changes in the actual daily oil produc-
tion time curve. Upon further investigation, it was found
that there was a significant increase in the daily polymer
injection of an injector connected to the tested well before
this time point. This suggests that the accuracy of the
model’s predictions can be affected when the input data pro-
duces abrupt changes. However, such points should not be
treated as anomalies in the actual production process, as
they may be the result of expanding polymer injection or
production measures. For such problems, data cleaning
should be performed according to the magnitude of the data
signal-to-noise ratio. The presence of a certain degree of data
noise can make the data more robust as a whole. The
A-LSTM model applied in this study accurately excluded
the outlier data as the object of concern, maintaining high
prediction accuracy when predicting other untrained pro-
duction dynamic data daily oil production time series, i.e.,
the test set. The performance of the three models was further
evaluated using three evaluation functions, MAE, RMSE, and
R2, and the results are shown in Table 2.

The best performance of the A-LSTM model can be seen
from the performance evaluation results of the model.

4.3. Evaluation Results of IWC. Normalized global sensitivity
indices in Table 3 are utilized to derive IWC coefficients in
Table 4. Using the results of IWC calculations in Tables 3
and 4, it can be analyzed that the connectivity between the
W4 wells and the production P is poor, which is 0.1 or less,

Table 2: Performance evaluation results of three algorithm models
of A-LSTM, LSTM, and SVR.

Model
Train set Test set

MAE RMSE R2 MAE RMSE R2

A-LSTM 0.058 0.293 0.992 0.089 0.351 0.989

LSTM 0.263 0.481 0.961 0.598 0.626 0.935

SVR 0.966 1.695 0.912 1.356 2.215 0.869

Table 3: Global sensitivity index of the test well area.

Model Producer
Injectors

W1 W2 W3 W4
A-LSTM

P
0.89 0.35 0.78 0.16

LSTM 0.85 0.41 0.66 0.18

SVR 0.79 0.31 0.89 0.11

Table 4: IWC factor in the test well area.

Model Producer
Injectors

W1 W2 W3 W4
A-LSTM

P
0.41 0.16 0.36 0.07

LSTM 0.40 0.20 0.31 0.09

SVR 0.38 0.15 0.42 0.05
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while the W1-W3 wells have a good connectivity with the
production well.

4.4. Reliability Verification

4.4.1. The Numerical Simulation Method. We construct a
numerical simulation model of polymer flooding in nonho-
mogeneous reservoirs based on the dynamic and static phys-
ical parameters of the actual production process in the test
well area, so as to further verify the reliability of the method
used in this paper, and the constructed three-dimensional
numerical simulation model is shown in Figure 8. The oil-
bearing area of the test area is 0.38km2, with a geological reserve
of 23 62 × 104 t and a pore volume of 85 7 × 104m3. During the
model construction process, Petrol and CMG software were
used for the establishment of the geological model and the
numerical simulation model, with a grid step length of 25m,
vertically including 21 simulation layers, containing the
numerical simulation model (Figure 8) grid 13 × 13 × 21
with 3549 grids.
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Figure 8: The constructed three-dimensional numerical simulation model.

Figure 9: The three-dimensional polymer phase flow field of the
test well area in June 2022.
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The model was employed to validate the methodology
presented in this paper. The results of the simulation include
the three-dimensional distribution of the polymer phase

flow field in June 2022, as shown in Figure 9, and the distri-
bution of the three-dimensional oil and polymer phase flow,
as shown in Figure 10.
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The three-dimensional polymer phase flow field diagram
provides a visual representation of the flow lines and their
densities between the wells, enabling us to assess the IWC.
The observation of dense flow lines between well W1 and
well P indicates strong connectivity between them, followed
by well W3, while the flow lines between wells W2 and W4
and well P are sparse, indicating weaker connectivity
between them. Overall, the three-dimensional polymer
phase flow field provides a valuable tool for qualitatively
evaluating IWC, while the model developed in this paper
enables a more quantitative assessment.

4.4.2. The Interwell Tracer Testing. To assess the accuracy of
the calculated results from three algorithm models, namely,
A-LSTM, LSTM, and SVR, the interwell tracer test results
were employed for evaluation. In September 2022, a new
tracer was used in the testing process that is more environ-
mentally friendly. Compared with the traditional tracer,
the new type of tracer has the characteristics of nonwater
solubility, insoluble in water, and distributed in the form of
spherical droplets, so that it can not spread the concentra-
tion and is less contaminated. The new tracer consists of a
variety of non-water-soluble liquid mixture, specific gravity
of 0.8 g/cm3~1.6 g/cm3.The breakthrough velocity of the
tracer can serve as an approximation of the influence coeffi-
cient (i.e., connectivity coefficient) of the producer by the
surrounding injection wells. The R2 coefficient of determina-
tion was used to calculate the variability of the model-
predicted connectivity coefficients with respect to the tracer
test results, leading to the results shown in Figures 10–12.
The tracer test results indicate that well P is affected by four
injection wells in the dominant connection direction of wells

W1 and W3, with breakthrough velocities of 23.0 and
13.8m/d, respectively. The coefficient of determination
between the predicted IWC coefficient of the A-LSTM
model and the tracer breakthrough velocity test results was
found to be 0.991, as shown in Figure 10. The coefficients
of determination for the LSTM and SVR models were found
to be 0.962 and 0.911, as shown in Figures 11 and 12.

5. Conclusions and Future

This paper introduces a novel methodology that integrates
A-LSTM with EFAST to enhance the accuracy of predicting
daily oil production time series during the polymer flooding
stage and to assess interwell connectivity (IWC) in real res-
ervoirs. The proposed approach consists of three key stages.
Initially, data preprocessing techniques are employed to
enhance data quality. In the subsequent stage, the attention
mechanism is incorporated into the LSTM algorithm to
develop the A-LSTM algorithm, which is then compared
with LSTM and SVR algorithms in terms of multiple perfor-
mance evaluation metrics for predicting single-well daily oil
production. Utilizing the Huber loss function as the error
function enhances the model’s resilience and reduces sus-
ceptibility to outliers, resulting in superior performance of
the A-LSTM algorithm in accurately forecasting daily oil
production. In the final stage, EFAST global sensitivity anal-
ysis is utilized to estimate IWC coefficients between pro-
ducers and injectors using the dynamic prediction model
of daily oil production. The proposed method offers several
advantages, including maximizing data quality through var-
ious preprocessing techniques and capturing essential time
series features while filtering out irrelevant information via
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A-LSTM. Additionally, the EFAST analysis method effec-
tively evaluates connectivity and polymer injection effects
in multiple directions, a capability unmatched by other local
sensitivity analysis methods. To validate the proposed
approach, numerical simulations are conducted to generate
three-dimensional flow field maps of the polymer phase in
the test area. Furthermore, tracer test results are employed
to assess and compare connectivity strength and weakness
between polymer injection and oil recovery wells. The find-
ings demonstrate close alignment between the outcomes of
the IWC assessment model and results obtained from
numerical simulations and interwell tracer tests, indicating
the robustness of the proposed model for guiding injection
and production operations in the field.

In the future, the proposed method can be further opti-
mized by parallelizing the historical data of the polymer
flooding phase in multiple well groups, improving the inter-
pretation of IWC coefficients, and exploring the quantitative
assessment method of interstratigraphic connectivity status.

Data Availability

The datasets generated and analyzed during this study need
to be obtained from the corresponding authors using ∗.csv
format data with the consent of the relevant departments
of the oilfield, which can be obtained by contacting the cor-
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