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The reliability of a pressurized water reactor power plant’s control rod drive mechanism (CRDM) is affected by many factors, such
as operation states, unit performance, and dynamic environments. Multiple sources of uncertainties, including random, interval,
and fuzzy, exist when analyzing the reliability of CRDMs. Modeling reliability without considering the fusion of multisource
uncertainties may result in model distortion and may not provide realistic assessment results. This paper proposes a
multisource uncertainty fusion method powered by the margin-based variable transformation and the Bayesian network
propagation. The interval and fuzzy variables are transformed into random variables to obtain the corresponding generalized
probability density function of the CRDM’s feature parameters. After that, the CRDM’s reliability can be evaluated via
probability quantization of the Bayesian network inference result through sampling algorithms. A magnetic-jack type CRDM
case is presented to verify the proposed method, and the results show that this method can fuse three types of uncertainty
variable in a unified way and effectively obtain reliability evaluation results.

1. Introduction

Nuclear energy is sustainable clean energy and has been rec-
ognized as the only alternative energy that can replace con-
ventional energy on a large scale [1]. The pressurized water
reactor (PWR) is the most commonly used reactor for the
third-generation nuclear power plant [2]. The power gener-
ation of PWR is fine-tuned by the control rods’ insertion
height into the reactor core, which is adjusted by the control
rod drive mechanism (CRDM) [3]. That makes CRDMs cru-
cial to ensuring the reliability and safety of nuclear power
plants [4]. At the same time, due to the harsh working envi-
ronment of CRDMs, their maintenance is complex and gen-
erally needs to shut down the reactor, which costs a lot.
Therefore, it is vital to analyze and evaluate the reliability
of CRDM to ensure the safe, reliable, and economical oper-
ation of a nuclear power plant system [5–7].

There are various types of CRDM for different nuclear
reactors, most specially made electromechanical products
composed of multiple components. In CRDM, many com-
ponents, such as rotating machinery, have performance deg-
radation under long-term use that is non-negligible [8]. The
complex structure of CRDM means that their reliability is
affected by diverse uncertain performance variables [9].
Owing to the diversity of knowledge, sensing techniques,
and data acquisition methods, the uncertainty types of these
variables are also diverse. A general taxonomy categorizes
uncertainty into three types: random, interval, and fuzzy
[10]. The random type is the most general variable among
these three types and has been well-studied with efficient
quantification techniques. However, because of the lack of
samples or knowledge, the interval and fuzzy types of uncer-
tainty are hard to invite in reliability evaluation practice.
Rahman et al. [11] discussed the optimization problem with
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type-2 interval uncertainty and provided a theoretical frame-
work. In countering the multiple uncertainties, the main
challenge lies in the synthesis quantification method of these
three types of uncertainty, i.e., the multisource uncertainty
fusion.

Multisource uncertainty fusion technology reduces
information uncertainty by combining, processing, filtering,
and verifying information from multiple data sources, which
is beneficial for obtaining accurate feature information.
Given that the fuzzy and interval variables are hard to invite
in reliability evaluation practice, people usually transform
them into the random type and then use the probability the-
ory to evaluate reliability. The conversion modes between
different uncertain variables are detailed in the literature
review (see Section 2). After the transformation, the multi-
source uncertainty fusion problem turns into the fusion task
of the random variables gathered from multiple data
sources, i.e., the multisource signal processing. Rehman
and Mandic [12] proposed a multivariate empirical mode
decomposition (EMD) method, which allows for the simul-
taneous processing of multivariate signals. Based on this,
Lv et al. [13] verified the theoretical effectiveness of the mul-
tivariate EMD method and its sensitivity to noise. Yuan et al.
[14] proposed a multivariate intrinsic multiscale entropy
(MIME) analysis based on multivariate variational mode
decomposition (MVMD). Zhang et al. [15] proposed a mul-
tidimensional dynamic mode decomposition (MDMD),
which solves the problem of mixed-mode characteristics
and possible loss of critical fault feature information when
processing multivariate signals.

There are two main methods for analyzing the reliabil-
ity of CRDM: the method based on degradation simulation
and the method based on reliability modeling. Degradation
simulation methods mainly focus on the components’ per-
formance deterioration during the operation of CRDM. Yu
et al. [16] built a multiphysics coupling simulation for the
key structure of the magnetic-jack type CRDM and then
used the Monte Carlo method to calculate its time-
dependent reliability. As presented in Yu et al.’s work, mul-
tiple compute-intensive simulations are needed during the
simulation-based method to maintain the accuracy of reli-
ability calculating. Moreover, building a high-fidelity simu-
lation for the whole structure of the CRDM is challenging,
which constrains the application of simulation-based
methods [17]. Model-based methods can establish a for-
malized reliability model for the entire system of CRDM
to describe the propagation of failures or defects and then
evaluate the reliability. Specific methods, such as the reli-
ability block diagram (RBD), failure tree analysis (FTA),
and event tree analysis (ETA), are widely used in the prac-
tice of nuclear power plants. Wang et al. [18] applied the
RBD method to model the reliability of a CRDM control
system for the thorium molten salt reactor (TMSR). As pre-
sented in Wang et al.’s work, the model-based method
relies on probability calculation rather than statistical simu-
lation to quantify the uncertainty. However, conventional
model-based methods mainly rely on the designer’s prior
knowledge or historical data to determine the implicit
probability propagation pattern within the CRDM system.

These methods are inconvenient for handling multisource
uncertainties. Apparently, neither the simulation-based
method nor the model-based method can solve the multi-
source uncertainty fusion task in CRDM reliability evalua-
tion separately.

Informed by the literature review (see Section 2), this
paper proposes a multisource uncertainty fusion reliability
evaluation method for the CRDM. A physics simulation is
constructed first, and then, a model-based response surface
is built for the simulation model as a lightweight surrogate.
With this surrogate, the multiple types of uncertainty are
transformed and fused through a margin-based method to
evaluate the reliability of CRDM. This paper details how

(1) multisource uncertainties are fused for reliability
evaluation based on the margin theory

(2) the reliability of CRDM performance is evaluated
with a joint approach of physics simulation and a
model-based method considering multiple types of
uncertainty

(3) the reliability of a practice CRDM’s latch assembly
performance is evaluated based on the proposed
method

The rest of this paper is organized as follows. Section 2
introduces related works, in the multisource uncertainty
fusion method, and Section 3 provides the methodology
for the proposed method. In Section 4, the application
results of the proposed method are demonstrated. Section
5 and Section 6 discusses and summarizes the article.

2. Literature Review

The multisource uncertainty fusion method fuses random,
fuzzy, and interval variables converting different types of
uncertainty into the same. In recent years, various approaches
have been used to transform different types of uncertainty.
The related literatures are listed in Table 1.

The literature regarding the reliability of fusing random
and fuzzy variables can be summarized as follows: fuzzy var-
iables are usually transformed into random variables, and
then, probability theory is used to evaluate the reliability.
The commonly used conversion methods include the for-
mula method, the equivalent density function method, and
the information entropy method. The equivalent probability
density function method uses the distribution probability of
artificially given random variables [19, 20] that deviate from
reality. Valdebenito et al. [21] proposed a method for the
approximate calculation of fuzzy failure probability, but this
method is only used to solve the problem of the medium
nonlinear performance function. You et al. [22] used enve-
lope distribution to describe fuzzy random variables. The
information entropy method uses the invariance of entropy
to equate the fuzzy entropy of the original fuzzy variable to
the probability entropy of the random variable so that the
fuzzy variable can be transformed into a normal random
variable. The effectiveness of this method has been con-
firmed in two cases [23]. However, this method also has
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shortcomings. Using this method loses the original distribu-
tion information, resulting in the nonunique distribution
probability of transformed random variables.

The literature regarding the reliability of fusing random
and interval variables can be summarized as follows: in
[24], the authors proposed an analysis method to solve the
mixed reliability problem based on the convex model theory.
In [25], the authors performed the reliability evaluation
under the condition, based on evidence theory, that interval
and random variables exist at the same time. Taking the
truss structure as an example, Deng [26] proved that when
the interval variable reaches the extreme value, the extreme
value of the mixed reliability index can be obtained. Li
et al. [27] converted random variables into normal variables
and interval variables into standard variables, which solved
the problem of static system reliability with mixed uncertain
variables. Wang et al. [28] deduced the relationship between
the upper and lower bounds of failure probability and the
upper and lower bounds of the product, the interval variable
function, which avoided the optimization analysis process
and improved the calculation efficiency. A hybrid reliability
method based on an active learning Kriging model and a
Monte Carlo simulation (MCS) was proposed in [29–31],
which improved the accuracy of failure-probability-limit
estimation, but this method was not suitable for estimating
small failure probability. Liu and Elishakoff [32] proposed
a combined importance sampling and active learning Kri-
ging reliability method to accurately evaluate the limit of
small-fault probability relative to interval variables.

For the reliability of fusing fuzzy and interval variables,
the existing research evidence on fuzzy theory mainly
focuses on decision analysis and uncertain reasoning
[33–38], whereas there is less research on reliability analysis.
Gao and Zhang [39] evaluated the conservative value of
structural reliability by calculating the worst reliability under
the condition of interval variables and combining the infor-
mation entropy method. Wang and Matthies [40] proposed
a two-stage analysis framework for the reliability evaluation
of a mixed cognitive uncertainty system, which successively
introduced evidence information and fuzzy information to
quantitatively evaluate the system’s reliability. In [41], the
authors proposed a reliability analysis method to solve the
problem that the uncertain parameters are interval variables,
and the lower and upper limits of interval variables can only
be modeled as fuzzy variables. Li and Nie [42] converted
fuzzy variables into interval variables according to the fuzzy
decomposition theorem and then obtained the interval value
of structural reliability by using the error transfer principle.

When all three types of uncertainty exist, most process-
ing methods are based on adding a third uncertainty variable
into the method of fusing two uncertain variables. In [43],
fuzzy variables and random variables were transformed into
interval variables and then solved by an iterative first-order
reliability method. In [44], random variables and fuzzy var-
iables (equivalent to random variables) were discretized into
subintervals, and finally, the reliability analysis was com-
pleted by using evidence theory. Based on the cut set optimi-
zation theory, Zhang et al. [45] converted fuzzy variables

Table 1: A summary of closely related literature and the present work.

Fusing uncertainties Authors Method description

Random and fuzzy

Dong and Wang [19] Equivalent probability density function

Guo et al. [20] Equivalent probability density function

Valdebenito et al. [21] Approximate calculation

You et al. [22] Envelope distribution

Zhang et al. [23] Information entropy

Random and interval

Elishakoff and Colombi [24] Convex model theory

Du [25] Evidence theory

Deng [26] Mixed reliability index

Li et al. [27] Normal and standard variable conversion

Wang et al. [28] Upper and lower bounds

Yang et al. [29] Kriging model and Monte Carlo simulation

Yang et al. [30] Kriging model and Monte Carlo simulation

Zhang et al. [31] Kriging model and Monte Carlo simulation

Liu and Elishakoff [32] Kriging model and Monte Carlo simulation

Fuzzy and interval

Gao and Zhang [39] Information entropy

Wang and Matthies [40] Two-stage analysis framework

Lü et al. [41] Interval variables with fuzzy limits

Li and Nie [42] Fuzzy decomposition theorem

Random and fuzzy and interval

An et al. [43] Iterative first-order reliability method

Tang et al. [44] Subintervals and evidence theory

Zhang et al. [45] Uniformity variable conversion
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into random variables and interval variables into random
variables by the uniformity method and then used the
FORM method to solve the structural reliability.

3. Method

The proposed multisource uncertainty fusion reliability eval-
uation method is a joint method that combines the simula-
tion and model-based methods that can assess reliability
considering random, fuzzy, and interval uncertainties. The
framework of the proposed method is demonstrated in
Figure 1. A dynamic simulation of CRDM is first built to ana-
lyze the force and mutual motion between parts. The rela-
tionship of velocity, displacement, and mass of the key parts
to the performance of CRDM is simulated. Then, based on
the dynamic simulation, a Bayesian network is constructed
as a surrogate of CRDM performance in relation to the state
of the parts. Meanwhile, the multiple types of uncertainty
variables are transformed into random variables that are the
uncertainty propagation inputs of the surrogate. After that,
the margin-based theory models the reliability of the CRDM
and calculates the probability of failure and reliability.

As shown in Figure 1, the dynamic simulation part of the
proposed method only provides the data upon which the
subsequent analysis is based. In practice, researchers can
use the actual measured data during CRDM operation
instead of the simulation model. Therefore, the dynamic
simulation part is not the primary point of this paper.

3.1. Multisource Uncertainty Transformation. For the inter-
val variable XI , the only information known by users is the
upper and lower bounds of a single interval or the upper
and lower bounds of multiple intervals and their corre-
sponding basic probability distribution. The conversion of
interval variables to random variables can be based on the
Laplace criterion. The Laplace criterion is also called the
equivalent probability principle. The basic assumption of
the principle is that since the probability of each natural state
cannot be determined, the probability of each state is consid-
ered to be the same.

For interval variables, the distribution state in the inter-
val is unknown, and there may be a variety of distribution
forms. It can be assumed that the variable obeys uniform
distribution in the interval, which adds to the minimum
assumption under limited knowledge. If there is more infor-
mation or knowledge, it can be used to characterize the dis-
tribution of interval variables, and the corresponding
distribution function can be used to correct the distribution
probability of the variables.

The interval variable XI , containing only one interval
number, namely, XI ∈ a, b , is considered to be uniformly
distributed in the interval. The generalized probability den-
sity function f̂ XI

x is shown in

f̂ XI
x = 1

b − a
, a ≤ x ≤ b 1

Fuzzy variables can usually be represented by member-
ship functions. Common membership functions have simi-

lar types to probability density functions, which are mainly
used to characterize the possibility of variables appearing
at different values. The biggest difference between the two
is that the area under the distribution curve of the probabil-
ity density function is 1, whereas the area under the mem-
bership function curve is not 1. In order to solve the
problem of reliability calculation with fuzzy variables, some
researchers have proposed the method of transforming
membership functions into probability density functions to
realize the transformation of fuzzy variables into random
variables; these methods mainly include the generalized den-
sity function method, equivalent density function method,
and information entropy method. The generalized density
function method converts the original membership function
of fuzzy variables into a similar probability density function
based on the normalization principle and then completes
the conversion from fuzzy variables to random variables.

A fuzzy variable is denoted as XF , the membership func-
tion of which is μXF

x ; the generalized probability density
function can be obtained with the normalization method,
which equals the quotient of the membership function
divided by the integral of the membership function, as
shown in

f̂ X F
x =

μXF
x

+∞
−∞μXF

x dx
2

f̂ X F
x is the generalized probability density function

after the membership function μXF
x of fuzzy variable XF

is transformed into a random variable.
This method applies to the situation where the area of

membership function curve is bounded, and most of them
belong to this situation in practical engineering. Therefore,
the above-mentioned conversion method has good applica-
bility. It should be noted that there is no inevitable connec-
tion between the probability distribution of fuzzy variables
and the probability distribution of variables, but in practice,
the possibility of events can transmit information about the
probability of events. According to the possibility/probabil-
ity consistency principle in fuzzy mathematics, if the proba-
bility of an event is greater, the possibility of its occurrence is
bound to be greater; if the event is less likely to occur, the
probability of occurrence is bound to be smaller.

The generalized density function obtained by equation
(2) not only retains the distribution state described by the
membership function of the original fuzzy variable but also
meets the completeness and non-negative requirements of
the probability density function. In addition, the relative
magnitude of the transformed random variables does not
change in the value range. Therefore, the generalized proba-
bility density function f̂ X F

x still contains the ambiguity of
the original fuzzy variable.

Since the density function of interval variables and fuzzy
variables is usually not the commonly used probability den-
sity function, the commonly used random sampling algo-
rithm may not be able to extract the sample data that
conform to the variable distribution and cannot truly reflect
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the uncertainty of the variables. In this paper, a sampling
method for arbitrary probability density function is pro-
posed, which is used to sample the generalized probability
density function obtained after the transformation of inter-
val variables and fuzzy variables so that we can study the
uncertainty propagation problem under fused uncertainty.

For any random variable with a probability density func-
tion f x , the cumulative distribution function of which is
F x , and the sample interval to be extracted is a1, am+1 ;
the distribution of variables in the interval can be repre-
sented by f x .

The sampling interval is divided into m subintervals,
denoted as I1 = a1, a2 , I2 = a2, a3 ,…,Ii = ai, ai+1 ,…, and
Im = am, am+1 . In each subinterval, the frequency of random
variables is denoted as P1, P2,…,Pm, and ∑mPi = 1. The fre-
quency for the ith subinterval is calculated by

Pi = F ai+1 − F ai , 1 ≤ i ≤m 3

The number of the sample is set as N , the sample fre-
quency in each subinterval is denoted as n1, n2,…, and nm,
and apparently, ∑mNi =N . The sample number in the ith
subinterval is calculated by

ni = PiN 4

The samples in each subinterval are denoted as X1,
X2,…, and Xm, which can be sampled using the uniform
sampling method, as shown in

Xi = unirnd ai, ai+1, ni , 1 ≤ i ≤m, 5

where ai, ai+1, ni denotes the extraction of ni uniformly dis-
tributed samples within interval ai, ai+1 .

Finally, the sample X = X1, X2,⋯, Xm is obtained,
which obeys the distribution characteristics represented by
the probability density function f x . The sampling process
is a numerical approximation of the density function, and
the approximation accuracy depends on the interval division
and the sampling number. The larger the number of subin-
tervals m and the total number of samples N , the closer
the extracted samples are to the variable characteristics rep-
resented by the probability density function.

After variable transformation for each input uncertainty
variable, the corresponding probability density function or
generalized probability density function of each variable
can be obtained. Then, using the sampling algorithm shown
in equations (3)–(5), we can extract N groups of samples
with different types of uncertainty characteristics of the
variables. The Monte Carlo or Latin hypercube sample
combination method can be used to obtain the correspond-
ing N groups of feature output variable samples, and the

Density function based sampling

Dynamic physics simulation

Bayesian network

Sampling Probabilistic quantification

Probabilistic surrogate model

Multi-source uncertainties transformation

Velocity and displacement of parts

Dynamic simulation of mechanisms

…

XI

XF

XR

XR XF XI X = {X1, X2,…, Xn}

P = F (X)F (X)

P

X = {X1, X2,…, Xl}

P = {p1, p2,…, pq}

P

X I
X F

X R
P

Reliability evaluation

M = d (P, 𝛩)

R = Pr {M > 0}

=

𝛩U – P
P – 𝛩L

min {𝛩U – P, P – 𝛩L}

Margin based reliability

Reliability calculation

Reliability

Failure probability

X1 = {xR1, xR2,…, xRn} X2 = {xF1, xF2,…, xFm} X3 = {xI1, xI2,…, xIk}

P ~ 𝜑 (p|𝜃)

P
 ~

 𝜑
 (p

|𝜃
)

With explicit equation
 (i) FORM
 (ii) SORM
 (iii) ……

With implicit equation
 (i) Monte Carlo
 (ii) Latin hypercube
  sampling 
 (iii) ……

Variable
transformation

Random variables Fuzzy variables Interval variables

XR ~ fXR
 (x) XF ~ 𝜇XF

 (x) XI ~ XI [xl, xu]

fXF
 (x) =

𝜇XF
 (x)

𝜇XF
 (x) dx+∞

–∞

fXI
 (x) = 1

b – a

X1 X2 Xl

Figure 1: The multisource uncertainty fusion reliability evaluation framework.
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probabilistic quantification of feature variables can be
obtained using the probabilistic method.

3.2. Probabilistic Surrogate Model. The Bayesian network is a
classical method for constructing a surrogate model to
quantify uncertainty propagation. Its simple modeling and
convenient calculation characteristics make it suitable for
CRDM reliability evaluation. Bayesian networks consist of
nodes and directed edges. Nodes represent random events,
and directed edges denote the correlation between random
events. Uncertainty is propagated by conditional probabili-
ties between nodes connected by directed edges.

The simplest Bayesian network, consisting of two nodes
and one edge, is shown in Figure 2. The marginal probability
table expresses the probability of node X’s state (yes or no),
and the state of the child node Y is affected by the parent
node X, so it is expressed by the conditional probability
table.

When the structure of the Bayesian network is deter-
mined, the Bayesian network can act as a probabilistic surro-
gate that inference each node’s probability based on
posterior knowledge, i.e., the evidence. The basic algorithm
of Bayesian network inference is the variable elimination
algorithm [44].

Let X be the set of all variables in the Bayesian net-
work Θ and Γ be the set of all probability distributions
in Θ. By definition, Γ is a decomposition of the joint
probability distribution of Pr X . Suppose evidence E = e
is observed, in the factor of Γ; each evidence variable is
set as its observed value, and a set of functions is obtained,
denoted as Γ′. Γ′ is a decomposition of Pr Y , E = e , in
which Y = X − E. Let Q be a subset of Y , eliminate the sub-
sets in Γ′ that are contained in Y yet not contained in Q,
and then generate a subset Γ″. Γ″ is a decomposition of
Pr Q, E = e . Therefore, Pr Q, E = e can be obtained by
multiplying all the factors of Γ″. Given the conditional
probability formula, we can obtain Pr Q E = e = Pr Q, E =
e /Pr E = e , in which Pr E = e =∑QPr Q, E = e . Thereby,
the probability of each node can be evaluated when evidence
is given.

3.3. Reliability Evaluation. It is necessary to analyze the
functional principles of the product first to model and ana-
lyze the product’s reliability and then determine the corre-
sponding performance parameters and their failure criteria.
Failure criteria can usually be divided into three categories:
upper limit type, lower limit type, and interval type. Then,

the product’s reliability can be obtained by calculating
the probability of the feature performance parameter not
exceeding its failure criterion.

The performance margin is employed to characterize the
distance between feature performance parameters and fail-
ure criteria [46]. For different failure criterion types (upper
limit type, lower limit type, and interval type), the perfor-
mance margin M is calculated as shown in

M = d P,Θ =
ΘU − P,
P −ΘL,
min ΘU − P, P −ΘL

6

The form of d depends on the form of product failure
criteria. P represents the feature performance parameters
of products, and Θ represents the failure criterion corre-
sponding to the performance parameters (ΘU represents
the upper limit of failure criterion and ΘL for the lower limit
of failure criterion).

The reliability of the product is the probability that its
feature performance parameters do not exceed its failure cri-
terion, which is the probability that the performance margin
is greater than 0, as shown in

R = Pr M > 0 , 7

where Pr A denotes the probability of event A occurring.
For the performance margin equation with explicit

expression, the corresponding reliability can be directly
solved by analytical methods such as first-order reliability
method (FORM) [45] or second-order reliability method(-
SORM). The explicit expression of the product perfor-
mance margin is denoted as f X X , where X is the
variable vector of the internal and external factors of the
product, as shown in

M = d P,Θ = f X X 8

According to the FORM method, the corresponding
reliability can be calculated by

RM = ϕ
μM
σM

, 9

where ϕ · represents the cumulative probability density
function of standard normal distribution, μM denotes the

YX

Parent node Child node

Marginal
probabilities table

Conditional
probabilities table

-X- -Y- P (-Y|-X-)
Yes
No
Yes
No

Yes
Yes
No
No

0.9
0.1
0.1
0.9

-X- P (-X-)
Yes
No

0.001
0.999

Figure 2: The structure of Bayesian network.
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mean, and σM represents the standard deviation of the
margin equation. Their approximate formula is shown in

μM ≈ f X μX

σM ≈ 〠
n

i=1
〠
n

j=1
∂f X μX /∂Xi ∂f X μX /∂Xj ρXiX j

σXi
σX j

,

10

where ρXiX j
represents the correlation coefficient between

variables Xi and Xj. It is necessary to calculate the mean
and standard deviation of each variable after converting
them into random variables and the partial derivative of
the margin equation for each variable.

For the margin equation without explicit expression, the
numerical method is adopted to realize the fusion of multi-
source uncertainty variables so as to obtain the probability
quantification of the feature performance parameter P or
the corresponding threshold Θ in the margin equation. With
the corresponding probability density function of each
parameter obtained, the reliability of the product can be
evaluated using

R =

∬
P<ΘU

f P x f ΘU
y dxdy,

∬
P>ΘL

f P x f ΘL
y dxdy,

∭
ΘL<P<ΘU

f P x f ΘL
y f ΘL

z dxdydz

11

4. Results

In order to verify the generality of the proposed method, a
practical engineering case of a magnetic-jack type CRDM
was studied. This case evaluates the reliability under multi-
source uncertainties for a magnetic-jack type CRDM, and
the margin equation of which is implicit. The function of
the CRDM depends on the cooperation of the components

in latch assembly [47], and the structure of which is shown
in Figure 3.

As shown in Figure 3, the magnetic-jack type CRDM uti-
lizes the insertion (and withdrawal) of the movable gripper
(MG) to control the depth of the control rod. The insertion
of the MG is driven by the MG plunger magnet, which
moves as the MG coil is energized. Therefore, the insertion
time of the MG depends on the movement of the MG
plunger magnet. Moreover, the position of the control rod
is held by the stationary gripper (SG) with the SG plunger
magnet and SG coil. That makes the coordination of move-
ment of the MG and SG requires that the MG plunger mag-
net has completed its movement by the time the SG coil is
de-energized, as shown in Figure 4.

The margin equation for the cooperation between MG
and SG can be expressed as

Margin =ΘT − TMG, 12

where ΘT represents the off time of the SG coil and TMG
represents the time of MG plunger magnet completing its
movement. The reliability R of the corresponding MG’s
insertion action is

R = Pr Margin > 0 13

The movement of the MG plunger magnet is a multi-
body dynamic coupling process with many units coordi-
nated, which makes the TMG an uncertain variable that is
affected by multiple uncertain variables that may be time-
variant. The complexity of the MG plunger magnet’s move-
ment makes the reliability of CRDM a multisource uncer-
tainty fusion problem with an implicit margin equation.
In [48], the authors established a simulation model, as
shown in Figures 5 and 6, to obtain the TMG and determine
the crucial variables that may affect the TMG, as shown in
Table 2. Owing to the limitation of vertical displacement
in the CRDM, the TMG is when the plunger magnet moves
8.6mm in the vertical direction. In Table 2, mMG denotes
the mass of the MG plunger magnet, s denotes the cross-

Control rod
Lift magnetic pole

Lift coil

Movable gripper 

Stationary gripper
plunger magnet

Stationary gripper coil

Lift magnet

Movable gripper coil

Stationary gripper

Stationary magnetic
pole

Movable gripper
plunger magnet

Movable gripper
magnetic pole

Figure 3: The structure diagram of CRDM latch assembly.
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sectional area of the MG plunger magnet, Fμ denotes the
frictional force, k denotes the elastic coefficient of the
spring, and α and C denote the buoyancy and spring force
coefficients.

In order to enhance the uncertainty quantification effi-
ciency, a Bayesian network-based surrogate can be made to
analyze the uncertainty propagation between these variables
as proposed. The structure of the Bayesian network is shown

SG

MG

MG plunger
magnet

t0 t1 t2 t3 t4 t5 t6

Energized
De-energized
Intermediate state

Figure 4: Action timing relationship of CRDM (partial).

The electromagnetic force is greater

MG plunger magnet
movement

Electromagnetic force
Fdc = fdc (I, l)

Gravity, buoyancy,
friction, spring force,

etc.

Inherent forces

Electromagnetic force
Fdc = fdc (I, l)

Friction
Fsz = fsz (v, a)

Spring forces
Fth = fth (Δx)

Placed

Current

Begin

End

Resultant force

Yes

No

Time index begin

Time index end

No

Yes

v, a

Δx = x

l = l0 – x

TMG

Figure 5: The simulation process of the CRDM.
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in Figure 7. It contains seven nodes, six parent nodes, and
one child node.

In which, each parent node denotes a parameter in
Table 2, and the child node is the simulated TMG. With this
Bayesian network as the surrogate, the insert time of the MG
can then be described, as shown in

TMG = SurrogateMG mMG, s, Fμ, k, a, C 14

However, with the multiple uncertainties existing, this
equation cannot be directly employed to evaluate the reli-
ability of the CRDM. As shown in Table 2, these six variables
are uncertain variables of different types. We utilized the
method proposed in Section 3.1 to transform the fuzzy and
interval variables into random variables through the general-
ized probability density function. The transformation results
of Fμ, k, α, and C are listed in Table 3.

According to the transformed generalized density func-
tion, using the sampling method described in Section 3.1,
the variables, such as mMG, s, Fμ, k, α, and C, can be sam-
pled, and the sampling number is set to 10000 times to
obtain samples that meet the uncertainty characteristics of

The virtual prototype model for CRDM

Time

Displacement of MG
plunger magnet8.6

The insert time of MG

DrivepipeSealed shell Drive rodLatch assembly

Figure 6: Displacement curve of MG plunger magnet and insert time of MG.

Table 2: The uncertainty information of feature variables in the MG plunger magnet.

Variable
Uncertain information

Type Feature Quantified expressions

mMG Random variable Normal distribution N 5 6, 0 052

s Random variable Normal distribution N 0 005, 0 000052

Fμ Interval variable Interval number 148,152
k Interval variable Interval number 950, 1050

α Fuzzy variable Isosceles triangle μ x =
1 − 0 25 − x

0 01 , 0 24 ≤ x ≤ 0 25
1 − 0 25 − x

0 01 , 0 24 ≤ x ≤ 0 25

C Fuzzy variable Isosceles triangle μ x =
1 − 3 5 − x

0 1 , 3 4 ≤ x ≤ 3 5
1 − x − 3 5

0 1 , 3 5 ≤ x ≤ 3 6

TMGmMG

F𝜇

s

k

C

𝛼

Figure 7: The structure of Bayesian network for TMG.

Table 3: The transformation results of fuzzy and interval variables.

Variable Generalized probability density function

Fμ f̂ Fμ
x = 1

4 , 148 ≤ x ≤ 152

k f̂ k x = 1
100 , 950 ≤ x ≤ 1050

α f̂ α x =
100 1 − 0 25 − x

0 01 , 0 24 ≤ x ≤ 0 25
100 1 − x − 0 25

0 01 , 0 25 < x ≤ 0 26

C f̂ C x =
10 1 − 3 5 − x

0 1 , 3 4 ≤ x ≤ 3 5
10 1 − x − 3 5

0 1 , 3 5 < x ≤ 3 6
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each variable. After that, the Monte Carlo sample combina-
tion method is used to combine the extracted samples to
form 10000 sets of simulation input samples. Then, the
input samples are brought into the surrogate model,
SurrogateMG, and a set of 10000 samples of the insert time
of the MG is obtained, called datafusion.

In addition, there are many other uncertainty quantifica-
tion methods that provide reference for this paper. Xiao et al.
[49] constructed a linearized tangent function to quantify
the uncertainty, through which the reliability index interval
was efficiently calculated. Hurtado et al. recently developed
several new probability-interval hybrid reliability analysis
methods with acceptable accuracy and low computational
cost, based on their own concept of reliability plot [50–52].
Qiu et al. [53] treated the mean values and variances of
structural intensity and stress as interval parameters and
provided the solution of the upper and lower bounds of reli-
ability index, based on which they analyzed the variation
trend of the reliability index interval when the interval
parameters change. Therefore, in order to demonstrate that
the method proposed in this paper has higher accuracy, we
conducted a comparative experiment by using the mean
method to quantify uncertainty and made the assumptions
shown in Table 4. Then, the new parameter values from
Table 4 are substituted into the surrogate model, SurrogateMG,
and a new set of 10000 samples of the insert time of the
MG is obtained, called datamean.

The distribution of all obtained samples is drawn as a
histogram with a normal fit curve, as shown in Figure 8 [54].

The probabilistic method is employed to obtain the TMG
from the datafusion and TMG′ from the datamean. It can be
concluded that both TMG and TMG′ obey the normal distribu-
tion, i.e., TMG ~N 127 925, 7 1552 , and TMG′ ~N 130 835,
8 6652 . Therefore, the reliability of the MG is evaluated with
the following equations:

R =Φ
150 − 127 925

7 155 = 0 9989831, 15

R′ =Φ
150 − 130 835

8 665 = 0 9867628 16

The comparison of the results obtained from Figure 8
and Equations (15) and (16) reveals that the method
described in the paper, which considers various uncer-
tainties, leads to a significant improvement about 0.0122203
in reliability compared to the case where uncertainties are

Table 4: The deterministic value of variable.

Variable Value

Fμ
′ 150

k′ 1000

α′ 100

C′ 10

0.00

0.05

0.04

0.03

0.02

0.01

100 110 120
Insert time of MG

D
en

sit
y

130 140 150 160

Normal_Fit_fusion
Normal_Fit_mean
Sample

Figure 8: Frequency histogram of MC sampling results.
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Figure 9: The dynamic mean of mMG and s.
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Figure 10: The reliability and failure probability under dynamic
parameters.
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not considered. The fitting to real data is better, and the accu-
racy is higher.

5. Discussion

In order to further discuss the impact of dynamic parame-
ters on the performance of CRDM, the mean of the mass
of the MG plunger magnet (mMG) and the cross-sectional
area of the MG plunger magnet (s) are gradually increasing
during the operation step of CRDM (this represents the
degeneration of the plunger magnet clamping or stagnation),
as shown in Figure 9, and the other parameters are set to
constants. With the proposed method, the reliability and
failure probability of the CRDM latch assembly can be
obtained at each step.

As shown in Figure 10, the reliability gradually decreases
during operation from 5000 to 10000 steps, and the failure
probability gradually increases. However, the impact of
mMG and s on the reliability of the CRDM latch assembly
is different. As listed in Table 5, when the mMG increases
from 5.1 to 5.8 (increases 13.7%), the reliability of CRDM
decreases from 0.9999816 to 0.9997008 (decreases 0.028%),
whereas when the s increases from 0.002 to 0.005 (increases
over 150%), the reliability decreases from 0.999816 to
0.9998542 (decreases 0.013%). What is more, Xia et al. pro-
posed a sensitivity calculation method for reliability, which
is shown in the following equation [55]:

Sensitivity = df x2 − df x1
x2 − x1

, 17

where x1 and x2 are the value of variables and f x1 and f
x2 are the reliability functions about variables x1 and x2.
Therefore, the paper used equation (17) to calculate the sen-
sitivity of mMG and s, as shown in

Sensitivity of mMG = 0 9996717 − 0 9999816
6 12 − 5 1 = 0 00106,

18

Sensitivity of s = 0 99999813 − 0 9999816
0 0024 − 0 002 = 0 00075

19

As shown in Table 5, when bothmMG and s are increased
by 20%, the sensitivity value of mMG, 0.00106, is greater than
the sensitivity value of s, 0.00075. Hence, the reliability is
more sensitive to mMG than s.

6. Conclusion

This paper provides a fusion reliability evaluation method
for the CRDM of nuclear power plants when random, fuzzy,
and interval uncertainty variables exist simultaneously. The
multisource uncertainties are fused by transforming the
interval and fuzzy uncertainty variables into random vari-
ables and then propagating these in a Bayesian network
model. The variable transformation is performed based on
the generalized density function while retaining the original
uncertainty characteristics of the variable. The Bayesian net-
work model is built as a lightweight surrogate for the
dynamic simulation of CRDM. After the fusion of multi-
source uncertainties, the probability quantification of feature
variables can be conducted and so can the reliability evalua-
tion. The margin equation is modeled to evaluate the reli-
ability with either explicit or implicit expressions. The
proposed method contains the following features:

(1) The method can realize the unified processing of
various uncertain variables and the probability quan-
tification of critical parameters in the reliability
model and so can directly obtain product-reliability
probability measurement results

(2) The proposed method can handle either explicit or
implicit margin reliability equations, making it suit-
able for both simulation-based and model-based
CRDM reliability evaluation

(3) A practice CRDM with an implicit margin equation
was used to illustrate the reliability evaluation pro-
cess under multisource uncertainties. The results
show that the proposed method can efficiently eval-
uate the product’s reliability under multisource
uncertainties, affirming its potential for practical
applications in the nuclear power industry

However, the Bayesian network model established in this
study can only analyze the reliability of one function of
CRDM. In practice, the functions of CRDM are relatively
complex, and there are sequential relationships or correla-
tion connections between different functions. Therefore, it
is necessary to explore further the reliability analysis method
of CRDM’s multifunctional synthesis in future studies. In
addition, the method proposed in this study has good appli-
cation prospects in situations where other systems face sim-
ilar problems, such as cantilever beams and transmission
shafts. After conducting targeted analysis combined with
specific cases, the corresponding reliability calculation pro-
cess is similar.

Table 5: The change rate of the reliability.

Variable Rangeability Rate Reliability rangeability Reliability rate

mMG [5.1, 5.8] 13.7% [0.9999816, 0.9997008] 0.028%
s [0.002, 0.005] 150% [0.9999816, 0.9989004] 0.013%
mMG [5.1, 6.12] 20% [0.9999816, 0.9996717] 0.041%
s [0.002, 0.0024] 20% [0.9999816, 0.9999813] 0.00003%
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