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In this paper, a multiobjective framework for simultaneous reconfiguration and allocation of photovoltaic (PV) energy resources
in radial distribution networks is performed for minimizing the power losses, lowering network loading factor, and reducing cost
of energy resources as well as increasing the voltage stability index. A novel algorithm called the improved clouded leopard
algorithm is used to find the set of optimum decision factors in the combined execution of restructuring and also PV resource
distribution. The clouded leopard optimization (CLO) algorithm, which is widely used, takes its cues from the sleeping and
foraging habits of the animal, and the improved CLO (ICLO) is formed using adaptive inertia weight to overcome premature
convergence. In five cases of base distribution network and different contribution of reconfiguration and PV allocation, single-
and multiobjective approach has been applied on 33- and 69-bus distribution networks. According to the findings, the best
case includes simultaneous reconfiguration and PV allocation in the radial networks based on the multiobjective approach
unlike the single-objective method which obtained the highest network performance with the best compromise between
different goals. Also, in the best lowest losses, the decrease in the network loading and cost of energy resources and the better
voltage profile and stability are obtained satisfying the constraints. The losses, network loading, voltage profile, and voltage
stability are improved by 60.40%, 37.89%, 6.17%, and 27.5% for 33-bus network and also enhanced by 71.77%, 41.23%, 4.76%,
and 20.48% for 69-bus network, respectively. Also, the results showed that network reconfiguration only has the weakest
performance among other cases based on reconfiguration or photovoltaic sources. Moreover, the superior capability of the
ICLO in addressing the aim of the study is proved in comparison with the traditional CLO and well-known particle swarm
optimization (PSO) and manta ray foraging optimization (MRFO) to obtain the better objective value and statistical criteria to
solve the best case.

1. Introduction

As a result of the radial configuration and high resistance-to-
reactance ratio, distribution networks become more suscep-
tible to severe power losses [1]. In conjunction with nonre-
newable energy sources, renewable energies are utilized to

supplement primary energy requirements and, in particular,
to maximize energy efficiency [2]. The energy generated by
renewable energy systems has experienced a notable surge
in recent years, primarily driven by technological advance-
ments and the heightened global population awareness [3].
The incorporation of renewable energy sources (RES) into
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the preexisting infrastructure enhances the distribution net-
work’s overall performance. It consists of the economic ben-
efits of energy cost savings as well as the technical benefits of
minimizing power losses as well as the voltage condition
improvement [4]. In addition, the topology of a reconfigur-
able network can be altered by actuating and deactivating
power line switches. The reconfiguration of the distribution
network is noteworthy due to its potential to enhance power
grid performance through a modification of the network
topology [5]. Consequently, determining the optimal place-
ment and size of renewable resources within the distribution
network is crucial for capitalizing on the benefits of reconfi-
guring the network and utilizing renewable energy
resources. Conversely, the optimal network configuration,
including the opening and closing status of the network
devices, should be determined [6]. Furthermore, the concur-
rent utilization of network reconfiguration and renewable
energy sources in the operation of distribution networks,
aiming to maximize the benefits of these approaches, has
been formulated as an optimization problem. This frame-
work necessitates the application of optimization algorithms
to ascertain the optimal installation locations and capacities
of energy sources, along with determining the optimal open-
ing and closing status of network switches [6, 7]. A variety of
algorithms are implemented to ensure that distribution net-
works function optimally. In order to solve the problem
using optimization methods, the objective function and
problem constraints must be specified [7]. The capabilities
of the optimization methods vary depending on the structure
that is presented, and each method possesses a distinct capa-
bility in achieving the optimal solution [8]. It is important to
acknowledge that optimization methods may fail to produce
the optimal solution when the problem’s complexity and var-
ious objective functions are taken into account. In such cases,
alternative strategies are required to enhance their perfor-
mance [7, 8]. The reset issue can be resolved by employing
various objective functions, including but not limited to
power losses, voltage variation, voltage stability index, load
imbalance, line current unbalance, dependability, and net-
work security [8, 9]. Because there are many network
switches, selecting the best switches to access has turned into
an optimization issue, necessitating the use of the optimiza-
tion technique [10, 11]. Due to their pure and cost-free
energy, DG sources built on solar energy sources have
received a lot of positive attention recently [12, 13]. The dis-
tribution grid is immediately linked to renewable photovol-
taic energy systems that are tied to the grid, and these
systems send their output electricity into the grid to secure
and reliable performance [14, 15]. Therefore, they have an
impact on network metrics and variables like the voltage,
losses, and dependability, just like other producing units
and electrical network components [16, 17]. Therefore, in
order to benefit from the advantages of photovoltaic energy
sources, locating and determining their optimal capacity in
the distribution network is very important because the inap-
propriate selection of the location and capacity of this type
of energy sources in the network can weaken the character-
istics of the network compared to the previous state. There-
fore, it is feasible to mix the methods of reconfiguring and

allocating solar energy resources in the distribution net-
works and profit from each method’s benefits for the func-
tioning of the distribution network. In this way, while
determining the optimal configuration of the network, the
best installation location and the optimal capacity of photo-
voltaic energy sources in the network are determined at the
same time so that the best value of the objective function is
obtained by satisfying the operating constraints and the con-
straints related to maintaining the radial state of the network
and photovoltaic energy sources. However, a technique of
optimization with the desired ability to produce the world-
wide answer is required to arrive at the optimum solution.
Numerous studies have been done recently on the use of
restructuring as well as the best dispersal of distributed gen-
eration units and green energy sources in peripheral distri-
bution networks. A tangent golden flower fertilization
algorithm is used in [18] to reconfigure the distribution net-
work to reduce power losses by choosing the best locations
for the DGs and determining the best network reconfigura-
tion. The optimal location and capacity selection of renew-
able resources, taking into account the maximum allowable
capacity constraint, is described in [19]. The objective is to
reduce losses and enhance the voltage profile of distribution
grids. Particle swarm optimization with the weighted coeffi-
cient method is utilized for this purpose. A stochastic-
metaheuristic model is implemented in [20] to allocate
renewable resources in a distribution network in accordance
with multiple criteria, including minimizing power losses,
improving voltage profile and stability, and enhancing net-
work reliability while accounting for resource production
and demand uncertainty. The reconfiguration of an imbal-
anced distribution network to reduce losses and voltage
instability is proposed in [21] using an enhanced transient
search optimization method. In [22], distribution network
restructuring is carried out using the jellyfish search method
to improve network user dependability metrics. The parallel
slime mold method is used in [23] to show a change frame-
work for a peripheral distribution network combined with
DGs in order to reduce active loss, increase voltage stability
index, and balance load. The authors of [24] suggested sto-
chastic scheduling for a hybrid system consisting of a photo-
voltaic array, wind turbines, and a battery storage system
integrated into the distribution network. The objective was
to reduce energy losses, optimize the voltage profile, and
decrease system cost. Additionally, the reliability of the sys-
tem was enhanced through the implementation of the
energy-not-provided index, which accounted for uncer-
tainties in energy source generation and network demand
via the unscented transformation. A simultaneous two-
problem allocation with multiple objectives is suggested in
Ref. [25]. This allocation pertains to an unbalanced distri-
bution network and a hybrid distributed generation system
consisting of wind turbines, battery storage, and solar
panels. The proposed approach is aimed at reducing overall
losses and enhancing power quality. To reduce power
losses, [26] applies a simulated ecosystem optimization for
network restructuring and DG location. To reduce power
loss, a novel paradigm for network reconfiguration (NR)
is introduced in [27]. It uses an improved binary cuckoo
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search method. The restructuring of distribution networks
to reduce power loss while taking into account issue restric-
tions is solved in [28] using an acceleration PSO. To reduce
power outages, a chaos search group method is used in [29]
to simultaneously reconfigure the distribution network and
allocate DGs. In order to reduce the processing load placed
on the optimization methods while maintaining control over
the discontinuous allocation variables, a mathematical proce-
dure for network restructuring based on the positioning of
the soft open point is described in [30]. In [31], a multiobjec-
tive mixed integer linear programming model is used to cre-
ate the restructuring of distribution networks, and this model
specifically takes into account the effect of automatic changes
on the length of interruptions. In [32], the restructuring of
distribution networks is carried out using a flexible multicri-
teria method via an enhanced coronavirus herd immunity
optimizer algorithm to reduce power loss and increase power
quality. The best network design for reducing the decreased
power losses while considering the load balance index is
determined by applying a golden flower fertilization method
[33]. Using a mixed water cycle algorithm, a soft open point
technique is described in [34] with and without system
changes to reduce power losses, improve the voltage profile,
and reduce the number of soft open points linked to the net-
work. A moth-flame optimization method is used in [35] to
create multicriteria restructuring of distribution networks
combined with energy resources in order to reduce power
loss and improve dependability.

The literature evaluation has revealed that in coordi-
nated and simultaneous methods of reconfiguration and
optimal allocation of PV energy resources, several objectives,
including minimizing power losses and voltage deviations,
as well as improving voltage stability, have been repeatedly
defined as a multiobjective function. However, it can be seen
that a comprehensive multiobjective function that has vari-
ous objectives such as minimizing power losses, improving
network voltage characteristics and stability, minimizing
investment costs, preserving and replacing energy resources,
and especially improving the network loading factor is not
well addressed. On the other hand, the review of the current
literature shows that metaheuristic techniques have played a
major role in solving efficiency problems in the energy deliv-
ery network. The complex and nonlinear nature of the sub-
ject, practical limitations, and the existence of discrete and
continuous variables create major problems in the combined
and simultaneous method of reconfiguration and distribu-
tion of PV energy sources in the electricity delivery network.
In addition to this additional difficulty, the high processing
cost of the concurrent approach necessitates the use of a
robust method with high closure capability and fast access
to the ideal global response. A metaheuristic approach may
be good at solving some optimization problems but may
not be good at many other problems based on the no free
lunch (NFL) theorem [36]. The common issue of reorgani-
zation and distribution of solar energy resources in environ-
mental distribution networks requires the development of a
new metaheuristic method.

Based on the review of previous works, the contributions
and novelties of this paper are listed as follows:

(i) Integration of the multiobjective strategy in the dis-
tribution network reconfiguration and photovoltaic
energy resource allocation in the networks

(ii) Formulation of an objective function as minimization
of power losses, improvement of network voltage pro-
file and stability, minimization of investment costs,
maintenance and replacement of energy sources, and
especially the improvement of the network load factor
in the presence of the complex and nonlinear nature
of the problem, operating constraints and existence
discrete and continuous variables

(iii) Using the improved clouded leopard optimization
(ICLO) algorithm to determine the optimal network
structure as well as the optimal installation location
and size of photovoltaic energy sources and applica-
tion of the nonlinear inertia weight reduction tech-
nique to improve the CLO [37] convergence
capability

(iv) Stablishing the superiority of the ICLO in solving
the problem over the traditional CLO, PSO, and
MRFO approaches

In this paper, the problem formulation that includes
objective function, constraints, and fuzzy multiobjective
solution method is presented in Section 2. The proposed
improved optimizer and its implementation to solve the
simultaneous reconfiguration and photovoltaic resource
allocation in distribution networks are formulated in Section
3. The simulation results in different cases of reconfiguration
and photovoltaic allocation are presented in Section 4, and
the findings are concluded in Section 5.

2. Formulation of the Problem

2.1. Objective Function. In this study, the problem of multi-
objective and coordinated allocation of photovoltaic energy
resources in radial distribution networks is formulated to
minimize power losses, improve the voltage stability index,
and improve the network load factor, in addition to reducing
the cost of photovoltaic energy resources. The broad goal
function is described in the sections that follow.

2.1.1. Power Losses. The reduction of active power losses in
the distribution network, which are calculated as the total
of losses of all lines as follows [1–8 and [9], is one of the
most crucial objectives in the functioning of distribution
networks.

PLosses = 〠
Nbranches

i=1,j=1,i≠j
RijI

2
ij,

Iij =
P2
ij +Q2

ij

V2
i

1

Rij is the resistance of the k
th line that connects bus i and

j, Iij is the current of the k
th line, Pij and Qij are the active
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and reactive power that flow flow through kth line, Vi is
the voltage of the ith bus, and Nbranches is the number of
network lines.

2.1.2. Voltage Stability. In this research, voltage stability has
been incorporated into the formulation of the goal function
using the voltage stability index (VSI). According to [16, 38],
the voltage stability measure is as follows:

VSIi = Vi
4 − 4 PiXij −QiRij

2 − 4 PiRij −QiXij Vi
2, 2

where Pi and Qi are the active and reactive power consump-
tion of bus i and Xij is the reactance of the k

th line. It should
be stated here that i ≠ 1.

The proposed method ΔVSI is used as a measure of volt-
age stability to consider voltage stability. The value ΔVSI
should be minimized so that the system has better voltage
stability.

ΔVSI =max
1 −VSIi

1
∀i = 2,⋯,Nbus 3

2.1.3. Network Loading. Another goal function for the net-
work reconfiguration and photovoltaic energy source alloca-
tion in distribution network is considered minimizing the
network loading. The electricity flowing through the lines
in proportion to the temperature limit of the lines defines
this change. Thus, the below equation [1–8] and [9] is used
to determine the loading for each line:

LFij =
Flowij

Flow limitij
, 4

where Flowij is the power passing through the line that con-
nects bus i to bus j, Flow limitij is the thermal limit of the
line, and LFij is the line loading factor. The entire network
loading can be defined as follows:

LFtot = 〠
Nbranches

i=1,j=1,i≠j
LFij, 5

where LFtot is the network load.

2.1.4. Cost of PV Energy Resources. For energy resources,
there are three types of costs, which includes initial invest-
ment and installation of energy sources (ICDG), operation
and power generation costs (OCDG), and maintenance costs
(MCDG), which are defined [1, 4, 38] as

CDG = ICDG + OCDG +MCDG 6

(1) Investment Cost. The investment cost of energy resources
is the cost that is paid at the beginning of the project, which

is related to the purchase and installation of energy resources
and is defined based on the kWh produced as follows:

ICDG $/kWh = 〠
NDG

i=1
cinvestment
i , 7

where cinvestment
i is the purchase and installation cost of ith

DG and NDG is the number of DGs.

(2) Operation Cost. Another cost related to energy sources is
the cost of operation and power generation. This cost can be
calculated with the following relationship.

OCDG $/kWh − year = 〠
NDG

i=1
coperationi , 8

where coperationi is the annual operating cost of ith DG.

(3) Annual Operation Cost. The annual operating cost of the
ith DG is defined based on the interest rate and inflation [1]
as follows:

coperationi = coperation0 ×
1 + InfR
IntR

i−1
, 9

where InfR and IntR refer to the inflation and interest rates
and coperation0 is the per DG annual operating cost.

(4) Maintenance Cost. Another cost of energy resources is
the maintenance cost, which is modeled by the following
equation.

MCDG $/kWh − year = 〠
NDG

i=1
cmaintenance
i , 10

where cmaintenance
i is the maintenance cost of the ith DG and

MCDG is the total maintenance cost of all energy sources.

(5) Annual Maintenance Cost. This annual cost of the ith DG
is defined based on inflation and interest rates as follows [1]:

cmaintenance
i = cmaintenance

0 ×
1 + InfR
IntR

i−1
, 11

where cmaintenance
0 is the per DG annual maintenance cost.

2.2. Constraints. In the implementation of the proposed
method, some limitations must be satisfied. These limita-
tions are presented below [1–8] and [9]:

(i) The voltage limits

The voltage value of each bus must be within the allowed
range.

Vmin ≤Vi ≤Vmax, i = 1, 2,⋯,Nbus, 12
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where Vmin and Vmax are the minimum and maximum volt-
age value of the network buses and Nbus is the number of
network buses.

(ii) The current flow limit

The current value of each line must be within the
allowed range.

Imin ≤ Ik ≤ Imax, k = 1, 2,⋯,Nbranches, 13

where Imin and Imax are the minimum and maximum cur-
rent value of the network lines.

(iii) PV power limit

The production power of the photovoltaic source must
be within the maximum and minimum permissible limits.

0 ≤ PDGi ≤ PDGmax,i, i = 1, 2,⋯,NDG, 14

where PDGi is the power of i
th DG and PDGmax,i refers to the

maximum power size of ith DG.

(iv) Network radiality constraint

During the reconfiguration process, the radial state of
the network must be observed. The details of these are
described in Ref. [1].

2.3. Fuzzy Multiobjective Solution Method. The joint optimi-
zation of the objective function and restrictions forms the
cornerstone of this approach to tackling the multiobjective
optimization issue. A single-objective model of maximizing
the lowest degree of satisfaction among the membership
functions is created from the multiobjective function. Both
the objective functions and the constraints need to be defined
as membership functions in order to find the optimal point.
The μr for the rth fuzzy objective function is introduced in
the simultaneous multiobjective function technique. In other
words, a μ is defined for every function and can be defined
using Eq. (15). Based on Figure 1, an appropriate member-
ship function for each of the multiobjective functions should
be defined.

μr =
f r,max − f r

f r,max − f r,min
, 15

where μr denotes the fuzzy index of the r
th objective function,

f r,min and f r,max are the minimum and maximum value of rth

objective function, and f r is value of r
th objective function in

optimization process.
To determine the minimum value of an objective func-

tion, it is thus necessary to solve each individual objective
function. The minimum value for μ is determined by which
objective function approaches its utmost value, as stated in

Eq. (15). The mathematical representation of this correlation
is given by

μD x =min μ1 x , μ2 x ,⋯, μNr x , 16

max μD x , s t h x = 0, g x ≤ 0, 17

where Nr is the number of objective functions. h x and
g x define the equality and equality constraints of the opti-
mization problem. The multiobjective technique permits the
optimization of the objective functions and constraints
simultaneously. With this in mind, the constraints are
examined subsequent to the generation of variables and the
objective function calculation. In this study, the network
reconfiguration and allocation of the photovoltaic resources
in the distribution network is presented considering four
objectives mentioned in Section 2.1. Objectives have different
dimensions; therefore, they should be solved in a multiobjec-
tive framework. In Section 2.3, the structure of multiobjective
optimization based on the fuzzy multiobjective method is
described, which forms a fuzzy index for each of the objec-
tives based on the provided relations. Therefore, by minimiz-
ing the maximum of each index in the overall objective
function, the optimization problem is solved using the opti-
mization algorithm, and finally, the optimal variables includ-
ing the best installation location and the optimal capacity of
photovoltaic resources in the distribution network have been
determined.

3. Proposed Optimization Method

3.1. Introduction of CLO Algorithm. The clouded leopard is a
cat of average stature; and, it is neither large nor tiny.
Clouded leopards are reclusive, timid felines. In the observa-
tions, two natural behaviors of clouded leopards have been
documented as being more important than the rest [26].
Throughout the day, these animals are found relaxing on
the trees. Their primary activity occurs when they descend
from the trees at night to forage on the ground. These two
prominent behaviors exhibited by clouded leopards served
as the primary source of motivation for the clouded leopard
optimization (CLO) modeling [26].

3.1.1. Initialization of the CLO Positions. Each cloud leopard
in the CLO algorithm symbolizes both a member of the

�r

frfr,min fr,max

1

0

Figure 1: μ for the rth objective function.
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community and a potential answer. The choice factors are
represented by the clouded leopard’s location in the search
area. The components of each vector representing a clouded
leopard are comparable to choice factors. Using (18) [26],
the location of cloud leopards is initially set at random.

Xm xm,n = ln + randm,n un − ln ,m
= 1, 2,⋯,NL, n = 1, 2,⋯,ND,

18

where Xm represents the mth clouded leopard, xm,n is its nth

dimension, NL is the clouded leopards’ number, ND repre-
sents the decision variable number, randm,n are random
numbers chosen in the [1, 0], ln is the minimum limit and
un is the maximum limit of the variable n. and “• “refers
to the symbol of scalar multiplication.

Cloud leopards together constitute the CLO algorithm
population, which is shown mathematically using the rela-
tion matrix [26].

X =

X1

⋮

Xm

⋮
XNL

=

x1,1 ⋯ x1,n ⋯ x1,ND

⋮

xm,1 ⋯ xm,n ⋯ xm,ND

⋮

xNL,1 ⋯ xNL ,n ⋯ xNL,ND

,

19

where X represents the matrix of the CLO population. Each
cloud leopard is a selected solution, for NL cloud leopards
Xm, i = 1, 2,⋯,NL (number of algorithm’s population) are
the computed fitness values and can be defined using the
below vector by

F =

F1

⋮

Fm

⋮
FNL

=

F X1

⋮

F Xm

⋮

F XNL

, 20

where Fm denotes the fitness value derived from the mth

cloud leopard and F denotes the array of objective function
values.

It introduces the populace with the highest health value.
The location of the members of the population in the search
space is changed, and new fitness values are computed, revis-
ing the best population member in each run. The CLO algo-
rithm’s population located in the search area has been
updated using mathematical modeling of two clouded leop-
ard actions.

3.1.2. Exploration Phase. Due to its nighttime foraging
habits, the clouded leopard can travel to various locations
in pursuit of food. This behavior of the clouded leopard

denotes the investigation period, during which the popula-
tion’s members scour the various parts of the global search
area. The new posture of the clouded leopard is established
depending on the prey’s location, i.e., (21). The prior cloud
leopard [26] is replaced if the freshly formed position has a
higher objective function value by (22).

xP1m,n =
xm,n + randm,n pm,n − Im,n xm,n , FP

m < Fm,

xm,n + randm,n xm,n − Im,n pm,n , else,
21

Xm =
XP1
m , FP

m < Fm,

Xm, else,
22

where XP1
m is the mth cloud leopard proposed new position

according to phase 1 of CLO, xP1m,n is the nth dimension and
its fitness value is defined by FP

m, randm,n is numbers in the
[0,1] randomly, pm,n refers to the position of the chosen prey
for the mth clouded leopard and the fitness value of the prey
is FP

i , and Im,n is selected from the set {1,2}, randomly.

3.1.3. Exploitation Phase. Following a search and feasting on
the taken food, clouded leopards take a nap on branches.
The period of exploitation and local exploration is indicated
by the clouded leopards’ behavior, which leads them to move
closer to their spot. A spot is generated at random near each
leopard’s location to mimic this behavior. Following (24),
the prior location is replaced if a higher fitness value is
obtained [26].

xP2m,n = xm,n +
ln + randm,n un − ln

t
2 randm,n − 1 , 23

Xm =
XP2
m , FP2

m < Fm,

Xm, else,
24

where XP2
m is the proposed new position for the mth cloud

leopard according to phase 2 of CLO, xP2m,n is its nth dimen-
sion, and FP2

m is its fitness value.
The first run of the CLO algorithm is finished by chang-

ing the positions of all cloud leopards based on the first and
second stages. The CLO algorithm is then run a second
time, with each cycle changing the CLO population in
equations (21)–(24) until all iterations have been run. The
best potential solution saved during the algorithm cycle is
selected as the best solution following CLO’s complete
implementation. In Pseudocode 1, the CLO pseudocode is
displayed.

3.2. The ICLO. To avoid the algorithm from becoming stuck
in the local optimal, the adaptive inertia weight (IW) [39] is
introduced to the local search and exploitation phase. This
weight is adaptively modified based on the current agent’s
fitness state. IW is employed in this study’s utilization phase
to boost variety and prevent slipping into the local optimal.
Using IW, the following information is updated regarding
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Start CLO.
1. Input: The information of the problem.
2. Adjust the iterations number (T) and the algorithm population number (NL).
3. Initiate the clouded leopards position using Eqs. (15)-(16) and generation of the objective vector using Eq. (17)
4. For t = 1 : T
5. For m = 1 : NL
6. Phase 1: Exploration
7. Consider the target prey position randomly for mth leopard.
8. Compute the new position of the mth leopard using Eq. (21)
9. Update the mth leopard considering Eq. (22).
10. Phase 2: Exploitation
11. Compute the new position of the mth leopard considering Eq. (23).
12. Update the mth clouded leopard using (24).
13. end for
14. Print the best solution.
15. end for
16. Output: The best variable set achieved via CLO
End CLO.

Pseudocode 1: Pseudocode of the CLO algorithm.

Set the CLO parameter (NL and T)

Initiate the optimization problem information

Generation of the initial CLO population

Compute the fitness based on initial population

Phase 1)
select pi, randomly,

compute X
m

P1

update X
m

 (Eq. (23))

m < NL?

Start

No

Yes

Print the optimal variables setPhase 2)
select pi, randomly,

compute X
m

P2

update X
m

 (Eq. (25))

Save the best solution determined so far

t < T?

End

No

Yes

m = m+1

Updating the population based on the IW 
inertia weight method

m = 1
t = t+1

Compute the fitness and replace the new solution with the 
previous one if a better fitness is achieved

Initialization of the CLO position (sub-
section 3.1.1)

Exploration phase (sub-section 3.1.2)

Exploitation phase (sub-section 3.1.3)

Improved CLO (ICLO) (sub-
section 3.2)

Figure 2: ICLO flowchart.

7International Journal of Energy Research



the clouded leopard’s location during the second phase, or
the capture phase:

xP2m,n = IWm t xm,n +
ln + randm,n un − ln

t
2 randm,n − 1

25

The operator IWm t (IWm t ∈ 0, 1 ), which can be
adaptively changed in accordance with the present operator
location, determines the convergence modification. This fac-
tor is set to the highest value when the fitness of the factor is
greater than the average value of the entire population so
that they can converge to the best location as quickly as pos-
sible. On the other hand, for the present individual, it is

Initiate the initial population of CLO and random generation
of variables

Initial initialization of distribution network data and
equipment

Calculation of the OF for each member of the CLO
population

Defining the population member corresponding to the minimum
OF as the best solution

Update the CLO population and calculate the OF for updated
population

Is convergence criteria met?

Start

End

No

Yes

Determining the best solution by evaluating and comparing the OF and
replacing it with old solution if a lower OF is achieved

Print the optimal variables set

Updating population of CLO based on IW inertia weight method
and calculation of the OF for updated population

Determining the best solution by evaluating and comparing the OF and
replacing it with old solution if a lower OF is achieved

Figure 3: Flowchart of the ICLO implementation in problem-solving.
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given a lesser number when its health is worse than normal.
Lower weight values correspond to poorer performance,
which lessens the impact of changing the leopards’ location.
This operator aids the algorithm’s ability to perform better
local searches and avoid early consensus and can be
expressed as the following equation [39] using the updated
Versoria mapping function:

IWm t =

1 −
1

φ am t − 1/2 2 + 2
, if am t ≤ 0 5,

1
φ am t − 1/2 2 + 2

, otherwise,

26

where am t ∈ 0, 1 is the clouded leopard’s ranking in all
clouded leopards between the lowest and mean fitness,
which is presented as follows:

Fave t = 〠
NL

m=1

Fm t
NL

,

Fmin t =min F1 t , F2 t ,⋯, FNL
t ,

27

and in relation to (15)

am t =
Fm t − Fmin
Fave t − Fmin

, 28

where Fm t means the fitness of the mth clouded leopard at
iteration t and Fave t and Fmin t are the mean value and
lowest value of all NL size populations’ fitness.

Therefore, the proposed optimization algorithm solves
the photovoltaic allocation problem by minimizing the
objective function and considering the constraints and
determines the optimal variables. According to the presenta-

tion of the CLO formulation and its improvement strategy,
its flowchart is presented in Figure 2.

3.3. Implementation of the ICLO. In the proposed method,
decision-making variables are represented as X vectors,
including tie lines or open lines of the network, as well as
the location and capacity of photovoltaic energy sources as
shown below.

X = Tiei1,⋯, TieiL, Lo DGi
1,⋯, Lo DGi

m, Size DG
i
1,⋯, Size DGi

m

29

The flowchart of ICLO in solving the multiobjective and
coordinated reconfiguration and allocation of PV energy
resources in the distribution network is shown in Figure 3.
Also, the steps of implementing the ICLO to solve the prob-
lem are presented as follows:

Step 1. Initialization of data for the delivery network and
devices. In this stage, the optimization algorithm is updated
with power data, network line information, the number of
connected lines, solar resource minimal and maximum
capacities, and cost data.

Step 2. Initializing the CLO population and creating fac-
tors at random. Using trial and error and the writers’ exper-
tise, the algorithm’s maximal repetition and population
number are established in this stage. Additionally, each
group of factors is decided at random based on the algo-
rithm’s population size, including the equipment’s capability
and the equipment’s limitations.

Step 3. Determine the goal function for each CLO com-
munity participant. Each collection of factors associated
with objective function value is determined.

Step 4. Designating the population member that corre-
sponds to the goal function’s lowest value as the ideal
answer. It is decided which individual achieves the greatest
goal function.

1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22
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23 24 25
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Figure 4: Single-line diagram of 33-bus network.
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Step 5. Using CLO to update the algorithm population.
The population of the program is changed in this phase to
produce new variables.

Step 6. Determine the goal function for the CLO’s
revised population from Step 5.

Step 7. Assessing and contrasting the goal function in
steps 4 through 6 and then changing the answer to find the
best one. The number acquired in Step 4 is changed if the
value in Step 6 is higher.

Step 8. The IW inertia weight method-based CLO popu-
lation update. The population of the program is changed in
this phase to produce new variables.

Step 9. Determine the goal function using the revised
population from Step 8.

Step 10. Choose the best answer by assessing and con-
trasting the goal function in Steps 7 and 9 and then changing
the answer. If the value acquired in Step 6 is superior to the
value of the goal function in Step 9, it is substituted.

Table 1: The results of single-objective optimization of different cases for a 33-bus distribution system.

Scenarios Function
Optimal

configuration
Size and location
of DG (MW)

Minimum
voltage (p.u.)

Minimum
VSI (p.u.)

Losses
(kW)

LF
(%)

DG cost
(M$)

Base case — 33, 34, 35, 36, 37 — 0.9131 0.6960 202.68 19.61 —

Reconfiguration

Losses 32, 14, 9, 37, 7 — 0.9378 0.7751 139.55 19.77 —

Voltage
stability

14, 7, 9, 27, 32 — 0.9398 0.7816 143.3 18.78 —

Loading 32, 20, 28, 13, 11 — 0.9294 0.7470 184.74 15.4 —

DG allocation

Losses 33, 34, 35, 36, 37
(10) 0.81
(24) 0.88
(30) 1.04

0.9606 0.8526 73.71 6.39 1.91

Voltage
stability

33, 34, 35, 36, 37
(23) 1.92
(29) 1.72
(17) 1.82

0.9945 0.9806 202.28 23.82 3.67

Loading 33, 34, 35, 36, 37
(14) 0.85
(30) 0.74
(24) 0.88

0.9583 0.8443 75.80 8.88 1.73

DG allocation after
reconfiguration

Losses 32, 14, 9, 37, 7
(25) 0.76
(8) 1.12
(29) 1.18

0.911 0.9765 61.54 7.97 2.14

Voltage
stability

14, 7, 9, 27, 32
(9) 1.77
(31) 1.95
(15) 1.75

0.9968 0.9976 228.91 18.74 3.84

Loading 32, 20, 28, 13, 11
(8) 1

(15) 0.42
(25) 1.62

0.9732 0.8988 61.85 6.52 2.25

Reconfiguration after DG
allocation

Losses 7, 14, 8, 36, 28
(10) 0.81
(24) 0.88
(30) 1.04

0.9736 0.8986 57.76 8.44 1.91

Voltage
stability

13, 22, 31, 19, 8
(23) 1.92
(29) 1.72
(17) 1.82

0.9999 1.0001 318.39 27.7 3.83

Loading 36, 23, 21, 11, 20
(14) 0.85
(30) 0.74
(24) 0.88

0.9477 0.8075 112.39 7.48 1.73

Simultaneous reconfiguration
and WT allocation

Losses 30, 28, 6, 11, 14
(25) 1.08
(32) 0.69
(8) 0.79

0.9698 0.8859 54.2 6.88 1.8

Voltage
stability

9, 17, 21, 4, 18
(29) 2
(9) 2
(30) 2

1 1.0076 286.92 20.44 4.2

Loading 5, 13, 6, 16, 10
(8) 1.2
(29) 1.55
(32) 0.46

0.9752 0.9049 62.87 5.1 2.26
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Step 11. Have the convergence conditions—achieving
the goal function’s lowest value and running the algorithm
through its most iterations—been met? Move 5 is the next
move to take if the answer is affirmative.

Choosing the factors that best match the objective func-
tion as the overall optimum answer, publishing the findings.

Step 12. Stop.

4. Simulation Results

In this section, the simulation results of multiobjective and
coordinated reconfiguration and allocation of photovoltaic
(PV) energy resource are presented in radial distribution
networks to minimize power losses, improve the voltage sta-
bility index, enhance the network loading factor, and mini-
mize the cost of energy resource using the ICLO. On bus
networks that adhere to IEEE standards 33 and 69, the sug-
gested approach is used. The efficacy of ICLO has been com-
pared with standard CLO, PSO, and MRFO techniques.
Each program is said to have a population of 70, a maximum
iteration of 300, and a maximum of 25 separate runs. The
problem formulation is performed utilizing the MATLAB
2020b program. The proposed methodology includes differ-
ent cases of application of reconfiguration, and photovoltaic
energy resources are presented as follows:

Case 1. Without reconfiguration and photovoltaic energy
resource

Case 2. Reconfiguration only
Case 3. Allocation of photovoltaic energy resource
Case 4. Allocation of photovoltaic energy resources after

reconfiguration
Case 5. Reconfiguration after the allocation of photovol-

taic energy resources
Case 6. Coordinated reconfiguration and allocation of

photovoltaic energy resources

4.1. Results of the 33-Bus Test System. The outcomes of
applying the suggested approach to the 33-bus distribution

system are shown in this part. Figure 4 displays the 33-bus
system’s single-line schematic. This system’s line informa-
tion is taken from [40]. The overall operating capacity on
this network is 3.72MW and 2.3MVAr; and it comprises
of the 37 lines, including 32 sectionalizing switches and 5
tie switches, on the 33-bus network [40]. The maximum
number of PV DG system locations is considered 3 nodes,
with each PV system assumed to have a capacity of 2MW.
As a result, the ICLO chooses the best installation location
and capacity for PV resources within the distribution net-
work. It also chooses the best situation of the tie lines.
Finally, by determining the optimal variables of the problem,
the value of different objectives including power losses, min-
imum VSI, minimum bus voltage of the network, network
loading value, and the total cost of photovoltaic energy
resources has been determined. According to [1], the invest-
ment cost for a PV source per MW in this research is consid-
ered $318,000.

4.1.1. Results of Single-Objective Optimization. Table 1 pro-
vides a comprehensive overview of the outcomes derived
from different optimization scenarios for a 33-bus distribu-
tion system. In Case 1, representing the baseline without
reconfiguration and PV energy resource allocation, the sys-
tem exhibits power loss, VSI, and LF values of 202.68 kW,
0.6960 p.u., and 19.61%, respectively. As we delve into subse-
quent cases, the impact of varying strategies becomes
evident.

(i) Case 2 (reconfiguration only): introducing reconfig-
uration reduces power losses to 139.55 kW, but the
trade-off is a slight increase in LF to 19.77%. This
emphasizes the delicate balance required when opti-
mizing for specific objectives

(ii) Case 3 (allocation of PV energy resources): focusing
on PV allocation reduces losses further to 73.71 kW,
showcasing the potential of renewable energy

Table 2: The results of multiobjective optimization of different cases for the 33-bus distribution system.

Case Definition
Optimal

configuration
Location and size of

DG (MW)
Minimum
voltage

Minimum
VSI

Power
loss

LF
DG cost
(M$)

1 Base case
33, 34, 35, 36,

37
— 0.9131 0.6960 202.68 19.61 —

2 Reconfiguration 32, 14, 9, 37, 7 — 0.9378 0.7751 139.55 19.77 —

3 DG placement
33, 34, 35, 36,

37

(10) 0.34
(16) 0.35
(31) 0.61

0.9549 0.8325 97.08 9.49 0.914

4
DG placement after
reconfiguration

32, 14, 9, 37, 7
(31) 0.53
(14) 0.235
(15) 0.32

0.95600 0.8542 82.2 11.55 0.764

5
Reconfiguration after DG

placement
6, 9, 14, 30, 37

(31) 0.53
(14) 0.235
(15) 0.32

0.9584 0.8487 81.82 12.15 0.764

6
Simultaneous reconfiguration and

DG placement
7, 9, 14, 30, 37

(10) 0.057
(33) 0.77
(30) 0.247

0.9695 0.8843 80.27 12.18 0.755
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integration. However, the challenge is apparent in
terms of LF, which increases to 8.88%

(iii) Case 4 (allocation of PV energy resources after
reconfiguration): integrating reconfiguration and
PV allocation results in a balance, with power losses
at 61.54 kW and LF at 7.97%. This demonstrates the
synergy between these strategies

(iv) Case 5 (reconfiguration after PV allocation): when
reconfiguration is performed after PV allocation,

the system aims for VSI maximization. This leads
to increased losses (228.91 kW) and a higher LF
(18.74%). This highlights the need for a coordinated
approach

(v) Case 6 (coordinated reconfiguration and PV alloca-
tion): the most comprehensive scenario involves
simultaneous reconfiguration and PV allocation.
This achieves the lowest losses at 54.20 kW and a
reasonable LF of 6.88%, but at the cost of a higher
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Figure 6: 33-bus network VSI for different cases using the ICLO.
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Figure 5: 33-bus network voltage profile for different cases using the ICLO.
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VSI (1.0076). The trade-offs between these objec-
tives are evident, emphasizing the need for a holistic
and coordinated optimization approach

In summary, the table underscores the complexity of
optimizing a distribution system with multiple objectives.
The chosen strategy significantly impacts various perfor-
mance indices, and a trade-off analysis is essential for mak-
ing informed decisions in designing an efficient and
resilient distribution system.

4.1.2. Multiobjective Optimization Results. Table 2 presents
the summary of the simulating results of the multiobjective
modeling using the ICLO. Numerous instances of network
efficiency improvement have been carried out utilizing fuzzy
methods and multiobjective optimization. The ICLO is used
for all improvements in various situations, and the four-goal
functions of power loss mitigation, voltage stability improve-
ment, load factor improvement, and PV cost reduction are
taken into account. Table 2 lists the outcomes of the IEEE
33-bus network improvements. According to the multiob-

jective problem solution, the working point of the network
is always in optimum conditions, and all wanted objective
functions have appropriate conditions, as can be seen in
Table 2. As can be seen, Case 2’s change alone is unable to
narrow the gap between the network’s working point and
ideal conditions, but in other instances where photovoltaic
energy sources are present, the network’s operating condi-
tions are ideal. Except for Case 2, every scenario has losses
under 100 kW, a lowest VSI of over 0.83 p.u., and a lowest
minimum voltage of over 0.95 p.u. Also, the results showed
increasing network loading in Case 2 (reconfiguration only).
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Figure 7: Convergence process of different algorithms in Case 5 for 33-bus network.

Table 3: The results of multiobjective optimization of the different algorithms for the 33-bus distribution system.

Item/method ICLO CLO PSO MRFO

Optimal configuration 7, 9, 14, 30, 37 7, 9, 13, 32, 37 6, 9, 14, 30, 37 7, 9, 13, 17, 28

Location (bus) and size of DG (MW)
(10) 0.057
(33) 0.77
(30) 0.247

(15) 0.491
(18) 0.009
(31) 0.602

(12) 0.280
(15) 0.199
(31) 0.614

(8) 0.093
(14) 0.229
(31) 0.792

Minimum VSI (p.u.) 0.8843 0.8576 0.8643 0.8441

Power loss (kW) 80.27 82.67 81.88 82.97

LF (%) 12.18 11.62 11.57 11.28

DG cost (M$) 0.755 0.773 0.767 0.781

OF -0.6024 -0.5921 -0.5960 -0.5906

Table 4: The results of statistical analysis of a different algorithm
for the 33-bus distribution system.

Algorithm/index Best ($) Worst ($) Mean ($) Std ($)

ICLO -0.6024 -0.5731 -0.5892 -0.0474

CLO -0.5921 -0.5207 -0.5675 -0.0785

PSO -0.5960 -0.5631 -0.5822 -0.0503

MRFO -0.5906 -0.5439 -0.5746 -0.0617
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Therefore, according to Case 6 (simultaneous reconfigura-
tion and DG placement), the network’s working point has
improved as a result of multiobjective problem-solving,
and the network’s efficiency has improved overall by more
increasing the voltage minimum and stability and more
reducing the power losses and also DG cost. The minimal
voltage value, minimum VSI value, power loss, LF, and cost
of PV resources are each 0.9695 p.u., 0.8843 p.u., 80.27 kW,
12.18%, and 0.755M$ in Case 6, respectively. As a result,
the optimization algorithm in Case 6 has obtained the
highest performance of the 33-bus distribution network
by concurrently using the restructuring and allotment of
photovoltaic energy resources.

It can be seen in Table 2 that, in general, the various
objectives in all cases have been improved compared to Case
1 (the base case of the network without reconfiguration or
photovoltaic sources). Also, the amount of these improve-
ments for Case 6, which is the simultaneous use of reconfig-
uration and photovoltaic sources, has been better in the set
of all objectives. On the other hand, the value of minimum
voltage and minimum VSI has been obtained more. How-
ever, the total objectives should be considered. Of course,
the proposed methodology has improved voltage conditions
and also other objectives, i.e., reducing power losses and
reducing network loading.

The network voltage profile in different cases are shown
in Figure 5. As it is known, different cases have led to the
improvement of the voltage profile of the 33-bus distribution
network. As can be seen, based on the voltage profile curve
and also the numerical results of Table 2, Case 6 has a higher
minimum voltage value (0.9695 p.u.) than the rest of the
cases. This means that Case 6 has further improved the volt-
age profile of 33-bus network.

The changes of the VSI for different cases are depicted in
Figure 6. As it is clear, the voltage stability index is enhanced
for different cases compared to the base 33-bus network.

According to Figure 6, it can be seen that Case 6 has
obtained a higher value of the minimum VSI (0.8843 p.u.)
compared to other cases by simultaneously using the rear-
rangement and allocation of photovoltaic resources.

4.1.3. ICLO Comparison (33-Bus Network). The effectiveness
of the ICLO in handling Case 6 has been contrasted with tra-
ditional CLO, PSO, and MRFO techniques in this part.
Figure 7 depicts the convergence of various algorithms and
demonstrates the ICLO’s supremacy in reaching a reduced
objective function value with a higher convergence speed
in fewer convergence iterations. Contrarily, it is evident from
the conventional CLO method’s convergence process that
enhancing its performance in the form of the ICLO has
resulted in the fast accomplishment of the optimum solution
and avoided the enhanced algorithm’s early convergence.
Therefore, based on the weight of the adaptive inertia, the
discovery power of the traditional CLO has increased, and
thus it is not trapped in the local optimum like other algo-
rithms and has been able to achieve a lower objective func-
tion value, which has resulted in achieving better objectives
compared to other algorithms.

Table 3 provides the exact outcomes of various methods
used to solve Case 6. As shown in Table 3, the ICLO
achieved the lowest power losses and the greatest VSI and
LF values in comparison to other techniques, and it also
obtained a superior solution value with a reduced objective
function. As shown in Table 4 of the findings, the ICLO is
better at achieving statistical analysis metrics than other
approaches and is better able to boost the efficiency of the
33-bus network.

4.2. Results of the 69-Bus Test System. The findings of the
suggested approach for the 69-bus dispersal system are given
in this part. Figure 8 depicts the 69-bus system’s single-line
schematic. This system’s line information is taken from
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Figure 8: Single-line diagram of the 69-bus network.
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[41]. This network’s overall operating capacity is 3.802MW
and 2.696MVAr. There are 73 lines total in the 69-base net-
work, including 68 sectionalizing switches and 5 connection
lines [41]. Three photovoltaic generators with a combined
peak output of 3MW have been erected for this research.
As a result, the ICLO chooses the best position, capacity,
and power factor for photovoltaic resources within the dis-
tribution network in addition to the best amount of connec-
tion lines. The values of each power loss goal, the VSI index,
the load factor, the revenue from the selling of resource
power, and the cost of resources have all been computed
by effectively finding the decision factors. Based on Ref.
[1], the funding cost for a photovoltaic source per MW in
this research is $318,000.

4.2.1. Results of Multiobjective Optimization. Table 5 lists the
outcomes of the various instances using a multiobjective
strategy and the ICLO. According to the simulation results
in the initial condition, 224.72 kW, 0.6844 p.u., and 20.23%,
respectively, are the values for power loss, minimal VSI,
and LF. According to the multiobjective problem solution,
the working point of the network is always in ideal condi-
tions, and all wanted objective functions are always in
appropriate conditions, as shown by the findings of
Table 5. As can be seen, network restructuring by itself is
unable to operate at a place that is even remotely near ideal
circumstances, but in other situations, PV implementation
enhances network performance. The lowest VSI is greater
than 0.81 p.u., the lowest minimum voltage is greater than
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Figure 9: 69-bus network voltage profile for different cases using the ICLO.

Table 5: The results of multiobjective optimization of different cases for the 69-bus distribution system.

Case Definition
Optimal

configuration
Location and size
of DG (MW)

Power
loss (kW)

Minimum
VSI (p.u.)

Minimum
voltage (p.u.)

LF
(%)

DG cost
(M$)

1 Base case 69, 70, 71, 72, 73 — 224.72 0.6844 0.9092 20.23 —

2 Reconfiguration 10, 19, 14, 44, 51 — 107.46 0.7855 0.9414 17.08 —

3 DG placement 69, 70, 71, 72, 73
(3) 1.46
(61) 0.69
(68) 1.23

81.99 0.9054 0.9752 8.766 2.37

4
DG placement after
reconfiguration

10, 19, 14, 44, 51
(17) 0.13
(64) 0.36
(61) 0.47

64.48 0.8167 0.9506 10.71 0.667

5
Reconfiguration after DG

placement
14, 15, 21, 43, 62

(3) 1.46
(61) 0.69
(68) 1.23

60.77 0.8144 0.9500 6.80 2.37

6
Simultaneous reconfiguration

and DG placement
10, 14, 18, 45, 53

(3) 0.055
(4) 0.006
(61) 0.942

63.43 0.8246 0.9525 11.89 0.705
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0.95 p.u., and the losses are all less than 81 kW, except the
change alone. Therefore, it can be said that the network
working aspect has been enhanced by a multiobjective
method solution. Case 5 displays the greatest network per-
formance when compared to the other instances, with the
lowest voltage, VSI, power loss, LF, and cost of PV resources
being equivalent to 0.9525 p.u., 0.8246 p.u., 63.43 kW,
11.89%, and 0.705M$, respectively. As a result, the optimi-
zation program in Case 5 has obtained the highest perfor-
mance of the 69-bus distribution network through a

synchronous and integrated strategy based on restructuring
and PV allotment.

The voltage profile of the 33-bus network in different
cases are plotted in Figure 9. According to Figure 9, the volt-
age profile of the network is improved in different cases in
comparison with the base network.

The variations of the VSI for different cases are depicted
in Figure 10. As shown as in Figure 10, the voltage stability
index is improved for different cases compared to the base
33-bus network.
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4.2.2. ICLO Comparison (69-Bus Network). In this section,
the performance of ICLO to solve Case 5 for the 69-bus net-
work has been verified with the CLO, PSO, and MRFO algo-
rithms. The convergence curve of different algorithms is
shown in Figure 11, which clears the better convergence per-
formance of the ICLO in achieving a lower objective function
with higher convergence speed. Based on the convergence
process of the conventional CLO, it is clear that enhancing
its capability in the form of the ICLO has prevented the pre-
mature convergence of the improved algorithm.

The results obtained from different algorithms in solving
Case 5 for the 69-bus network are presented in Table 6. As
given in Table 6, the ICLO, compared to other methods,
obtained a lower objective function and reached the lowest
losses and the highest minimum VSI and LS values. Also,
the ICLO achieved better statistical analysis indices, accord-
ing to Table 7, compared to other methods.

5. Conclusion

In this paper, a multiobjective framework was proposed for
the reconfiguration and allocation of photovoltaic energy
sources in distribution networks to minimize the power
losses, boost network load factor, improve voltage stability
index, and minimize the cost of energy resources. The ICLO
was used to identify the network open switches, photovoltaic
installation location, and size in distribution networks. In
this research, the nonlinear inertia weight reduction tech-
nique has been used to overcome the early convergence
problem of the traditional CLO. The outcomes of the
research are presented as follows:

(i) The results demonstrated that single-objective
optimization did not result in a balance between

various objectives and, in some cases, actually
diminished some objectives

(ii) Based on ICLO-based multiobjective strategy, by
making compromises between all objectives, the
network performance is more improved compared
to single-objective optimization. Also, all the tar-
gets have been significantly improved compared
to their values in the basic state of the network

(iii) Case 6 including the reconfiguration and allocation
of photovoltaic resources in the network has the
best performance, and the weakest performance is
the case of only network reconfiguration

(iv) In comparison to the other cases, Case 6 involves
the reconfiguration and allocation of PV in distri-
bution networks to achieve the best solution, the
least amount of power loss, the greatest possible
minimal VSI, and the least amount of LF

(v) In Case 6, losses and LF dropped for the 33-bus
network by 60.40% and 37.89% and for the 69-bus
network by 71.77% and 41.23%

(vi) In comparison to the basic distribution network,
the minimum VSI for the 33-bus and 69-bus net-
works rose by 27.05% and 20.49%, respectively

(vii) The superiority of the ICLO is proved to solve the
Case 6 to obtain the better objective function value
(lowest value) as well as better statistical criteria in
comparison with the traditional CLO, PSO, and
MRFO algorithms

(viii) To achieve better objectives value, the ICLO’s
dominance over traditional CLO, PSO, and MRFO
techniques in handling Case 6 was demonstrated

The lack of access to real data and the costs of devel-
oping photovoltaic energy sources is one of the limitations
of the research. For the future work, integrated multiobjec-
tive reorganization with photovoltaic/wind/battery energy
microgrid optimization in distribution networks with the
aim of improving the reliability and power efficiency indi-
cators of the network is proposed.

Table 7: The results of statistical analysis of the different
algorithms for the 69-bus distribution system.

Algorithm/index Best ($) Worst ($) Mean ($) Std ($)

ICLO -0.6496 -0.6343 -0.6437 -0.0339

CLO -0.6442 -0.6215 -0.6394 -0.0617

PSO -0.6483 -0.6326 -0.6411 -0.0372

MRFO -0.6397 -0.6204 -0.6355 -0.0643

Table 6: The results of multiobjective optimization of the different algorithms for the 69-bus distribution system.

Item/method ICLO CLO PSO MRFO

Optimal configuration 10, 14, 18, 45, 53 10, 14, 19, 46, 53 10, 14, 19, 22, 44 10, 13, 20, 47, 73

Location (bus) and size of DG (MW)
(3) 0.055
(4) 0.006
(61) 0.942

(5) 0.046
(25) 0.139
(61) 0.781

(61) 0.849
(65) 0.107

(22) 0.226
(43) 0.081
(61) 0.671

Minimum VSI (p.u.) 0.8246 0.8119 0.8024 0.7942

Power loss (kW) 63.43 66.28 67.98 73.03

LF (%) 11.89 11.50 11.38 11.19

DG cost (M$) 0.705 0.679 0.671 0.687

OF -0.6496 -0.6442 -0.6483 -0.6397
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