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Up to 80% of the electrical energy is consumed by pump groups in water purification plants. Optimizing the scheduling of water
intake-supply pump groups is crucial for saving electrical energy and reducing carbon dioxide emissions while ensuring water
supply and security requirements are met. Herein, an intelligent collaborative optimal scheduling method is proposed for the
water intake pump groups, clean-water reservoirs, and water supply pump groups. A long short-term memory (LSTM)
network is applied to predict the flow of the water supply pump group, and a data-driven approach is used to plan the flow of
the water intake pump group and model the working characteristics of working pump configurations. Furthermore, based on
the dynamic programming (DP) algorithm, the optimal scheduling scheme of the water intake-supply pump groups as well as
the working pump configuration at each moment can be obtained. The proposed approach dynamically updates data on an
hourly basis to enhance the precision of collaborative optimal scheduling outcomes. The experimental results of long-term
operation showed that pump efficiency was increased by 10.68% and 10.70% of electric energy was effectively saved as
compared to the results of previous manual scheduling. This study provides a solution for energy conservation and efficiency
enhancement of multiple energy-consuming equipment and carbon emission reduction.

1. Introduction

According to data analysis, the world’s energy consumption
in 2050 will increase by about 50% compared with that in
2020 [1]. Population growth, urbanization, energy security
policies, and growing production and consumption patterns
have greatly affected the demand for sustainable energy [2].
To mitigate the energy crisis and climate change, many
countries around the world utilize renewable materials and
systems to minimize greenhouse gas emissions [3]. The elec-
trical energy consumption of water purification plants
accounts for more than 4% of urban electrical energy con-
sumption [4], and up to 80% of this is consumed by the
water intake-supply pump groups [5]. Generally, such pump
groups are configured based on their maximum flow and
head demand under the most unfavorable conditions. Cur-

rent working pump configurations are generally based on
subjective experience, lacking theoretical guidance and rely-
ing on potentially arbitrary scheduling judgments of individ-
ual engineers. This means that pumps are not necessarily
operating at maximum efficiency [6]. The optimization
objectives of intelligent cooperative optimal scheduling of
water intake and water supply pumping stations are mainly
power consumption and pump switching times [7, 8].
Amongst them, the number of pump switching is usually
an easy to be ignored optimization goal. If the time interval
between the operation and stop of the pump is too small, it
could lead to overheating of the motor unit, water hammer
phenomenon in the transmission pipeline, pipe explosion
accident, and other problems [9], which would shorten the
service life of the pump, motor, and transmission pipeline
[10]. Therefore, the pump switch number should also be
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evaluated during optimization. Moreover, these optimizing
objectives should be developed under the constraints of the
main pipe pressure and the water levels of clean-water reser-
voirs [11]. The intelligent collaborative optimal scheduling
for the water intake-supply pump groups can be divided into
four parts, which are the prediction of water demand flow of
the water supply pump group, the planning of water demand
flow of the water intake pump group, the analysis of pump
combination characteristics, and the dispatching decision
optimization.

The prediction of the flows in the water supply pump
group is the basis of water demand flow planning of the
water intake pump group. Moreover, the flow in a supply
pump group is mainly determined by the water consump-
tion of residents. In recent years, both domestic and foreign
scholars have applied various algorithms to predict residen-
tial water demand. Herrera et al. [12] applied support vector
regression (SVR), multivariate adaptive regression spline
(MARS), projection pursuit regression (PPR), and random
forest (RF) algorithms to the field of urban water demand
prediction and compared their results. Although the SVR
algorithm has a higher prediction accuracy compared to
the other three algorithms, it often lags behind in predicting
the actual values for most of the time nodes. Antunes et al.
[13] applied the artificial neural network (ANN), SVR, RF,
k-nearest neighbor (KNN), and autoregressive integrated
moving average (ARIMA) algorithms to the field of short-
term water demand prediction and compared their results.
They concluded that the prediction accuracy of the ARIMA
algorithm was better than that of machine learning algo-
rithms. However, certain nodes with significant errors neces-
sitate real-time monitoring and periodic tracking by
researchers, rendering the approach challenging to imple-
ment in practical settings. Pesantez et al. [14] explored the
RF, ANN, and SVR algorithms to predict residential water
demand through lag demand, seasonal changes, weather,
and household characteristics. The results demonstrated that
RF and ANN exhibited higher prediction accuracy com-
pared to SVR. However, the requirements of these methods
are high for the type and scale of the training data, making
their practical application challenging. Considering engi-
neering practicalities, the long short-term memory (LSTM)
network can be employed to learn the historical scheduling
data of water purification plants, which affects the flow of
the water supply pump groups. An LSTM network can
memorize the periodic characteristics of a time series
through its gate nodes, resulting in more accurate predictive
results [15]. In addition, LSTM algorithm also shows better
performance compared with other algorithms in other fields
of prediction problems [16, 17].

The optimal operation of an intake pump station can be
achieved through water demand flow planning, which deter-
mines the energy-saving benefits of intelligent cooperative
operation between the intake and supply pump stations. In
recent years, both domestic and foreign scholars have pre-
dicted the water demand flow of intake pump stations
through flow balance and water level control to reduce the
electrical energy consumption of intake pump stations dur-
ing operation [18, 19]. Through data analysis, Shan [20]

found that the variation of the daily water consumption of
urban residents was presented as peak and trough periods,
but such a simple division was insufficiently accurate. Xiang
[21] divided a daily water volume into four periods by
adjusting the level of a clean-water reservoir. This improved
the accuracy of water demand flow planning for the intake
pump station, but it neglected the influence of seasonal
changes on daily water demand. Therefore, this paper makes
full use of the regulation and storage capacity of a clean-
water reservoir. The clean-water reservoir is a water treat-
ment structure in the water supply system to regulate the
uniform water supply of the water plant and meet the
uneven water supply of users. The adjustment and storage
capacity of a clean-water reservoir can provide a buffer for
the flow changes of the water intake pump group and water
supply pump group. The flow of the intake pump group over
a 24-hour period is planned along with the water level of the
clean-water reservoir [22]. The working conditions of the
intake pump group can be divided into three categories—peak
water consumption periods, trough water consumption
periods, and ordinary water consumption periods—based
on seasonal and diurnal flow changes in the supply pump
group. The flow of the intake pump group is designed to
be as stable as possible to avoid frequent switching of the
pumps and to enhance safety.

After determining the flow of the water intake-supply
pump groups, it is crucial to model the working characteris-
tics of the pumps. In an intake or supply pump group, the
pump station basically increases the pumping flow to meet
the needs of daily users by means of multiple pumps in par-
allel [23, 24]. The dynamics of working pump group config-
urations are not equivalent to a linear combination of the
dynamics of each working pump due to upgrades and repairs
over the years. Thus, working pump configurations exhibit
different dynamics, which would change with long-term
operation. It is necessary to accurately determine the dynam-
ics of the working pump configurations. For configurations
that only contain constant frequency pumps, it is necessary
to consider the nonlinear relationship between the main pipe
pressure and the water flow/electrical energy consumption.
For variable frequency drive (VFD) pump configurations,
pump frequency is an additional consideration. The data-
driven approach is effective in regularly modeling this non-
linear relationship by using the latest operational data from
working pump configurations to manage the impact caused
by upgrades and repairs over the years. The dispatching deci-
sion optimization is based on the existing water supply
pump groups’ demand flow prediction results, intake pump
groups’ demand flow planning results, and pump combina-
tion working characteristic model, considering multiple
optimization objectives, through the decision optimization
method to obtain the intelligent collaborative optimal sched-
uling for the water intake-supply pump groups.

In addition, the scheduling decision optimization prob-
lem has also attracted the attention of scholars in various
fields, such as active distribution network [25], intercon-
nected microgrids [26], smart cities [27], electric vehicles
[28, 29], and ship power systems [30]. In recent years, both
domestic and foreign scholars have employed genetic

2 International Journal of Energy Research



algorithms (GAs) [22, 31], deep reinforcement learning [32],
model predictive control [33], artificial fish swarms [34], and
other algorithms [35] to solve the optimal scheduling prob-
lem of water pumping stations. Li Jishan and Weiping [36]
obtained a scheduling scheme for optimal operation by
using self-optimization simulation technology and dynamic
programming theory combined with detailed computer
analysis and found this provided economic benefits. Barán
et al. [37] proposed the Pareto evolutionary intensity algo-
rithm, which further reduced power costs, maintenance
costs, the maximum power peak, and the variation in the liq-
uid level in the reservoir. The aforementioned methods have
achieved good results in optimizing the scheduling of pump
stations, but the importance of optimizing the switching
times of pumps has generally been ignored. As a result, the
application of scheduling plans recommended by such opti-
mization methods may cause additional power loss or even
affect the operational safety and service life of pumps.
Compared to the above-mentioned methods, the dynamic
programming (DP) algorithm is easier to implement in
practical engineering [38, 39]. Intelligent collaborative opti-
mal scheduling methods based on the DP algorithm can
optimize not only electrical energy consumption but also
the pump switch number. Additionally, the DP algorithm
can more efficiently identify global optimal solutions and is
easily applicable to water purification plants with different
engineering environments.

Previous scholars usually focus on the single optimiza-
tion of the water intake pump groups or water supply pump
groups and have not fully considered the interaction of each
other and lack of thinking about the overall system. This
manuscript fully explores the relationship between the
clean-water reservoir and the water intake-supply pump
groups and designs the intelligent collaborative optimal
scheduling for the water intake-supply pump groups. This
manuscript proposes an intelligent collaborative optimal
scheduling method for the water intake-supply pump
groups and compares the experimental results to actual
scheduling results. More specifically, an intelligent collabo-
rative optimal scheduling method that buffers the flow
changes of the water intake and supply pump groups using
a clean-water reservoir is proposed to minimize electrical
energy consumption and the number of pump switches. A
predictive model based on an LSTM network is proposed
to predict the flow of the water supply pump group, and a
method is proposed to plan the flow of the water intake
pump group. A DP algorithm is then used to obtain an opti-
mal scheduling plan for the water intake-supply pump
groups. Finally, the numerical results of the proposed
methods are analyzed and discussed.

2. Methods

The flow in a water supply pump group is first predicted
using an LSTM network over a period of 24 hours. The flow
in the water intake pump group is then planned for 24 hours
along with the water level of a clean-water reservoir based on
the flow of the water supply pump group and engineering
experience. Secondly, nonlinear models of working pump

configurations are established according to historical data.
Finally, intelligent collaborative optimal scheduling objec-
tives are established to minimize the electrical energy con-
sumption and the pump switch number using the
constraints of the flow in the water intake-supply pump
groups, the main pipe pressure, and the water level of the
clean-water reservoir. An optimal schedule for the water
intake-supply pump groups, which specifies the working
configurations of pumps at each time, can be obtained using
the DP algorithm.

2.1. Flow Prediction of a Water Supply Pump Group. The
water temperature and main clean water pipe pressure are
important factors affecting the flow in a water supply pump
group based on the analysis of historical data. Since an
LSTM network can memorize and learn features of long-
term data, a predictive model is established to predict the
flow in the water supply pump group based on an LSTM
network. The input variables include decision variables
(the flow in the water supply pump group, the water temper-
ature, and the main clean water pipe pressure in the past 24
hours) and feedback correction. The predicted flow in the
supply pump group in the next 24 hours is corrected by
the difference between the predicted and actual flow in the
supply pump group in the past 24 hours. The output variable
is the flow of the supply pump group in the next 24 hours. A
schematic diagram of the model is shown in Figure 1.

The LSTM network is composed of an input layer, a
hidden layer, and an output layer. The LSTM network is
different from an RNN because a forget gate f t , an input
gate it , an output gate ot , and a memory cell Ct are added
to meet the needs of the time series data. These gates can
be opened or closed depending on whether the memory
state of the model network (the state of the previous net-
work) in this layer has reached the threshold or not. If it
reaches the threshold, it is added to the calculation of the
current layer; otherwise, it is ignored. The structure of the
LSTM network is shown in Figure A1. xt is the input at
step t, ht−1 is the output at step t − 1, and ht is the output
at step t [40].

2.1.1. Discarding Information. The first step in the LSTM
network is to determine which information will be discarded
from the cell state (Eq. (1)). The forget gate reads h t − 1
and x t and returns a value between 0 and 1 and then
passes the value to the cell state C t − 1 . 1 means
“completely reserved” and 0 means “completely discarded.”

f t = σ Whf ∙h t − 1 +Wxf ∙x t + bf , 1

where Whf is the weight between the hidden layer and the
output layer, Wxf is the weight between the input layer
and the hidden layer, bf is the bias vector, and σ ∙ is the sig-
moid activation function.

2.1.2. Storing Information. The second step in the LSTM net-
work is to determine which new information will be stored
in the cell state (Eqs. (2)–(4)). i t is the selective memory
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through the sigmoid layer. C t is a new candidate value vec-
tor computed by the tanh layer.

i t = σ Whi∙h t − 1 +Wxi∙x t + bi , 2

C t − 1 = tanh WhC∙h t − 1 +WxC∙x t + bC , 3

C t = f t ∗ C t − 1 + i t ∗ C t , 4

where Whi is the weight between the hidden layer at step
t − 1 and the hidden layer at step t, Wxi is the weight
between the input layer and input gate, WhC is the weight
between the memory cell state at step t and the memory cell
state at step t − 1, WxC is the weight between the memory
cell state at step t and the input layer, and bi and bC are
the bias vectors.

2.1.3. Outputting Information. The last step in the LSTM
network is to output the value of h t .

o t = σ Who∙h t − 1 +Wxo∙x t + bo , 5

h t = o t ∗ tanh C t , 6

where Who is the weight between the memory cell state at
step t and the output gate, Wxo is the weight between the
input layer and output gate, bo is the bias vector, and tanh
∙ is the hyperbolic tangent activation function. The pre-
dicted flow of the water supply pump group over the next
24 hours can be obtained by using the predictive model,
and the predicted results can be utilized as references to
schedule the flow of the water supply pump group Q2 =
q2 1 , q2 2 ,⋯,q2 t (m3/h) over the next 24 hours.

2.2. Flow Planning of the Water Intake Pump Group. The
flow of the water supply pump group varies seasonally and
daily based on analysis of historical data and engineering
experience. The morning and the evening are the peak water
consumption periods, the night time is the most significant
trough, and the rest of the time is considered the ordinary
water consumption period. In different seasons, the change
time nodes of the flow of the water supply pump group dur-
ing the peak water consumption period, trough water con-
sumption period, and ordinary water consumption period
will also be different. During the trough water consumption

period, the flow of the intake pump group is adjusted to pro-
duce a high-water level in the clean-water reservoir, in prep-
aration for high water consumption during the peak
consumption period. During the peak consumption period,
the flow in the intake pump group is adjusted to replenish
the clean-water reservoir. During the ordinary consumption
period, the flow of the intake pump group is adjusted to
meet the flow of the supply pump group.

It is therefore possible to divide the optimal scheduling
plan of the intake pump group in the next 24 hours into
three periods according to the seasonal and diurnal flow
changes of the supply pump group. May to October can be
divided into the peak water consumption period (06:00:00
to 12:59:59, 18:00:00 to 23:59:59), ordinary water consump-
tion period (13:00:00 to 17:59:59), and trough water con-
sumption period (00:00:00 next day to 05:59:59 next day).
January to April and November to December are also
divided into the peak water consumption period (07:00:00
to 11:59:59, 19:00:00 to 22:59:59), ordinary water consump-
tion period (12:00:00 to 18:59:59), and trough water con-
sumption period (23:00:00 to 06:59:59 the next day). With
the water level of the clean-water reservoir kept within the
safe range (the minimum safe water level is 0.95m and the
maximum safe water level is 2.95m), it is ensured as far as
possible that the flow of the intake pump group is consis-
tently stable and that the reservoir is at a higher water level.
In this study, the flow of the intake pump group Q1 = q1
1 , q1 2 ,⋯,q1 t (m3/h) is planned over the next 24 hours:

q1 t =
∑i

tq2 t
mi

+ σ t , i = 1, 2, 3, 4, 7

Δh t =
q1 t − q2 t

S
, 8

σ t =
hmax − Δh t − h t − 1 × S, Δh t + h t − 1 > hmax,

hmin − Δh t − h t − 1 × S, Δh t + h t − 1 < hmin,
9

where∑i
tq2 t (m3/h) is the flow of the supply pump group at

the t-th time in the i-th period, mi is the number of hours in
the i-th period, σ t is the feedback adjustment function, Δ
h t is the increment of the water level at the t-th time, and

Past 24 hours

Flow of water supply pump group

Water temperature

Main clean water pipe pressure

Feedback
correction

LSTM
Flow of water supply
pump group in the

next 24 hours

Figure 1: Predictive model based on LSTM network.
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S (m2) is the area of the bottom of the reservoir. If the water
level of the reservoir is lower than the minimum or higher
than the maximum safe water level, it will be adjusted to meet
the safety threshold.

The water adjustment and storage capacity of the reser-
voir are fully utilized so that the flow required by the intake
pump group can be evenly distributed. In each period of
time, the required flow levels at each moment are similar.
The required flow does not change obviously when the
pump switches. This can fundamentally reduce the pump
switch number, which can ensure the safety of the pumps.

2.3. Establishment of a Model for the Nonlinear Relationship
between the Characteristics of Working Pump Configurations.
For working pump configurations containing VFD pumps
in the water intake-supply pump groups, nonlinear models
between the frequency of the VFD pumps and the water
flow/electrical energy consumption/main pipe pressure of
the working pump configurations can be directly obtained
using the least squares (LS) method. For configurations that
contain only constant frequency pumps, nonlinear models
between the water flow and the electrical energy consump-
tion/main pipe pressure of the configurations can also be
obtained directly using the LS method. Due to uncertain fac-
tors such as wear, maintenance, and equipment upgrades,
the aforementioned nonlinear models need to be updated
regularly.

The LS method can be applied as follows [41]:

(1) A set of linearly independent functions φk x and an
undetermined coefficient ωk are selected in advance

(2) The sum of squares of the distance of each point
between f x (Eq. (10)) and the fitting function yi
(i = 1, 2,⋯, n) is compared

(3) The yi with the smallest sum of squares of the dis-
tance is selected as the fitted result

f x = ω1φ1 x + ω2φ2 x +⋯+ωkφk x , k = 1, 2,⋯,m,m < n

10

For working pump configurations containing VFD
pumps, the nonlinear models obtained are as follows:

Qs,is = as,is ,0 + as,is ,1 f s,is + as,is ,2 f
2
s,is + as,is ,3 f

3
s,is , is = 1, 2, 3,⋯, 16,

11

Js,is = bs,is ,0 + bs,is ,1 f s,is + bs,is ,2 f
2
s,is + bs,is ,3 f

3
s,is , is = 1, 2, 3,⋯, 16,

12

Ps,is = cs,is ,0 + cs,is ,1 f s,is + cs,is ,2 f
2
s,is + cs,is ,3 f

3
s,is , is = 1, 2, 3,⋯, 16,

13

where Qs,is (m3/h) is the water flow of the is-th working
pump configuration, Js,is (kWh) is its electrical energy con-
sumption, Ps,is (MPa) is the main pipe pressure, f s,is (Hz) is

the frequency of the VFD pump, and as,is ,0, as,is ,1, as,is ,2,
as,is ,3, bs,is ,0, bs,is ,1, bs,is ,2, bs,is ,3, cs,is ,0, cs,is ,1, cs,is ,2, and cs,is ,3 are
the fit coefficients for the nonlinear model. The water intake
pump group has 16 working pump configurations contain-
ing VFD pumps when s = 1, and the water supply pump
group has 16 working pump configurations containing
VFD pumps when s = 2.

For the configurations containing only constant fre-
quency pumps, the nonlinear models relating the main pipe
pressure and the water flow/electrical energy consumption
are as follows:

Qs,is = ds,is ,0 + ds,is ,1Ps,is + ds,is ,2P
2
s,is + ds,is ,3P

3
s,is , is = 17, 18,

14

Js,is = es,is ,0 + es,is ,1Ps,is + es,is ,2P
2
s,is + es,is ,3P

3
s,is , is = 17, 18,

15

where ds,is ,0, ds,is ,1, ds,is ,2, ds,is ,3, ds,is ,0, ds,is ,1, ds,is ,2, and ds,is ,3
are the fit coefficients for the nonlinear models of the is-th
working pump configuration. The water intake pump group
has two configurations containing only constant frequency
pumps when s = 1, and the water supply pump group has
two configurations containing only constant frequency pumps
when s = 2.

2.4. Establishment and Solution of the Intelligent Collaborative
Optimal Scheduling Problem. ns t ns t ∈ 1, 18 are the
serial numbers of the working pump configurations meet-
ing the flow of the water intake pump group or water sup-
ply pump group at the t-th time, and Ms t Ms t = ms,1
t ,ms,2 t ,⋯,ms,ns t is the number set of working
pump configurations meeting the flow of the water intake
pump group or water supply pump group at the t-th time.

According to the nonlinear fitting functions provided
above, an intelligent collaborative optimal scheduling objec-
tive for the water intake-supply pump groups that meets the
flow of the water intake-supply pump group, the main pipe
pressure constraint, and the water level constraint of the
clean-water reservoir is established:

min G =min 〠
T

t=1
W1 t +min 〠

T

t=1
W2 t

=min 〠
T

t=1
U1 t + γ1 m∗

1 t − 1 ,M1 t

+min 〠
T

t=1
U2 t + γ2 m∗

2 t − 1 ,M2 t ,

16

where W1 t and W2 t (kWh) are the sets of electrical
energy consumption (considering the pump switch costs)
of each type of working pump configuration meeting the
flow of the water intake pump group and the water supply
pump group at the t-th time, m∗

1 t − 1 and m∗
2 t − 1 are

the serial numbers of the optimal configurations of the water
intake and supply pump groups at the t − 1 -th time, γ1
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m∗
1 t − 1 ,M1 t are the pump switch costs fromm∗

1 t − 1
to any working pump configuration of M1 t , and γ2 m∗

2
t − 1 ,M2 t are the pump switch costs from m∗

2 t − 1
to any working pump configuration of M2 t . γs m

∗
s t − 1 ,

Ms t is given by

γs m
∗
s t − 1 ,Ms t = ϵs m

∗
s t − 1 ,Ms t Ke, 17

where ϵs m
∗
s t − 1 ,Ms t is the pump switch cost coeffi-

cient from m∗
s t − 1 to any working pump configuration of

Ms t and Ke (kWh) is the penalty charge when a pump is
on or off. The typical pump switch cost coefficient in the
water intake-supply pump group is shown in Table A1.

In order to ensure that the VFD pumps in the water
intake-supply pump groups run in the high-efficiency range,
the variable frequency range of the VFD pump needs to be
restricted as in Eq. (18), where fmin and fmax are the mini-
mum and maximum values of the frequency when the
VFD pump is operating in the high-efficiency zone. To pre-
vent an excessive pressure difference from causing water
hammer and pipe burst accidents, it is necessary to control
the difference in the main pipe pressure at adjacent times
as in Eq. (19), where Pmax is the maximum safe value of
the main pipe pressure difference when the pump is
switched.

fmin ≪ f s,is ≪ fmax, is = 1, 2, 3,⋯, 16, 18

Ps,is t − Ps,is t − 1 ≤ Pmax, is = 1, 2, 3,⋯, 18 19

The Bellman optimality principle lies at the heart of the
DP algorithm, which involves a multistep decision-making
process. The DP algorithm solves the original problem by
combining the solutions of subproblems. There are two
approaches: the top-to-bottom method and the bottom-to-
top method. Unlike the divide-and-conquer algorithm or a
naive recursion algorithm, the top-to-bottom method mem-
orizes the solution of each subproblem, which greatly
reduces the number of repetitive subproblems and the time
consumption of the solution process. The current approach,
however, does not comprehensively explore all potential
subproblems in a recursive manner. Meanwhile, the
bottom-to-top method can perfectly fill these loopholes.
This method generally needs to properly define the scale of
the subproblem so that the solution of any subproblem only
depends on the solution of a smaller subproblem. Therefore,
we can sort the subproblems by scale and solve them in
ascending order. When a certain subproblem is solved, the
smaller subproblems it depends on are also solved, and the
results are saved. Each subproblem only needs to be solved
once, and once solved (the first time we encounter it), all
its premise subproblems are solved. These two methods have
the same asymptotic running time. The difference is that the
bottom-to-top method can find the global optimal solution,
while the top-to-bottom method may only find the local
optimal solution. Obviously, the bottom-to-top method is
more appropriate for finding the optimal solution.

A structural diagram of the intelligent collaborative
optimal scheduling decision-making process is shown in
Figure 2. For step k + 1 of the scheduling process in the next
24 hours (24 steps in total, T = 24), the decision variable is
Ws k + 1 , the state input is Ms k , and the state output is
Ms k + 1 . The relationship between the state input Ms k
and the state output Ms k + 1 is determined through the
decisions made at step k + 1. When the decision is completed
in each step, the recursive relationship can be used to con-
vert the law of the entire objective, so that the strategy con-
stituted by all decisions is the optimal solution of the original
optimization objective [42].

The decision-making process can be transformed into
the selection of a pump scheduling plan for the next 24
hours that minimizes the power consumption after consid-
ering the pump switch costs. This ensures minimal power
consumption by reducing the number of pump switches.
As shown in Figure A2, there are ns k choices for Ws k
at step k and T

k=1ns k choices for the overall decision-
making process.

For a T-step decision-making process, suppose that the
performance index function is as given in

gs Ms k = 〠
T

j=k
l Ms j ,Ws j , 20

where l Ms k ,Ws k is the utility function. The goal of the
decision-making process is to minimize the performance
index function. Suppose the performance index function
for all possible steps Ms k + 1 starting from step k + 1 is
g∗
s Ms k + 1 , and all optimal decisions starting from step

k + 1 have been determined as w∗
s k + 1 , w∗

s k + 2 , w∗
s

k + 3 , … . The cost function at step k can then be
expressed as l Ms k ,Ws k + g∗s Ms k + 1 . According to
the Bellman optimality principle, the optimal performance
index function at step k is as follows:

g∗
s Ms k = min

Ws k
l Ms k ,Ws k + g∗s Ms k + 1

21

The electrical energy consumption considering the pump
switch costs W∗

s = w∗
s 1 ,w∗

s 2 ,⋯,w∗
s T (kWh) and the

working pump configurations M∗
s = m∗

s 1 ,m∗
s 2 ,⋯,m∗

s
T of the optimal scheduling plan is calculated using
the recursive method. The electrical energy consumption
U∗

s = J∗s 1 , J∗s 2 ,⋯,J∗s T (kWh) of the optimal sched-
uling plan can be obtained by subtracting the water pump
switch cost from W∗

s . Then, using Eq. (12), the VFD pump
frequency of the working pump configuration of the opti-
mal scheduling plan F∗

s = f ∗s 1 , f ∗s 2 ,⋯,f ∗s T (Hz)
can be obtained (if the working pump configuration con-
tains a VFD pump).

3. Results and Discussion

3.1. Water Supply Pump Group Prediction. It can be seen
from Figure 3 that the actual peak value of peak water
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consumption period is 13493m3/h, of which the predictive
peak values based on LSTM, ENN, and RF are 13027m3/h,
11995m3/h, and 12905m3/h. The actual trough value of
ordinary water consumption period is 8702m3/h, of which
the predictive peak values based on LSTM, ENN, and RF
are 7840m3/h, 6730m3/h, and 8024m3/h. The actual trough
value of trough water consumption period is 4762m3/h, of
which the predictive peak values based on LSTM, ENN
and RF are 5189m3/h, 5393m3/h, and 5432m3/h. Predictive
flows of the water supply pump group based on LSTM are
closer than flows based on ENN and RF, and the change
trend of predictive results based on LSTM is closer to the
actual values than the predictive results based on ENN and
RF, indicating that the predictive results based on LSTM
are more precise. It can be seen from Figure 4 that the values
and peak positions of the predictive results based on LSTM
are closer to the actual value not only on weekdays but also
on weekends. On Sunday, the actual peak values and the
predictive peak values of peak water consumption period
based on LSTM are 14109m3/h and 13676m3/h, while the

predictive peak values based on ENN and RF are only
12845m3/h and 12485m3/h. The actual trough value and
the predictive trough value of ordinary water consumption
period based on LSTM are 8743m3/h and 8266m3/h, while
the predictive peak values based on ENN and RF are only
7224m3/h and 7005m3/h. Since the LSTM algorithm real-
izes long-term learning and retention of key information
through the switch control of the gate in the memory block,
the prediction accuracy of special time nodes is improved.
Compared with the predictive flow of the water supply
pump group based on ENN, the predictive flow of the water
supply pump group based on LSTM reduces the lag of pre-
diction results and improves the dynamicity of the predic-
tion under the condition of ensuring high prediction
accuracy. The average error between the predictive flow
based on LSTM and the actual flow of the water supply
pump group is about 6.08%. What is more, the average error
observed on weekdays and weekends is 5.90% and 6.52%,
respectively. Meanwhile, the average error between the pre-
dictive flow based on ENN and the actual flow of the water
supply pump group is about 13.51%. And the error vales
are 11.61% and 18.25%, respectively, for weekdays and
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Figure 3: Comparison amongst the actual value, predictive results
based on LSTM, and predictive results based on ENN of flow of the
water supply pump group in 24 consecutive hours.
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weekends. The average error between the predictive flow
based on RF and the actual flow of the water supply pump
group is about 7.95%. And the error vales are 7.52% and
9.04%, respectively, for weekdays and weekends. It could
be concluded that the error of predictive flow based on
LSTM of the water supply pump group is smaller than the
actual flow of the water supply pump group for all days.

The short-duration memory neural network has the
same three layers as the ENN, namely, the input layer, the
hidden layer, and the output layer. The weight matrix
between these layers and the information from historical
moments can be transmitted to the current moment. How-
ever, the difference is that when outputting the result for
the current moment, the short- and long-term memory neu-
ral network also outputs the unit state of the current
moment, ensuring that the gradient will not disappear or
explode after many time steps. At the same time, it also
has three special “gate” structures, namely, the forget gate,
the input gate, and the output gate. These structures allow
for selective information passage, which can affect the data
state at every moment in the neural network model. Each
“gate” is controlled by the activation function and will out-
put a value within the interval (0,1) that indicates the extent
to which data can be retained and transmitted at the current
moment. Therefore, compared with the ENN, the LSTM
neural network has better accuracy and stability. Compared
with LSTM algorithm, RF algorithm has higher require-
ments on the type and scale of training data. At the same
time, RF algorithm cannot make predictions beyond the
range of training set data, which may lead to overfitting
when modeling some data with specific noise. Moreover,
since the flow rate of the pump at each moment is highly
correlated with time, the current state of the moment is

related to the historical state of the previous moment to a
certain extent. LSTM deep network can well explore and uti-
lize the influence between them.

3.2. Planning for a Clean-Water Reservoir and Water Intake
Pump Group. The water level of the clean-water reservoir
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Figure 5: Planned and actual water level of the clean-water reservoir and planned and actual flow of the water intake pump group in 24
consecutive hours.
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was planned based on the historical data of changing regula-
tion of water demand of the water supply pump group and
the predictive flow of the water supply pump group in the
next 24 hours. Figure 5 shows the planned water level of
the clean-water reservoir, actual water level of the clean-
water reservoir, planned flow of the water intake pump
group, and actual flow of the water intake pump group in
24 consecutive hours.

The average planned and actual flow of the water intake
pump group are 8721.23m3/h and 8792.50m3/h, with an
error of 0.81%. The minimum and average planned water
level of the clean-water reservoir are 1.35m and 2.16m,
which is higher than the minimum (1.20m) and average
actual water level (2.10m) of the clean-water reservoir.
Figure 5 displays that the difference between the planned
peak and trough is smaller than the difference between the
actual peak and trough of the water level of clean-water res-
ervoir. It indicates that the flow of the water intake pump
group would stably increase the water level of clean-water
reservoir, reduce the pump lift and the main clean water
pipe pressure, and then reduce the electric energy consump-
tion of the water supply pump group. Figure 5 also indicates
a significant change in the planned flow of water intake
pump group around 7:00, with a relatively small deviation
from the actual value compared to other times. The planned
flow of the water intake pump group is slightly more stable
than the actual value, which is mainly manifested in that
the number of changes in the planned flow of water intake
pump group is less than the actual value. It could reduce
the pump switch number and facilitate the acquisition of
the subsequent optimal scheduling plan. In combination
with Figure 6, it can be seen that the difference between
the peak value and the trough value is smaller than the actual
value under the premise that the water level of the clean-
water reservoir is high at most times, and the planned values

of the clean-water reservoir water level is higher than the
actual values at weekends. Under the premise of meeting
the demand flow of water supply pumping station, the
change times of the planned water flow of water intake
pumping station can be steadily lower than the actual values,
which proves the stability and reliability of the planning
method of water intake pumping station demand flow.
Under the condition that the water demand of the pumping
station and the water level of the clean-water reservoir are
met, the planning value of the water demand of the pumping
station and the higher water level of the clean-water reser-
voir can be obtained.

3.3. The Nonlinear Relationship between the Operating
Characteristics of Working Pump Configurations. A total of
18 working pump configurations in the water intake pump
group were nonlinearly fitted based on the LS method,
including 16 working pump configurations containing
VFD pumps and two working pump configurations contain-
ing only constant frequency pumps. Eighteen working pump
configurations in the water supply pump group were also
nonlinearly fitted based on the LS method, including 16
working pump configurations containing VFD pumps and

Table 1: The goodness of fit of working pump configurations containing VFD pump in the water intake-supply pump group.

Working pump configuration in the
water intake pump group

R2
1,a,i R2

1,b,i R2
1,c,i

Working pump configuration in the
water supply pump group

R2
2,a,i R2

2,b,i R2
2,c,i

1#, 3# 0.619 0.874 0.898 1#, 3# 0.906 0.851 0.688

2#, 3# 0.471 0.887 0.980 1#, 6# 0.696 0.662 0.770

3#, 4# 0.681 0.896 0.857 1#, 2#, 3# 0.847 0.720 0.936

3#, 5# 0.585 0.874 0.994 1#, 3#, 4# 0.665 0.647 0.768

1#, 6# 0.544 0.877 0.865 1#, 3#, 5# 0.656 0.647 0.734

2#, 6# 0.347 0.894 0.799 1#, 2#, 6# 0.863 0.872 0.941

4#, 6# 0.915 0.919 0.986 1#, 4#, 6# 0.643 0.641 0.852

5#, 6# 0.756 0.879 0.863 1#, 5#, 6# 0.722 0.710 0.909

1#, 3#, 4# 0.999 0.998 0.999 1#, 6#, 7# 0.845 0.876 0.971

1#, 3#, 5# 0.835 0.887 0.887 2#, 4#, 6# 0.953 0.853 0.922

2#, 3#, 5# 0.721 0.868 0.942 1#, 2#, 3#, 4# 0.725 0.648 0.744

1#, 2#, 6# 0.633 0.933 0.879 1#, 3#, 4#, 5# 0.497 0.499 0.775

1#, 5#, 6# 0.796 0.887 0.938 1#, 3#, 4#, 7# 0.515 0.649 0.837

2#, 4#, 6# 0.787 0.868 0.939 1#, 2#, 4#, 6# 0.768 0.895 0.911

2#, 5#, 6# 0.620 0.888 0.720 1#, 4#, 5#, 6# 0.977 0.969 0.992

4#, 5#, 6# 0.973 0.967 0.991 1#, 4#, 6#, 7# 0.999 0.999 0.990

Table 2: The goodness of fit of working pump configurations
containing only constant frequency pumps in the water intake-
supply pump group.

Working pump
configuration in
the water intake
pump group

R2
1,d,i R2

1,e,i

Working pump
configuration in
the water supply
pump group

R2
2,d,i R2

2,e,i

2#, 4# 0.999 0.842 1#, 4# 0.648 0.834

2#, 5# 0.789 0.403 1#, 4#, 5# 0.922 0.795
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two working pump configurations containing only constant
frequency pumps. For the working pump configurations
containing VFD pumps, R2

s,a,i, R
2
s,b,i, and R2

s,c,i represent the
goodness of fit between the frequency of the VFD pumps
and water flow/electrical energy consumption/main pipe
pressure of the working pump configurations, as shown in
Table 1. For the working pump configurations containing
only constant frequency pumps, R2

s,d,i and R2
s,e,i represent

the goodness of fit between the main pipe pressure and the
water flow/electrical energy consumption of the working
pump configurations, which are shown in Table 2.

The formula for the calculation of the goodness of fit is

R2 =
SSR
SST

=
∑ ŷn − y 2

∑ yn − y 2 , 22

where SSR is the regression sum of squares, SST is the sum
of squares, ŷn is the regression estimate of y, and y is the
average of the actual y. When R2 is in the range [0.64, 1],
it indicates that the fitting results show a strong correlation
with the initial data. When R2 is in the range [0.36, 0.64],
it indicates that the fitting results show a weak correlation
with the initial data. When R2 is in the range [0, 0.36], it
indicates that the fitting results are not correlated with the
initial data. It can be seen from Table 1 that 89.58% of the
fitting results showed a strong correlation with the initial
data and 9.38% of the fitting results showed a weak correla-
tion with the initial data. As shown in Table 2, 87.50% of the
fitting results are strongly correlated with the initial data,
and 12.50% of the fitting results are weakly correlated with
the initial data. The main reason for the inadequacy of the
fitting results of the #2 and #6 working pump configurations
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Figure 7: Working pump configurations of actual scheduling plan and optimal scheduling plan in the water intake-supply pump group in
24 consecutive hours.
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in the water intake pump group is that the recorded sched-
uling data are not accurate enough due to instrumental
errors. The results show that the nonlinear function rela-
tionships are reliable, which is convenient for solving the
objective function later. Due to uncertainties such as wear,
maintenance, and equipment upgrades, the above nonlinear
models will be updated regularly.

3.4. An Optimal Scheduling Plan for the Water Intake-Supply
Pump Groups. Working pump configurations of actual
scheduling plan and optimal scheduling plan in the water
intake-supply pump groups in 24 consecutive hours are
shown in Figure 7. The main water pipe pressure and VFD
pump frequency of actual scheduling plan and optimal
scheduling plan in the water intake-supply pump groups in
24 consecutive hours are shown in Figure A3. Specific
electric energy consumption and efficiency of actual
scheduling plan and optimal scheduling plan in the water
intake-supply pump groups in 24 consecutive hours are
shown in Figure 8.

It can be seen from Figure 7 that the optimal scheduling
plan in the water supply pump group mainly consist of 2~3
pumps, which avoids the increase in electric energy con-
sumption caused by the working pump configurations of 4
pumps. The working pump configurations of actual schedul-
ing plan changed 5 times in the water supply pump group
while working pump configurations of optimal scheduling
plan changed 4 times in the water supply pump group.
Figure A3 indicates that the frequency change of the VFD
pumps of the optimal scheduling plan is frequent and that

the change in the main pipe pressure is stable. This shows
that the optimal scheduling scheme reduces the pump
switching frequency. It can be seen from Figures 7 and
8(a) that although the actual scheduling plan in the water
intake pump group does not switch the pump while the
optimal scheduling plan switches once, the specific
electrical energy consumption and efficiency of the optimal
scheduling plan are significantly better than the actual
scheduling plan. After 12 o’clock at noon, the specific
electrical energy consumption of actual scheduling plan in
the water intake pump group set is about 105 kWh/103m3

for a long time, while the optimal scheduling plan is only
80 kWh/103m3. The maximum and minimum efficiency of
actual scheduling plan in the water intake pump group are
87.40% and 73.65%, whereas the maximum and minimum
efficiency in optimal scheduling plan reach up to 88.89%
and 85.32%, respectively. It also can be revealed from
Figure 8(b) that the minimum specific electrical energy
consumption of actual scheduling plan and optimal
scheduling plan in the water supply pump group is
111.05 kWh/103m3 and 95.13 kWh/103m3, respectively.
Meanwhile, the maximum and minimum efficiency of
actual scheduling plan in the water supply pump group are
75.37% and 56.66%, and the maximum and minimum
efficiency of optimal scheduling plan are 76.70% and
64.60%, respectively. Additionally, most of the time, the
specific electrical energy consumption of the optimal
scheduling plan is lower than that of the actual scheduling
plan, the efficiency of the optimal scheduling plan is higher
than that of the actual scheduling plan, and the change in
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Figure 8: Specific electric energy consumption and efficiency of actual scheduling plan and optimal scheduling plan in the (a) water intake
pump group and (b) water supply pump group in 24 consecutive hours.
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the specific electrical energy consumption of the optimal
scheduling plan tends to be more stable. This could not
only prolong the pump life but also save electrical energy.
The specific electrical energy consumption of working
pump configurations Secs t is calculated as Eq. (23), and
the efficiency of working pump configurations ηs t is
calculated as Eq. (24):

Secs t =
1000Js t
qs t

, 23

ηs t =
Pu t
Pa t

× 100% =
0 2722qs t Ps t

Js t
× 100%,

24

where Js t is the electrical energy consumption of working
pump configurations at t-th time, qs t is the flow of
working pump configurations at t-th time, Pu is the output
power of water pump at t-th time, Pa is the shaft power of
water pump at t-th time, and Ps t is the main water pipe
pressure of working pump configurations at t-th time.
After calculation, combined with Figure 8, it can be
concluded that the specific electrical energy consumption
and efficiency of optimal scheduling plan in the water
intake pump group in 24 consecutive hours are 85.64 kWh/
103m3 and 86.10%, of which the actual scheduling plan is
98.01 kWh/103m3 and 76.76% and electrical energy saving
and efficiency improvement are 12.60% and 12.20%. The
specific electrical energy consumption and efficiency of
optimal scheduling plan in the water supply pump group
in 24 consecutive hours are 115.19 kWh/103m3 and
72.92%, of which the actual scheduling plan is 122.40 kWh/
103m3 and 67.30% and electrical energy saving and
efficiency improvement are 5.89% and 8.35%. The total
specific electrical energy consumption and total efficiency
of optimal scheduling plan in the water intake-supply
pump group in 24 consecutive hours are 100.41 kWh/
103m3 and 79.51%, of which the actual scheduling plan is
110.20 kWh/103m3 and 72.03% and electrical energy
saving and efficiency improvement are 8.89% and 10.40%.

The specific electric energy consumption and efficiency
of actual scheduling plan and optimal scheduling plan in
the water intake-supply pump groups in 7 consecutive days
are shown in Table 3. The operation comparisons of actual
scheduling plan and optimal scheduling plan in the water
intake-supply pump groups for 7 consecutive days are
shown in Table A2.

The premise to be explained is that the optimal schedul-
ing plan of the water intake-supply pump group meets the
following three constraints: the water level of the clean-
water reservoir changes within the safe water level, the pres-
sure difference of the main pipe is less than the safe pressure
difference, and the VFD pump operates within the high effi-
ciency interval. It can be seen from Table A2 that the pump
switch number of the optimal scheduling plan is less than
the actual scheduling plan, especially in the water supply
pump group. Compared with the actual scheduling plan,
which switched 44 times in total, the optimal scheduling

plan only switched 26 times. The optimal scheduling plan
solved the problem of VFD pumps working out of high-
efficiency zone. The VFD pumps of optimal scheduling
plan all worked in the range of high-efficiency zone while
the numbers of the VFD pumps of actual scheduling plan
working out of high-efficiency zone in the water intake
pump group and water supply pump group were 34 and
30. The difference was attributed to the intelligent
collaborative optimal scheduling method that utilized the
frequency modulation effect of the variable frequency
pump and replaced switching the pump by adjusting the
frequency of the variable frequency pump as much as
possible, which could not only prolong the life of the
pump but also reduce electrical energy consumption. The
specific electrical energy consumption of the optimal
scheduling plan and actual scheduling plan in the water
intake-supply pump groups during 7 consecutive days is
100.96 and 113.06 kWh/103m3 (Table 3), respectively. The
electrical energy decreased by 10.70%. The average
efficiency of the optimal scheduling plan in the water
intake-supply pump groups over seven consecutive days
was 80.12%, while that of the actual scheduling plan was
72.39%, and the average efficiency was increased by 10.68%.
The above results proved that the optimal scheduling plan
obtained from the intelligent collaborative optimal
scheduling method in the water intake-supply pump groups
was more energy-saving and more stable and relied on a
smaller number of pump switches.

4. Conclusion

The intelligent collaborative optimal scheduling method was
proposed in this study. LSTM was used to predict the flow of
the water supply pump group in the next 24 hours, and the
flow of the water intake pump group in the next 24 hours
was planned according to the water level of the clear reser-
voir. The DP algorithm was used to obtain the optimal
scheduling plan of the water intake-supply pump group in
the next 24 hours. Experimental results showed that the
intelligent collaborative optimal scheduling plan reduced
the pump switch number by 11 times while decreasing elec-
tric energy consumption by 10.70% and increasing efficiency

Table 3: Specific electric energy consumption and efficiency of
actual scheduling plan and optimal scheduling plan in the water
intake-supply pump groups on 7 consecutive days.

Day

Specific electric
energy consumption

(kWh/103m3)
Average efficiency (%)

Actual Optimal Actual Optimal

Day 1 106.56 97.80 72.24 88.61

Day 2 105.21 99.58 72.54 87.57

Day 3 110.20 100.41 72.03 86.10

Day 4 116.47 102.30 72.87 84.36

Day 5 128.14 104.19 71.50 90.84

Day 6 111.79 101.87 73.18 89.83

Day 7 112.32 100.60 73.59 86.38
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by 10.68% compared to the actual scheduling plan. This
method made full use of the VFD pumps under the premise
of ensuring the flow of the water intake-supply pump groups
and the safe change of the main pipe pressure. The unused
working pump configurations can be excavated in the future
under the premise of ensuring production safety.

This proposed optimization is aimed at real-time data
acquisition of water purification plants to show the optimal
scheduling scheme. In the next step, an automatic closed-
loop control system can be designed to carry out real-time
scheduling control of water intake and water supply pump-
ing stations, and more pump combinations can be studied
in the future. Finally, due to the actual production process,
it will also involve the operation of the pumping station fault
and other problems, which need to carry out fault diagnosis
and fault maintenance; the future can consider these special
factors and design the pumping station fault diagnosis opti-
mization scheduling system.
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