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This research presents an optimal energy management system (EMS) for a lithium-ion battery-supercapacitor hybrid storage
system used to power an electric vehicle. The storage systems are connected in parallel to the DC bus by bidirectional DC-DC
converters and feed a synchronous reluctance motor through an inverter. The proposed energy management strategy is built
on the idea to take full benefits of two combined methods: the bald eagle search algorithm and fractional order integral sliding
mode control. To evaluate the effectiveness of the suggested optimal energy management strategy, an urban dynamometer
driving schedule (UDDS) driving cycle is considered. The obtained results are compared to a classical fractional order integral
sliding mode control-based energy management strategy in terms of voltage ripples, overshoots, and battery final state of
charge. The ultimate results approve the ability of the proposed energy management system to enhance the power quality and
enhance battery power consumption at the same time. Comprehensive processor-in-the-loop (PIL) cosimulations were
conducted on the electric vehicle using the C2000 launchxl-f28379d digital signal processing (DSP) board to assess the
practicability and effectiveness of the proposed EMS.

1. Introduction

Currently, the influence of transportation system growth on
global warming and climate change is becoming more visible
and omnipresent [1–3]. Due to increased passenger number
and inland freight volume, European Union (EU) domestic
transport emissions increased progressively between 2013
and 2019. As a consequence of a significant decrease in
transport activity during the COVID-19 pandemic, emis-

sions declined by 13.6% between 2019 and 2020. In 2021,
the economic recovery led to a rise in emissions of 7.7%
[4]. Using electric vehicles (EVs) as a means of electrifying
transportation seems to be the most effective option for
reducing the amount of carbon dioxide produced by trans-
portation [5, 6]. EVs powered by hybrid power systems
(HPSs) are gaining popularity because of the enhanced
power quality, durability, and reliable performance that
these systems provide [7–9]. Battery-supercapacitor hybrid
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power systems have garnered increasing attention owing to
their enhanced performance and ease of control. While lith-
ium batteries possess a notably high-energy density, they
lack a correspondingly high-power density, a shortcoming
that supercapacitors excel in. Therefore, combining these
two technologies through hybridization proves to be a viable
strategy to enhance the longevity of both components and
optimize overall system performance. This is particularly
valuable when considering the state of charge and tempera-
ture conditions of energy storage elements. One illustrative
example of this synergy is the utilization of supercapacitors
to handle sudden load fluctuations. Furthermore, it is worth
noting that high-frequency disturbances can detrimentally
impact the lifespan of batteries. However, this issue can be
mitigated by incorporating supercapacitors into the system
due to their distinctive characteristics [10].

Typical HPS includes a battery as the main source and
supercapacitor (SC) as the secondary source. Because it
has a high-energy density, the battery is the motor pri-
mary power source. At the same time, the SC, which has
a high-power density, contributes to improving the power
quality by supplying rapid changes in the motor output
power. In the EV, the traction electric machine has the same
importance as HPS. Many electric machines are used in
traction applications including interior permanent magnet
synchronous machine, induction machine, and switched
reluctance machine. Nowadays, synchronous reluctance
motor (SynRM) has become more and more popular in elec-
tric vehicle applications [11]. This is due to its greater effi-
ciency, simplicity and reliability, cost-effectiveness, cooling
and thermal management, application flexibility, and less
weight, and it is more affordable [11–17]. In addition, SynRM
is capable of delivering 34% more torque than traditional
machines, which makes it appropriate for use in the electric
vehicle sector [18].

In the EV, it is necessary to design an adequate energy
management strategy in charge of distributing power across
the HPS sources, considering many different limits that must
be met to improve performance and increase battery life.
Nevertheless, the effectiveness of the selected EMS is the pri-
mary concern here. In order to achieve this goal, several
EMSs have been published in the research literature. In
general, the EMSs may be broken down into optimization,
rule-based, and learning-based techniques, as stated in
[19–23]. Approaches based on optimization make use of
the tools that optimization theory is involved in order to
solve the problem at hand. The purpose is to achieve an opti-
mal distribution of load power throughout the battery-
supercapacitor storage system in order to maximize the life
expectancies of each component. Methods that are focused
on optimization may be categorized as either offline (on a
global scale) or online (on a real-time scale). Offline optimi-
zation EMS consists of finding an optimum control solution
for a problem over a condition that has already been deter-
mined, like a speed profile. There are two methods: direct
methods include approaches like disciplined optimum con-
trol; indirect methods include approaches like the calculus
of variations [20], Pontryagin’s maximum principle (PMP)
[24], Pontryagin’s minimum principle [25, 26], stochastic

dynamic programming (SDP) [27], and dynamic program-
ming (DP) [21, 28]. One of the real-time uses of online
optimization is figuring out the best way to distribute energy
in a hybrid system by utilizing the data that has been speci-
fied. The cost function may take into account the system
current status in addition to the running costs and emis-
sions. The model predictive control (MPC) [29, 30], the
equivalent consumption minimization strategy (ECMS)
[31], and the external energy maximization strategy (EEMS)
[32] are all examples of strategies that fall within this cate-
gory. Learning-based techniques, as an area of artificial intel-
ligence, recently leverage developments in machine learning,
notably reinforcement learning (RL) [33, 34] and deep learn-
ing (DL) [35, 36]. They have shown their efficacy in various
fields, most notably image categorization, which has led to
the broad implementation of their use in energy manage-
ment [37–41]. The databases are required to train a model;
however, they are not yet accessible. This is a challenge since
there has not been nearly enough study done on the new
topic. They provide no assurances that they will work with
data beyond the training provided. Rule-based methods are
constructed on the foundation of a series of “IF-THEN” sce-
narios. This category may be further broken down into two
different subcategories: deterministic strategies, such as the
state machine control (SMC) approach [42], and intelligent
methods, such as the fuzzy logic-based EMS [43, 44]. Creat-
ing these strategies’ responsibilities requires the designer’s
expertise, which is not always accessible. This is the primary
drawback of these methods. They also suffer from problems
related to the abrupt transitions between the various operat-
ing modes, which presents a real challenge for conventional
controllers to keep the desired power quality and system sta-
bility. Numerous linear and nonlinear controllers have
been proposed to control HPS, such as proportional-integral
(PI) control [45], passivity control [46–48], flatness-based
control [49, 50], backstepping-based control [51], sliding
mode control [52, 53], adaptive sliding mode control strategy
[54], sliding mode state and perturbation observer (SMSPO)
[55, 56], H-infinity control [57], active disturbance rejection
control [58, 59], and fractional order sliding mode control
(FOSMC) [60, 61]. Although the previously mentioned con-
trol methods are extremely useful to the readers, none of them
have the benefits of a control approach with optimization-
based technique.

This paper suggested an optimal fractional order integral
sliding mode control (FO-ISMC) strategy for managing the
power flow in an electric vehicle power system. For this, bald
eagle search (BES) optimization algorithm is adopted to bet-
ter identify dynamically the FO-ISMC parameters, with a
view to enhancing the HPS control and management. In this
perspective, the present paper seeks to achieve the following
main objectives:

(i) Enhance the power system overall efficiency

(ii) Ensuring the effective utilization of the power
flows between the battery and the SC while adher-
ing to the constraints imposed by the state of
charge (SoC)
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(iii) Maintaining voltage stability on the DC bus

(iv) Employing a variety of strategies in concert with
one another to get optimal results

The rest of the study is summarized as follows: Section
2 describes and models the HPS under consideration. The
control techniques for the traction chain are detailed in
Section 3. Section 4 details the suggested optimum adaptive
FO-ISMC-based EMS. Section 5 presents the simulation
and cosimulation results and their interpretations. In the
sixth section of this study report, some conclusions are
presented.

2. Power System Configuration and Modeling

The selected electric vehicle has both a Li-ion battery and a
supercapacitor as energy storage systems, two bidirectional
boost converters (BBC) connected to the same DC bus;
one of these converters manages the flow of power to and
from the battery, while the other converter controls the flow
of power to and from the SC. Additionally, a synchronous
reluctance motor is supplied directly from the inverter, as
shown in Figure 1.

2.1. BBC Modeling. The DC-DC converters provide a large
amount of flexibility by either providing power to the DC
bus to enhance the voltage level (boost behavior) or receiv-
ing power from the DC bus to lower the voltage level (buck

behavior). The following average model for the two BBCs is
taken into account in this study:

Lbat
dibat
dt

= Vbat −Vbusdbatt − rBatibatt,

Lsc
disc
dt

=VSC −Vbusdsc − rSCiSC,

cbus
dVbus
dt

= dbattibat + dsciSC − iLoad,

1

where VSC is the supercapacitor voltage, Vbus is the DC bus
voltage, rSC and rbatt denote the internal converter resistors,
LSC and Lbatt are the DC-DC converter inductors, dSC and
dbatt are the converter duty cycle ratios, Cbus is the DC bus
capacitance, and iSC, ibatt, and iLoad are the supercapacitor,
battery, and load currents, respectively.

2.2. SynRM and EV Dynamic Modeling. There are a few
different primary rotor architectures that can be found in
SynRM at present. These include the solid rotor, the flux
barrier rotor, the axially laminated rotor, and the
magnet-assisted rotor. Those structures with flux barriers
are the ones that are most suited for traction applications
because they satisfy the criteria for performance, robust-
ness, cost, and manufacture [12]. The following equation
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Figure 1: Schematic structure of the proposed electrical vehicle.
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presents the electromechanical model of SynRM when seen
in the d‐q frame:

d
dt

isd

isq

ωm

θ

=

−Rs
Ld

isd +
pLq
Ld

isqωm

−Rs
Lq

isq −
pLd
Lq

isdωm

1
J

3
2
p Ld − Lq isdisq − f rωm −

TL
J

pωm

+

1
Ld

0

0
1
Lq

0 0

0 0

vsd

vsq
,

2

where vsq and vsd are the quadrature and direct axis stator
voltages, respectively. isq and isd represent their correspond-
ing currents. The Ld and Lq are the d-q magnetizing induc-
tances. ωm represents the mechanical rotation speed, Rs
represents the stator resistance, p denotes the number of pair
poles, TL is the load torque, and f r and J represent the viscous
friction coefficient and inertia moment, respectively.

The equation representing the dynamics of SynRM is
formulated as follows:

Te − TLoad = Jve
dΩ
dt

3

The load torque is provided by

TLoad =
TLwheel

i
=
r
i

mv g μ sign v + 0 5 γCd Af v ± vw
2

± mv g sin α ± km mv
dv
dt

,

4

where TLwheel , i, and r represent the load torque on the
wheels, the transmission ratio, and the wheel radius, respec-
tively; v and vw are the vehicle and wind speed, respectively;
α represents the angle of the slope; mv is the vehicle mass; μ,
km, and Cd are the tire rolling resistance, the rotational iner-
tia, and aerodynamic drag coefficient, respectively; γ and Af

represent the air density and the frontal vehicle area, respec-
tively; and g represents the earth’s gravity.

The SynRM and vehicle parameters are listed in the
appendix, respectively.

Having discussed the fundamental elements of power
system configuration and modeling, we can now proceed
to examine efficient system control strategies.

3. System Control Strategies

The proposed control systems center around two main
objectives. The first one consists of the fractional order inte-
gral sliding mode controller (FO-ISMC), which is applied to
the bidirectional DC-DC converter. The second one resides
in the integral sliding mode control (ISMC) of the SynRM,
aiming to improve the performance of the drive system.

3.1. BBC FO-ISMC Design

3.1.1. Explanations of Fractional Derivatives and Integrals. In
the field of applied mathematics, particularly in areas where
integrals and differentiators are used, the fractional order
calculus has a number of applications that are both intrigu-
ing and useful. The calculus of the fractional order is used to
transform the integral integrators and differentiators of any
complex or real order into their corresponding fractional
counterparts. The fractional order operator is represented

by the symbol cDβ
t , and its definition may be written down

in this manner [62]:

cD
β
t ≅Dβ =

dβ

dtβ
, Re β > 0,

1 , Re β = 0,
t

a
dτ −β , Re β < 0

5

In this expression, c and t stand for the operational
limits, β stands for the order of the fractional operator,
and Re denotes the real component of beta.

The fractional differential and integration that Riemann
and Liouville developed may be specifically defined [62].

cD
β
t f t =

dβ

dtβ
f t =

1
Γ n − β dtn

t

β

f τ

t − τ β−n+1 dτ,

cD
−β
t f t = Iβ f t = 1

Γ β

t

β

f τ

t − τ 1−β dτ

6

The Euler gamma function, denoted by Γ , has the fol-
lowing definition:

Γ x =
∞

0
e−t t x−1 dt, x > 0 7

For defining the fractional order integrator and deriva-
tive, the Grunwald-Letnikov approach provides the follow-
ing formula:

GL
c D−β

t f t = lim
h⟶0

1
hβ

〠
t−β /h

j=0
−1 j

β

j
f t − jh 8

DC-DC converters are controlled by a cascade of inner
FO-ISMC current control loops and an outer voltage FO-
ISMC controller.

3.1.2. FO-ISMC-Based DC Bus Voltage Control. The follow-
ing voltage fractional order integral sliding surface (FO-
ISS) Sv is selected for the DC bus voltage control:

Sv = kv1 evbus + kv2D
−βevbus, 9
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where the kv1 and kv2 and D−β and β are the voltage FO-ISS
coefficients and the voltage integral fractional order operator
and fractional order, respectively, and evbus is the DC bus
voltage error, expressed as follows:

evbus = V∗
bus −Vbus 10

The fractional derivative of sliding surface produces the
following equation:

DβSv = kv1D
β−1evbus + kv2evbus = −λiSign Sv 11

The current i∗c may be expressed as

i∗c =
cbus
kv1

D1−β λvSign Sv + kv2 V∗
bus −Vbus + cbus

dV∗
bus

dt

12

The command is expressed as follows:

i∗dc =
cbus
kv1

D1−β λvSign Sv + kv2 V∗
bus − Vbus + cbus

dV∗
bus

dt
+ i∗Load

13

3.1.3. FO-ISMC-Based Battery/Supercapacitor Current
Control. The FO-ISS Si bat,SC of battery/supercapacitor
current controllers are defined as

Sibat = ki1 eibat + ki2D
−δbateibat,

Sisc = ki3 eisc + ki4D
−δsceisc,

14

with ki1, ki2, ki3, and ki4 and δbat and δsc are the coefficients
of the battery/supercapacitor current FO-ISS and the frac-
tional orders and ebat and esc are the battery/supercapacitor
current errors defined as follows:

ebat = i∗bat − ibat, 15

esc = i∗sc − ih − isc, 16

where ih is the harmonic current and i∗bat, i
∗
sc are the battery/

supercapacitor reference currents.
The Si bat,SC fractional order derivative yields the follow-

ing expressions:

DδbatSibat = ki1D
δbat−1eibat + ki2eibat = −λibatSign Sibat , 17

DδscSisc = ki3D
δsc−1eisc + ki4eibat = −λiscSign Sisc 18

The expressions of the commands ubat,SC are given as
follows:

ubat =
Lbat

ki1Vbus
D1−δbat λibatSign Sibat + ki2eibat + ki1

di∗bat
dt

−
Vbat − rbatibat

Vbus
,

19

usc =
Lsc

ki3Vbus
D1−δsc λiscSign Sisc + ki4eisc + ki3

di∗sc
dt

−
Vbat − rscisc

Vbus
,

20

where λv, λi bat,sc are positive constants.

3.1.4. Proof of Stability. For the purpose of demonstrating
the closed-loop stability of the suggested control strategy, a
Lyapunov theorem that was presented by Aghababa is
applied [63]. In two separate stages, the robustness of the
system as a whole will be shown. In the first phase of the
process, the voltage loop is investigated, and then, the cur-
rent loop is examined. In order to demonstrate the stability,
the following theorem will be applied.

The stability of the proposed FO-ISMC, obtained in Eqs.
(15), (19), and (20), for the system provided in Eq. (11), is
determined by whether the following inequality is correct [18]:

〠
∞

j=1

Γ 1 + β

Γ 1 − j + β Γ 1 + j
DjSvD

β−jSv ≤ ϑ1 Sv 21

Thus, ϑ1 denotes a positive constant.

(1) Voltage Loop Demonstration. In order to provide proof
that the voltage loop is stable, the Lyapunov candidate func-
tion has been described as follows:

LV =
1
2
S2v 22

When Dβ is applied to equation (21), the following equa-
tion is obtained [42]:

DβLV = SvD
βSv + 〠

∞

j=1

Γ 1 + β

Γ 1 − j + β Γ 1 + j
DjSvD

β−jSv

23

Combining Equation (23) with Equation (11) and Equa-
tion (21) results in a simplification of the expression:

DβLV ≤ Sv kv2 V∗
bus −Vbus + kv1D

β−1 V
∗
bus −

i∗dc − i∗Load
cbus

+ ϑ1 Sv
24
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When Equation (13) and Equation (23) are combined,
the following equation may be found:

DβLV ≤ Sv kv2evbus + kv1D
β−1 dV∗

bus
dt

+
i∗Load
cbus

−
1
kv1

D1−β

λvSign Sv

+kv2evbus
−
dV∗

bus
dt

−
i∗Load
cbus

+ ϑ1 Sv

25

The following equation is obtained by further simplify-
ing Eq. (25), which is as follows:

DβLV ≤ −λv Sv + ϑ1 Sv 26

By allowing λv > ϑ1, it is simple to show that DβLV ≤ 0
meets the sliding surface’s reaching condition and Sv = 0

(2) Current Loop Proof. The following Lyapunov candidate
function is utilized to demonstrate the stability of the current
loop:

LIbat =
1
2
S2ibat 27

When Dβ is applied to equation (21), the following equa-
tion is obtained [42]:

DδbatLV = SIbatD
δbatSIbat + 〠

∞

j=1

Γ 1 + β

Γ 1 − j + β Γ 1 + j
DjSIbatD

δbat−jSIbat

28

Combining Equation (28) with Equation (17) and Equa-
tion (21) results in a simplification of the expression:

DδbatLIbat ≤ SIbat ki1D
δbat−1 di∗bat

dt
−

1
Lbat

Vbat −Vbusubat − rbatibat

+ ki2eibat + ϑ2 SIbat

29

When Equation (19) and Equation (29) are combined,
the following equation may be found:

DδbatLIbat ≤ Sibat ki2eibat + ki1D
δbat−1 di∗bat

dt
−
Vbat
Lbat

−
1
ki1

D1−δbat

λibatSign Sibat

+ki2eibat

+ki1
di∗bat
dt

+
Vbat + rbatibat

Lbat
−
rbatibat
Lbat

+ ϑ2 Sibat

30

The following equation is obtained by further simplify-
ing Eq. (30), which is as follows:

DδbatLIbat ≤ −λibat Sibat + ϑ2 Sibat 31

By allowing λibat > ϑ2, it is simple to show that Dδbat

LIbat ≤ 0 meets the sliding surface’s reaching condition and
Sibat = 0

3.2. SynRM Integral Sliding Mode Control Approach.
Figure 2 is a representation of the three control loops that
are a part of the SynRM integral sliding mode control. These
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Figure 2: Integral sliding mode controller (ISMC) of synchronous reluctance motor schemes.
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control loops include two internal current control loops for
isd and isq, as well as one external speed control loop. The
output of the speed controller generates the quadrature ref-
erence current, which is compared to the measured current
value. Similarly, a current regulation loop is needed to con-
trol the direct current isd. The outputs of the current control-
lers are the inputs of a decoupling block, which is
responsible for producing the reference voltages vrefsd and

vrefsq . By making a transformation from the reference (d‐q)
to the reference (α, β), it is possible to acquire the two volt-
ages’ reference vrefsα and vrefsβ that are necessary for the space
vector modulation (SVM) block [64].

In continuation of our discussion on system control, we
can now explore the suggested EMS.

4. Suggested EMS Based on Optimal Fractional
Order Integral Sliding Mode Controllers

The proposed EMS architecture is divided into two levels
(high and low), as shown in Figure 3. The FO-ISM low-
level control layer controls the DC/DC converters to ensure
a regulated output DC bus voltage and adequate current
values according to the contribution of each source (battery
or supercapacitor).

To improve EMS efficiency, the bald eagle search (BES)
optimization algorithm is used to find the best values for
the FO-ISMC parameters kv1, kv2, β, ki1, ki2, ki3, ki4 , δbat,
δsc, λv, λibat, and λisc.

The bald eagle search is an innovative metaheuristic
optimization algorithm that takes inspiration from the hunt-
ing techniques of the bald eagle [65]. The bald eagle initial
step (selecting space) is to choose the most productive region
in terms of available food. During the second phase, the
eagle looks for its prey inside the allotted space. After estab-
lishing its best possible view location during the second

phase, the eagle then uses a series of swooping movements
to scope out its optimum hunting grounds in the third phase
(swooping).

(i) Choosing the Space Available

During this phase, the following equation will be used to
produce new positions:

pn it = pb + σr pav − p it , 32

where pn, pb, and pav are the freshly produced in the ith iter-
ation, best achieved, and average positions, respectively. it is
the iteration number, σ denotes a gain controller [1.5, 2],
and r denotes a random variable between 0 and 1.

(ii) Stage of Search and Exploration in Space

After settling on the best search space, the algorithm
next adjusts where the eagles are located within this space.
The evolution of the updated model is as follows:

pn it = p it + y it p it − p it + 1 + x it p it − pav ,
33

where x and y vector variables for the ith position are
described as follows:

x it =
xr it

max xr
, y it =

yr it
max yr

,

xr it = r it × sin θ it , yr it = r it × cos θ it ,

θ it = k × π × rand ; r it = θ it × R rand,
34
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where k is a control parameter that takes values in the range
[5, 10] and is used to decide the corner between point
searches at the center point and R is a parameter that takes
values in the range [0.5, 2] and is used to determine the
number of search cycles.

(iii) Stage of Swooping

At this stage, the eagles begin to swing their bodies from
the best position for search towards their prey, as repre-
sented in

pn iter = rand × pb + x1 it × p it − c1 × pav
+ y1 it × p it − c2 × pb ,

35

where c1 and c2 are values chosen at random from the range
[1, 2] and x1 and y1 are directional variables and may be
described as

x1 it =
xr it

max xr
; y1 it =

yr it
max yr

,

xr it = r it × sinh θ it ; yr it = r it × cosh θ it ,

θ it = k × π × rand ; r it = θ it
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BES optimization algorithm flowchart includes the three
optimization stages, selecting space, searching in space, and
swooping, as shown in Figure 4.

Following is a flowchart that details all of the optimiza-
tion steps.

The objective function is as follows:

objFun = min
t

0
εdt 37

There are three errors that may be found in hybrid
power systems (HPSs), which are as follows:

evbus = V ref
bus −Vbus,

esc = irefsc − ih − isc,

ebat = irefbat − ibat

38

To improve EMS efficiency, the bald eagle search optimi-
zation algorithm is used to find the best values for the FO-
ISMC parameter set x such that the objective function
can be minimized to its minimum value as possible. The

following is an example expression the set of parameters
to be optimized:

x = kv1, kv2, β, ki1, ki2, ki3, ki4, δbat, δSC, λv, λibat, λiSC , 39

with ki1, ki2ki3, and ki4 and kv1 and kv2 are the current
and voltage coefficients of the FO-ISS; δbat, δsc, and β
are the current and voltage fractional orders; and λv,
λi bat,sc are positive constants.

In the first phase, the optimizer places x on the model
according to the many potential solutions. After that, an
error is produced, and the objective function of each candi-
date solution x is analyzed. At long last, the optimal solution
will be selected to serve as the target solution, a process that
will continue right up until the final iteration. The potential
solutions need to be constrained within the parameter’s
restrictions according to the following equation:

LB ≤ x ≤UB, 40

where LB and UB represent the potential solutions’ mini-
mum and maximum possible values, respectively.

The BES algorithm parameters are listed in Table 1.
In light of the theoretical framework presented in the

previous section, Section 5 focuses on the simulation and
cosimulation results to validate our proposed EMS.

5. Results and Discussion

5.1. Simulation Results. In this section, the suggested EMS is
validated using MATLAB/Simulink using the UDDS driving
cycle and simulation parameters listed in Table 2.

Simulation environment specifications are provided in
Table 3.

The speed response of the electric vehicle that is repre-
sented in Figure 5 displays good follow-up despite the pres-
ence of many changes in the UDDS driving cycle. This
confirms the effectiveness of the proposed control system.

Illustration of the torque curve, presented in Figure 6,
indicates that the motor generates its maximal torque when
the vehicle’s speed gets closer to the reference route. After
the vehicle has achieved a steady state, the amount of torque
generated by the motor will decrease in order to compensate
for the torque produced by the load as a whole.

In Figure 7, which depicts the tractive forces of the elec-
tric vehicle, it is possible to observe that the acceleration and
aerodynamic forces are responsible for a significant portion
of the total tractive effort.

As can be shown in Figure 8, the suggested energy man-
agement approach can quickly stabilize the DC bus voltage,

Table 1: Optimization parameters.

Parameter Npop Tmax Nruns D UB LB

Value 30 50 10 7 150% of the actual value 50% of the actual value

Npop is the number of populations, T max is the maximum of iterations, D is the number of optimization variables, Nruns is the number of optimization runs,
and UB and LB are the upper and lower search space limits.

Table 2: Simulation parameters.

Parameters Value

rbatt (Ω) 0.1

rsc (Ω) 0.1

Lbat (mH) 2

Lsc (mH) 2

V ref
bus (V) 400

V ref
SC (V) 200

V ref
bat (V) 100

cSC (F) 80

cbat (Ah) 450

cbus (μF) 2000

Table 3: Simulation environment.

Simulation environment Type/value

Software MATLAB 2021a

Simulation type Discrete

Sampling size 1e-5 s

Simulation time Start time: 0/stop time: 1400

Solver options Fixed-step ode4 (Runge-Kutta)
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even when the load power changes significantly. DC bus
voltage ripples and voltage overshoots and response time
are reduced by the proposed bald eagle search fractional
order integral sliding mode control (BES FO-ISMC) EMS
compared to that of classical fractional order integral sliding
mode control (C FO-ISMC) and fractional order
proportional-integral (FO-PI) controller and proportional-
integral (PI) controller.

Table 4 presents the findings of a comparison between
the BES FO-ISMC proposed EMS and C FO-ISMC and
FO-PI controller and PI controller. This table provides an
evaluation of the differences in overshoot, as denoted by
the equations:

ΔV1 =Vbus C FO−ISMCOV − Vbus BES FO−ISMCOV, ΔV2 =
Vbus FO−PIOV −Vbus BES FO−ISMCOV, ΔV3 =Vbus PIOV −
Vbus BES FO−ISMCOV, where VbusC FO−ISMCOV and
Vbus BES FO−ISMCOV and Vbus FO−PIOV and Vbus PIOV represent
the DC bus voltage overshoots at the instant (tn) for C F-
ISMC and BES-ISMC and FO-PI and PI, respectively.

At high motor loads, such as during acceleration phases,
the battery transfers most of its power to the motor, reduc-
ing the battery’s state of charge (Bat-SOC). As seen in
Figure 9, it charges up when the motor torque is negative
during deceleration. In the final Bat-SOC, the C FO-SMC
and proposed BES FO-SMC are compared in Table 4. The
results presented in Table 5 and the Bat-SOC curves in
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Table 4: Difference in DC bus voltage overshoot.

Time (tn) (s) t1 = 26 t2 = 186 t3 = 606 t4 = 988 t5 = 1230 t6 = 1269
EV speed (km/h) 27.2 28.5 36.53 35.41 31 15

VbusC FO−ISMCOV (V) 2.3 3.5 2.918 7.104 3.5 1.5

Vbus BES FO−ISMCOV (V) 1 1 1.198 2.9 0.7 0.8

Vbus FO−PIOV (V) 5.5 4.5 3 8 4 2

Vbus PIOV (V) 13.16 5 3.6 9 5 3.25

ΔV1 (V) 1.3 2.5 1.72 4.204 2.8 0.7

ΔV2 (V) 4.5 3.5 1.8020 5.1 3.3 1.2

ΔV3 (V) 11.3 4 2.4020 2.2 4.3 2.45

ΔV1 (%) 0.325 0.625 0.43 1.051 0.7 0.1750

ΔV2 (%) 1.125 0.875 0.45 1.275 1.0750 0.3

ΔV3 (%) 2.825 1 0.6 0.55 0.8250 0.6125
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Table 5: Difference in the final Bat-SOC.

Cycle drive UDDS
EMS C FO-SMC BES FO-SMC

Final Bat-SOC (%) 77.44382 78.53973

Diff final Bat-SOC (%) 1.0959
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Figure 9 demonstrate that the suggested EMS can manage
the Bat-SOC more effectively than the classical FO-SMC.

Figures 10 and 11 and Table 6 show that the BES FO-
ISMC minimizes the battery current total harmonic distor-
tion (THDibat) to 10.49% instead of 77.39% for the classical
FO-ISMC and 34.52 for the FO-PI strategy and the 46.08
for the PI controller. This finding suits the purpose of the
proposed EMS, which is enhancing the battery lifecycle by
reducing the battery current harmonics.

According to the power waveforms shown in Figure 12,
the battery supplies power to the motor and absorbs it dur-
ing braking periods. On the other hand, the supercapacitor

assists the battery during transient periods, including accel-
eration and deceleration phases.

Our results shown in Figure 13 confirmed that our EMS
effectively manages the energy flows between the sources
and the SynRM throughout the UDDS cycle. We achieved
similar load, battery, and SC power patterns to those
expected under UDDS conditions.

5.2. Cosimulation Part

5.2.1. PIL Implementation Technique Description. The PIL
cosimulation technique allows the verification and validation

100

80

60

40

20

0
1 2 3 4 5 6 7 8 9 10 11 12

M
ag

 (%
 o

f f
un

da
m

en
ta

l)

Harmonic order

Fundamental (4000 Hz) = 2.182, THD = 77.39%

(d)
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Table 6: Battery current total harmonic distortion.

Cycle drive UDDS
EMS C FO-SMC BES FO-SMC FOPI PI

THDibat (%) 77.39 10.49 34.52 46.08
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of the proposed control algorithms by generating code onto
the embedded processor core and running these algorithms
in a real environment based on the C2000 launchxl-
f28379d DSP board. During PIL cosimulation, the imple-
mented control algorithm is linked to a computer on which
the physical system model is carried out. Subsequently, it is

possible to evaluate the performance of the system in order
to assess and improve some essential factors such as storage
capacity, code size, and execution of the algorithm according
to the required time. As indicated in Figure 14, during the
prototyping of the PIL, based on a fixed simulation time,
the power part of the power system is simulated in the
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MATLAB/Simulink platform. At each step, the C2000
launchxl-f28379d DSP board receives the signals from the
computer, implements control algorithms, and sends the
control commands back to the computer to control the
power system. At this point, a PIL cosimulation cycle is per-
formed. The data exchange between the computer and the
DSP board is synchronized using the serial communication
of the DSP board [66].

5.2.2. Cosimulation Results. To approve and evaluate the
performance of the suggested EMS, the system was modeled
using embedded MATLAB functions and cosimulated using

the C2000 launchxl-f28379d DSP board through the proces-
sor-in-the-loop. The cosimulation is performed utilizing a
reduced-time version of the urban dynamometer driving
schedule depicted in Figure 15 based on the parameters
listed in Table 1.

The electric vehicle’s speed response depicted in
Figure 15 demonstrates commendable tracking perfor-
mance, even in the face of numerous variations within the
UDDS driving cycle. This observation serves as validation
for the efficacy of the suggested control system.

The depiction of the torque curve, shown in Figure 16,
demonstrates that the motor produces its highest torque as
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the vehicle’s speed approaches the reference route. Once
the vehicle reaches a stable state, the motor’s torque
output decreases to counterbalance the overall load-
induced torque.

From Figure 17, illustrating the tractive forces of the
electric vehicle, it becomes evident that a substantial portion
of the overall tractive effort can attribute to the acceleration
and aerodynamic forces.

As depicted in Figure 18, the proposed energy manage-
ment strategy demonstrates its ability to rapidly stabilize
the DC bus voltage, even amidst substantial variations in
load power. The introduced BES FO-ISMC EMS effectively

mitigates DC bus voltage fluctuations, voltage overshoots,
and response time, showcasing superior performance in
comparison to both the conventional FO-ISMC (C FO-
ISMC), FOPI, and PI controller methods.

The SOC graphs shown in Figure 19 collectively under-
score the superior efficacy of the suggested energy manage-
ment system (EMS) in maintaining the battery’s SOC
compared to the conventional FO-ISMC approach.

As depicted in Figure 20, the battery furnishes the mean
power required by the traction system and acquires energy
in the braking stages. The supercapacitor aids the battery in
momentary intervals (such as acceleration and deceleration
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phases), aligning with the chosen energy management
approach. These findings validate the effectiveness of the pro-
posed EMS in effectively handling both energy storage
mechanisms.

6. Conclusion

This research presented a new optimal energy manage-
ment technique for an electric vehicle’s battery/supercapa-
citor hybrid power system. The proposed management
system is based on the optimum fractional order integral
sliding mode control and is aimed at efficiently managing
the power from both sources in line with the load
demand. The fundamental goal of this energy management
is to enhance the power quality by maximizing the battery
SOC and decreasing the DC bus voltage ripples and
voltage overshoots, which have a beneficial impact on the
battery lifecycle. In addition, the online updating
technique improves the system stability and effectiveness
by enhancing its reaction to unforeseen load changes.
The obtained simulation and cosimulation results
demonstrate the effectiveness of the proposed energy
management approach. Concerning the power quality,
the proposed energy management system has the ability
to reduce the harmonics (THD = 10 49) and attenuate
the voltage overshot by (ΔV = 1 051). Concerning the
battery usage, the proposed energy management strategy
enhanced the battery SoC by 1.0959% at the end of the
driving cycle.

In our upcoming studies, we will conduct comparative
study to evaluate the performance of BES and other
metaheuristics when they are applied to FO-ISMC
parameter tuning. This effort is aimed at identifying
the strengths and weaknesses of various algorithms for
this specific task, considering both convergence speed
and complexity.

Appendix

Table 7 provides the parameters for a synchronous reluc-
tance motor (SynRM), and Table 8 contains parameters
related to a vehicle. Tables 9 and 10 provide battery and
supercapacitor specifications.

These parameters are essential for understanding and
analyzing the performance of the synchronous reluctance
motor and its application in a specific vehicle setup. They
play a crucial role in various engineering calculations and
simulations related to motor control, power transmission,
and vehicle dynamics.

The KOKAM cells (40HED) are chosen in our case to
compose the battery pack, and the Maxwell technology
350/2.7 is chosen due to its very high power, lower weight,
volume, and lifetime.

Data Availability

The data is available upon request.
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Table 7: Synchronous reluctance motor parameters.

Parameter Value

Continuous output power (kW) 45

Peak torque in intermediate mode (N.m) 170

Peak torque in continuous mode (Nm) 300

Rated speed (tr/min) 3300

Base speed (tr/min) 1700

Rated current (A) 64.40

Resistance of the stator windings R (Ω) 0.3256

Number of pole pairs p 2

d-axis inductance Ld (mH) 73.2

q-axis inductance Lq (mH) 7.3

Table 8: Vehicle parameters.

Parameter Value

Mass of vehicle mv (kg) 1150

Transmission ratio i 10

Aerodynamic drag coefficient Cd 0.32

Tire rolling resistance coefficient μ 0.015

Rotational inertia km 1.1

Vehicle frontal area Af (m
2) 2.5

Air density ξ (kg/m3) 1.28

Wheel radius r (m) 0.33

Earth gravity g (m/s2) 9.81

Table 9: Characteristics of Li-ion battery KOKAM 40HED cell.

Parameter Value

Nominal voltage (V) 3.7

Capacity (Ah) 40

Specific Energy (WA) 133.8

Max current charge/discharge (A) 40/40

Volume (l) 0.42

Weight (kg) 0.935

Table 10: Characteristics of Maxwell technology 350/2.7
supercapacitor cell [19].

Parameter Value

Nominal voltage (V) 2.7

Capacity (F) 350

Power density (Wh/kg) 4300

Energy (Wh) 5.062

Volume (l) 0.053

Weight (kg) 0.063
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