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This paper proposed a single-piston free piston expander-linear generator (SFPE-LG) prototype applied to organic Rankine cycle
systems. Two valve timing control strategies, namely, time control strategy (TCS) and position control strategy (PCS), were
developed. Based on the experimental data, a back propagation neural network (BPNN) prediction model was established. The
effects of structural parameters such as neural network layers, transfer function, training function, hidden layer nodes, and learning
rate on the prediction accuracy of this BPNN model were discussed. The training and prediction accuracy of the BPNN model was
verified using 5-fold cross-validation and Wilcoxon signed-rank test. Moreover, the BPNN model was integrated with a genetic
algorithm to predict and optimize the maximum output power of the SFPE-LG. The results showed that the BPNN model used to
predict the motion characteristics and output performance of the SFPE-LG exhibits strong learning ability and high prediction
accuracy. Notably, the prediction accuracy of the BPNN model is significantly higher under the PCS compared to TCS. The effect
of hidden layer nodes on mean square error (MSE) and correlation coefficient (R) is greater than that of the learning rate. When
the number of hidden layer nodes exceeds 30, the BPNN model consistently achieves low MSE and high R. The optimization
results showed that the SFPE-LG can obtain a maximum output power of 141.69W under the TCS, when the working parameters
are inlet pressure of 0.7MPa, intake duration of 35ms, load resistance of 67Ω, and expansion duration of 104ms, respectively.

1. Introduction

Nowadays, various new energy vehicles have been vigorously
developed in many countries around the world. However, it
is still essential to carry out pollution prevention, energy sav-
ing, and emission reduction for internal combustion engine
(ICE) vehicles, which account for a large proportion of vehi-
cles. Generally, the heat generated by the combustion in an
ICE cannot be fully converted into useful power to be output.
Only 20%~45% of the heat generated by combustion is used
for power output, and most of the remaining energy is dissi-
pated as heat energy [1, 2]. Among them, the energy dissipated
by the exhaust system accounts for about 40%~45% (gasoline

engines) and 35%~40% (diesel engines) of the total energy.
Meanwhile, the exhaust temperature of an ICE can reach
700~1100K [3–5]. Thus, the recovery and utilization for this
waste heat energy from automotive ICEs are effective methods
to reduce fuel consumption and improve energy conversion
efficiency. At present, the waste heat utilization technologies
of ICEs mainly include thermoelectric power generation, air
Brayton cycle, turbocharging, waste heat refrigeration, and
organic Rankine cycle (ORC) [6, 7].

In the medium- and low-temperature waste heat recov-
ery, ORC systems have been widely adopted in multiple
fields due to their structural simplicity, easy maintenance,
and good reliability [8, 9]. Research on recovering waste heat
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from automotive ICEs using Rankine cycle began in the
1970s, when water was adopted as the working medium.
Since then, the ORC waste heat recovery systems for auto-
motive ICEs have been continuously improved and devel-
oped. Many research papers and patents have been
published on ORC waste heat recovery in automobile ICEs,
but there are no actual and large-scale commercial applica-
tions of ORC systems in automobiles [10–12]. One of the
critical issues is the selection and design of expanders.

As the energy output component, the form, efficiency,
and reliability of the expander greatly affect the efficiency
and technical economy of the ORC systems. At present,
the expanders applied to ORC system are mainly divided
into velocity-type and volume-type expanders [13].
Velocity-type expanders, also known as turbo expanders,
mainly include axial flow turbines and radial flow turbines
[14, 15]. The principle is to convert the heat energy from
high temperature and pressure gas to kinetic energy, then
driving the system to operate. Velocity-type expanders are
often used in large-flow and high-power ORC systems,
which have mature manufacturing processes, simple struc-
tures, and long service life. However, they have relatively
high rotational speeds and mechanical losses. Volume-type
expanders are mainly divided into scroll expanders, recipro-
cating piston expanders, screw expanders, and free piston
expanders [16–18]. The principle is to obtain the output
work of expansion ratio and enthalpy drop through volume
change. Volume-type expanders have the characteristics of
high expansion ratio and low speed, which are more suited
for small-sized ORC systems. However, this type has higher
requirements for lubrication and sealing [19].

Among these expanders, the free piston expander
(FPE) offers more underlying advantages owing to the
cancellation of the crank linkage mechanism and the
reduction of moving components, which makes it promis-
ing for ORC systems to recover waste heat from automo-
tive ICEs. The FPE was developed from the motor
compressor apparatus proposed by the authors of [20], which
eliminated the crank linkage mechanism of the reciprocating
piston expander, allowing the piston to move freely within
the cylinder. These features give it the advantages of compact
structure, good sealability, low friction, high efficiency, and
variable expansion ratio [21–24].

Heyl and Quack [25] designed the first generation of
FPEs for CO2 refrigeration cycles. Burugupally and Weiss
[26, 27] reviewed the technical challenges, opportunities,
and recent advances faced by FPEs. Meanwhile, they devel-
oped a physical model of a miniature FPE and investigated
its operating characteristics and output performance. Weiss
[28] designed a miniature FPE piezoelectric cantilever device
applied to the low-temperature energy recovery system that
transforms heat energy into electrical energy. Champagne
and Weiss [29] investigated the influences of lubricant, inlet
pressure, piston stroke, piston mass, and shape on the per-
formance of small-scale FPE. The results displayed that
thicker lubricants and low-viscosity lubricants provide better
sealing performance in the experiments. Preetham and
Weiss [30] established a nonlinear lumped-parameter model
for a small-scale FPE and investigated the key factors affect-

ing its operational performance. The results revealed that the
piston mass, external load, and input heat have important
effects on the operating frequency, output power, and ther-
mal efficiency of the FPE.

In recent decades, a new type of free piston expander-
linear generator (FPE-LG) has been developed, which
directly couples the FPE with the LG. Kodakoglu [31] pre-
sented a single-piston two-chamber FPE-LG and optimized
the sealing and expansion process of the expander. The
results demonstrated that the FPE-LG prototype can achieve
a maximum isentropic efficiency of 21.5% and generate a
maximum actual expander work of 75.13W. Ismael et al.
[32, 33] developed a double-piston air-driven FPE-LG test
rig and investigated the impacts of intake pressure and valve
opening on piston motion, output power, and system sta-
bility. The results displayed that the FPE-LG can reach a
maximum output power of 120W when the valve opening
duration is 30ms and the intake pressure is 0.8MPa.
Wang et al. [34] carried out an experimental investigation
of the dual-piston FPE-LG. The results displayed that the effi-
ciency and working frequency of this FPE-LG increase as the
driving pressure increases. The energy conversion efficiency
can reach 55% when the driving pressure is 3.75bar. Hou
et al. [18, 24] developed an FPE-LG with the intake/exhaust
valves controlled by servomotors and performed experimental
studies. Based on the first generation, Hou et al. [35, 36] devel-
oped a new dual-piston FPE-LG using a tubular linear motor
and electromagnetic valve distribution mechanism and estab-
lished the ORC-FPE-LG combined system simulation model
using Simulink and GT-Suite software. Tian et al. [37, 38] pre-
sented a single-piston FPE-LG for the small-sized ORC. The
working principle of this FPE-LG and the impacts of intake
and exhaust valve opening time on output characteristics were
studied.

Currently, most simulation and experimental studies
mainly focus on the working principle of the expander and
the influence of operating parameters on its output perfor-
mance. There are few studies on joint optimization of per-
formance prediction and optimal output of FPE under full
working conditions. On the one hand, it is difficult to accu-
rately assess the optimal operational performance of an FPE
using limited and dispersed data. On the other hand, exper-
imental studies under full working conditions have the
drawbacks of being time-consuming, susceptible to environ-
mental influences and high cost. In theoretical research,
assumptions are usually made on some parameters of FPE,
which may lead to significant differences between the simu-
lation result and the actual operating results. There is a non-
linear mapping relation between the working parameters of
the FPE and its motion characteristics and output perfor-
mance, which is difficult to analyze using traditional theoret-
ical methods.

Advances in machine learning have given new ideas and
methods for design and performance improvement in the
field of ORC and expander systems. Among them, artificial
neural networks (ANN) have been widely used due to their
advantages in self-adaption, self-learning, nonlinear map-
ping, and fault tolerance [39–41]. Yang et al. [42] established
an ANN prediction model for the diesel engine and ORC
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system and investigated the influences of key working
parameters on the output performance of entire system.
Kim et al. [43] constructed a regression model based on
ANN with two hidden layers to predict and optimize the per-
formance of the radial flow turbine and ORC system. Palagi
et al. [44] presented an ORC system optimization model on
the basis of ANN and genetic algorithm, which combines the
optimal selection of thermodynamic coefficients with the
main design parameters for a radial flow turbine. Tian et al.
[45] established a three-layer back propagation neural
network-genetic algorithm model based on the correlation
coefficient matrix for input and output variables.

The above literature review indicates that FPE-LGs are
promising expansion machinery owing to their advantages
in compact structure, low friction, and high efficiency. How-
ever, most published papers focus on basic principles and
experimental studies of the FPE-LG prototype, especially
for the single-piston free piston expander-linear generator
(SFPE-LG). There are limited studies on the performance
prediction of the SFPE-LG, and the optimal performance
of the SFPE-LG under all operating conditions has not been
studied in detail.

Moreover, conventional thermodynamic models do not
perform well in predicting SFPE-LG characteristics and
therefore cannot provide guidelines for improving output
performance. In this paper, a back propagation neural net-
work (BPNN) prediction model for the SFPE-LG was
developed and verified based on the obtained experimental
data under time and position control strategies. The influ-
ences of the model parameters such as the hidden layer,
transfer function, training function, hidden layer nodes,
and learning rate on the learning ability and predictive
performance of this BPNN model were discussed. Based
on the analysis results, the optimal model parameters were
determined. Finally, an optimization model for the output
power of the SFPE-LG was built by combining the genetic
algorithm (GA) and BPNN model. The maximum output
power and corresponding key working parameters of the
SFPE-LG under different operation strategies were
obtained.

2. SFPE-LG Prototype and Test Bench

2.1. Configuration of the SFPE-LG. The LG plays a pivotal
role in the SFPE-LG system as it significantly impacts the
overall performance regarding power generation efficiency,
rapid response times, and overall control. Generally, LGs
can be classified into three types: permanent magnet linear
generator (PMLG), linear induction generator, and linear
switched reluctance generator [46]. Because of the advan-
tages in high power density and efficiency, PMLGs are
widely used in different systems that utilize the energy stored
during the linear motion to convert to electricity. PMLGs
can also be divided into the single-sided flat type, double-
sided flat type, tubular type, and other special forms. Among
these, the tubular PMLG is considered more efficient
because it has higher power density per volume. Thus, a
tubular PMLG was selected in this study. According to the
different types of movers, tubular PMLGs can be divided
into moving magnetic and moving coil types. The moving
coil PMLG requires a guide wire to connect the windings
and has a lower thrust density compared to the moving mag-
net type. Consequently, the moving magnetic tubular PMLG
was adopted to match with the FPE. The main structure is
displayed in Figure 1(a). The basic technical parameters
are listed in Table 1.

Figure 1(b) presents the three-dimensional structures of
this FPE, which comprises various parts such as the piston,
buffer sleeve, piston rod, bearing, cushion valve, cylinder

Stator core

Mover

Stator coils

(a) Tubular PMLG

Cylinder barrel

Front air port

Rear air port

Rear end cap

Piston

Bufer sleeve

Front end capPiston rod

Cushion valve

(b) FPE

Figure 1: Structures of the SFPE-LG prototype.

Table 1: Basic parameters of the PMLG.

Parameters Values Units

Thrust constant 75 N/A

Peak velocity 3.5 m/s

Peak thrust 1500 N

Induction 40 mH

Mover mass 3.7 kg

Peak current 20 A
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barrel, air ports, sealing ring, and front and rear end caps. To
reduce the mass of moving parts, the piston was made of
forged aluminum alloy, the piston rod was made of high
alloy steel, and the buffer sleeve was made of polyoxymethy-
lene material. The buffer sleeves were processed on both
sides of the piston to realize the self-buffering and anticolli-
sion functions. The main technical parameters of the FPE
are listed in Table 2.

Figure 2 shows the SFPE-LG prototype, which was
formed by connecting the piston and mover through
the connecting rod. The only moving part of the SFPE-
LG was called the piston mover assembly (PMA), which
consisted of the piston, mover, piston rod, the bracket
of the LG mover, and the connecting rod. The reading
head of the grating displacement sensor was positioned
on the PMA, and the grating ruler was installed on the
platform to monitor the displacement of the PMA in real
time. The cylinder of the FPE was split into two cham-
bers by the piston, the right side of piston was defined
as chamber A, and the left side of piston was defined
as chamber B.

The position of the piston closest to the rear end cover in
the FPE (the position where the piston is located when the
volume of chamber A is 0) is defined as zero displacement.
In a certain working cycle, when the piston moves to the
minimum volume for chamber A, the position of the piston
is defined as the top dead center (TDC). When the piston
runs to the maximum volume for chamber A, the position
of the piston is defined as the bottom dead center (BDC).
Since the SFPE-LG is not limited by the crankshaft connect-
ing rod mechanism, the TDC/BDC of the piston is uncer-
tain. Thus, the actual stroke for the piston is also different
under different working conditions. The distance between
the TDC and BDC is defined as the actual stroke (Sa). When
the position control strategy is adopted, there are two preset
position points P1 and P2 at both ends of the FPE. The
values of P1 and P2 can be freely adjusted according to dif-
ferent working conditions. The distance between P1 and P2
is defined as the preset stroke (Sp), expressed by P1 − P2
(mm) in the following text. The maximum stroke (Sm) of
the piston is 70mm.

2.2. SFPE-LG Test Bench. Figures 3 and 4 show the sche-
matic and physical diagrams of the SFPE-LG test bench,
which mainly consists of the SFPE-LG prototype, an air
compressor, a dryer, a filter, a pressure regulator, two flow-
meters, four solenoid valves, sliding rheostat, acquisition
controller, computer, rectifier circuit, and various sensors.
The air compressor is adopted to provide high-pressure
gas, and the dryer and filter are used to remove moisture
and impurities in the high-pressure gas. The pressure regula-
tor is adopted to regulate the gas pressure entering the FPE.
The electrical energy produced by the LG is consumed by
the sliding rheostat after being processed by the rectifier cir-
cuit. The collected information mainly includes the cylinder
pressure, intake and exhaust temperature, flow rate, dis-
placement of the PMA, output voltage, current, and power.
The acquisition controller controls the opening and closing
of the solenoid valves according to the collected information,

thus realizing the stable running of the SFPE-LG. The
detailed introduction and working principle of the SFPE-
LG can be found in our previous papers [47, 48].

2.3. Operation Strategy. Since the SFPE-LG abandons the
crank linkage mechanism, the movement of PMA has suffi-
cient “freedom,” and the TDC/BDC may change under dif-
ferent working cycles. Therefore, precise control for the
motion of PMA is a challenge for such SFPE-LGs. The con-
trol target is to keep a stable operation and prevent collisions
between the piston and end cap. Moreover, the intake and
exhaust timing control strategies should maximize the out-
put power and energy conversion efficiency of SFPE-LG.
On the basis of the existing valve distribution system and
LabVIEW software, two sets of intake and exhaust timing
control strategies were proposed, time control strategy
(TCS) and position control strategy (PCS), both of which
realized stable operation of the SFPE-LG prototype. In con-
junction with Figure 3, the working process is described in
detail as follows.

Time control strategy: when the SFPE-LG starts to work,
solenoid valves V1 and V4 are opened, and V3 and V2 are
closed. The high-pressure gas flows into chamber A through
the rear air port and pushes the piston to begin moving from
TDC to BDC. After intake duration tin, solenoid valve V1 is
closed and other solenoid valves remain unchanged. The
high-pressure gas expands freely in chamber A and con-
tinues to push the piston. The exhaust gas in chamber B
flows out through the front air port. After expansion dura-
tion tex, solenoid valves V2 and V3 are opened, and V1
and V4 are closed. The high-pressure gas flows into chamber
B through the front air port and pushes the piston to begin
moving from BDC to TDC. After intake duration tin, sole-
noid valve V2 is closed and other solenoid valves remain
invariable. The high-pressure gas expands freely in chamber
B and continues to drive the piston. After expansion dura-
tion tex, solenoid valves V1 and V4 are opened, V3 and V2
are closed, and the next working cycle starts.

Position control strategy: when the SFPE-LG starts to
operate, solenoid valves V1 and V4 are opened, and V3
and V2 are closed. The high-pressure gas flows into chamber
A through the rear air port, and the piston starts to move
from its TDC to BDC. After intake duration tin, solenoid
valve V1 is closed and other solenoid valves remain
unchanged. The high-pressure gas expands freely in cham-
ber A and continues to push the piston. When the piston
reaches the preset position point P2, solenoid valves V2

Table 2: Basic parameters of the FPE.

Parameters Value Unit

Piston mass 0.32 kg

Piston rod diameter 16 mm

Working pressure 0~ 1.2 MPa

Maximal stroke 70 mm

Cylinder bore 40 mm

Working temperature -20~80 °C

4 International Journal of Energy Research



and V3 are opened, and V1 and V4 are closed. The high-
pressure gas starts to flow into chamber B and then drives
the piston to move from its BDC to TDC. Similarly, after
intake duration tin, solenoid valve V2 is closed and other
solenoid valves remain invariable. The high-pressure gas
expands freely in chamber B and continues to drive the pis-
ton. When the piston reaches the preset position point P1,
solenoid valves V1 and V4 are opened, V3 and V2 are
closed, and the next working cycle starts.

3. Prediction Model and Parameter Analysis

The ANNs are the mathematical models that imitate the
behavioral characteristics of animal neural networks for

distributed parallel information processing. The ANNs
have self-learning and self-adaptive capabilities, which
can analyze and grasp the potential laws between the cor-
responding input and output data provided in advance.
Based on the obtained laws, the desired output results
can be predicted according to the input data. Similar to
the biological nervous systems, the ANNs are also com-
posed of artificial neurons as the basic units. Each neuron
of the ANN stands for a specific function, that is, the acti-
vation function. The connection between every two neu-
rons provides the memory of ANN and is represented by
the weights. Therefore, the output results of this ANN
model vary depending on the connection methods, weight
values, and activation functions.

Sp-Preset stroke

Sp

Sa

Sm

Sa-Actual stroke

+x 0

Linear generator Free piston expansion

B

P2 P1

A

Sm-Maximum stroke 

0-Zero displacement

Figure 2: Diagram of the SFPE-LG prototype.
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Figure 3: Schematic of the SFPE-LG test bench.
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Among many ANNs, BPNN has attracted much atten-
tion due to its clear physical concepts, solid theoretical
foundation, and good adaptability. BPNN is a multilayer
forward neural network that includes an input layer, one
or more hidden layers, and an output layer. These layers
are fully interconnected, while the same layers are not
connected to each other. The fundamental principle of
BPNN divides into two procedures: the forward propaga-
tion from the input layer to the output layer is adopted

to analyze the error, and the back propagation from the
output layer to the input layer is used to change the
weights and biases. After extensive learning and training,
the BPNN model stops iterating and determines the opti-
mum weights and biases when the errors achieve the
expected values.

GA is a parallel random search optimization method
inspired by natural genetic mechanisms and biological evo-
lution. This algorithm is used to achieve the optimum
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Resistance box
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Free piston
expander

Linear generator

High-pressure gas

Pressure
regulator

Acquisition controller

Computer

Figure 4: Physical map of the SFPE-LG test bench.
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solution for an optimization problem. Evolution is an itera-
tive process, and the first generation is generated randomly.
The fitness function in each generation is evaluated. The
evolution process will stop when the maximum number of
generations or satisfactory fitness is achieved. To make up
for the shortcomings in experimental and simulation stud-
ies, the BPNN model was coupled with the GA to establish
a nonlinear relationship between the output performance
and working parameters of SFPE-LG, thereby predicting
and optimizing the maximum output power of SFPE-LG
under all working conditions.

3.1. BPNN Model Construction. Figure 5 shows the flow
chart of the performance prediction and optimization calcu-
lation for the SFPE-LG using the BPNN model and GA.
Firstly, the performance prediction model of SFPE-LG was
constructed according to the experimental data. Secondly,
the effects of different factors on the predictive ability were
investigated. The optimal parameter settings for the BPNN
model were determined. Then, the established BPNN model
was trained until the error requirement was satisfied. Finally,
the prediction model was coupled to a GA for predicting and
optimizing the maximum output power of the SFPE-LG at
full working conditions.

The stable operation and maximum output power of the
SFPE-LG involve the synergistic changes of multiple operating
parameters. When the SFPE-LG operated at TCS, five key
operating parameters, including inlet pressure, intake dura-
tion, load resistance, expansion duration, and running time,
were chosen as the input variables of this BPNNmodel. When
the SFPE-LG run at PCS, five key operating parameters,
including intake duration, inlet pressure, load resistance, pre-
set stroke, and running time, were used as the input variables
of this BPNN model. In these two control strategies, six key
output parameters such as cylinder pressure in chambers A
and B, output power, output voltage, displacement, and veloc-
ity of the PMA, were selected as output layer variables.

For the hidden layer, there is no widely recognized
method for selecting its number of layers. Researchers need

to determine different network structures for specific
research problems [49, 50]. Based on the preliminary trial
calculations and comprehensive consideration of prediction
accuracy and training time, two hidden layers were selected
in this study. Furthermore, there is also no unified method
to determine the optimal number of hidden layer nodes, so
the effects of hidden layer nodes number on the predictive
ability of this BPNN model were explored. To simplify this
calculation, the number of nodes in both hidden layers was
set to be the same. Finally, the established BPNN topology
of the SFPE-LG is displayed in Figure 6.

3.2. Model Evaluation Criteria. In this study, six commonly
used indicators were selected to evaluate the training and
prediction accuracy of the established BPNN model. These
indicators include the mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), root
mean absolute error (RMAE), mean absolute percentage
error (MAPE), and correlation coefficient (R). The mathe-
matical expressions for these indicators are represented by
the following equations [51, 52].

MSE =
1
N
〠
N

i=1
yi − ŷi

2,

RMSE =
1
N
〠
N

i=1
yi − ŷi

2,

MAE =
1
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〠
N

i=1
yi − ŷi ,

RMAE =
1
N
〠
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Figure 6: The BPNN topology of the SFPE-LG.
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where N represents the sample number, yi signifies the pre-
dictive results of the BPNN model, ŷi is the experimental
result, y indicates the average value of the prediction results,
and ŷ signifies the average value of the experimental result.

The smaller the MSE and RMSE values, the smaller the
fluctuation in the error vector and the more stable the out-
put results. The smaller the MAE, RMAE, and MAPE values
are, the smaller the difference between the predictive results
and the experimental results is, indicating better prediction
performance. The correlation coefficient indicates the degree
of linear correlation between the predictive results and
experimental results, and its value closer to one is better.

3.3. Transfer Function. The transfer function (activation
function) is an important part of this BPNN model. The
selection of transfer function includes the selection of hidden
layer function and output layer function. The hidden layers
usually use a sigmoid function as the transfer function, while
the output layer usually uses the linear transfer function, that
is, purelin function. The sigmoid transfer function has two
functions, the logsig function and the tansig function, which
can map the training data to intervals [0, 1] and [-1, 1],
respectively [53].

Logsig function y =
1

1 + e−x
,

Tansig function y =
2

1 + e−2x
− 1,

Purelin function y = x

2

The transfer function should be selected according to the
specific situation in practical applications. Generally, this
choice mainly depends on the relationship between the input
and output data. If the output values do not contain negative
values, the BPNN model can adopt the logsig function. If the

output values contain some negative values, the tansig func-
tion can be used for the transfer function. In the training
data samples selected in this study, a portion of the output
values for the piston velocity was negative. Therefore, the
tansig function was selected as the transfer function for the
hidden layer in the proposed BPNN model. The purelin
function was selected as the transfer function for the output
layer.

3.4. Training Function.Many types of training functions can
be applied to BPNN models, and different training functions
have their advantages and disadvantages. Thus, it is difficult
to choose a suitable training function for the BPNN model
without comparative screening. In this section, the impact
of the training function on MSE and correlation coefficient
under these two control strategies is investigated, as shown
in Figures 7 and 8. Seven training functions are selected for
the BPNN model of SFPE-LG, as follows: trainbfg, trainscg,
traincgp, traincgf, trainrp, traincgb, and trainlm.

Trainbfg is a training function for the BFGS quasi New-
ton algorithm, which requires relatively few iterations and
has a fast convergence speed. Traincgf, traincgp, traincgb,
and trainscg are four conjugate gradient algorithm func-
tions. Traincgf is a Fletcher-Reeves conjugate gradient algo-
rithm function with minimal storage requirements.
Traincgp is a function of the Polak-Ribiere conjugate gradi-
ent algorithm. Traincgb is the Powell-Beale conjugate gradi-
ent algorithm function, which determines whether the
adjustment direction of the weights and thresholds returns
to the negative gradient direction based on the orthogonality
of the front and rear gradients. Trainscg represents the pro-
portional conjugate gradient algorithm that does not need to
compute the research direction. Trainrp is an elastic gradient
descent algorithm function, which can eliminate the influ-
ence of gradient modulus on network training and improve
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Figure 7: The influences of training function on BPNN model under the TCS.
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Figure 9: Effects of HLN and LR on prediction accuracy under the TCS.
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training speed. Trainlm represents the Levenberg-
Marquardt optimization algorithm, which is the most com-
monly adopted training function in BPNN models.

It can be seen from Figures 7 and 8 that this BPNN
model has the highest predictive accuracy when the trainlm
was chosen as the training function at different hidden layer
node (HLN) numbers and learning rates (LR). The worst
model prediction accuracy was obtained by traincgf. When
the number of HLN was 30 and the LR was 0.5, the BPNN
model of SFPE-LG achieved the minimum MSE of 2 282 ×
10−4 and the maximum correlation coefficient of 0.9997.
Therefore, trainlm was adopted as the training function
under both time and position control strategies.

3.5. Hidden Layer Nodes and Learning Rate. In the BPNN
model, the number of nodes for this input and output
layers is determined, while the number of HLN is
unknown. However, the number of HLN is a critical
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Figure 10: Effects of HLN and LR on prediction accuracy under the PCS.

Table 3: Parameters of the BPNN model for SFPE-LG.

Items Values

Training function Trainlm

Input variables 5

Transfer function for hidden layer Tansig

Learning rate 0.4

Transfer function for output layer Purelin

Maximum training times 1000

Number of hidden layers 2

Output variables 6

Training target accuracy 10-4

Number of hidden layer nodes 32
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parameter among the many parameters of the BPNN
model, which has a significant influence on the prediction
performance. A small number of HLN will reduce the
learning ability of this BPNN model, which is insufficient
to establish the nonlinear mapping regulations involved
in the experimental data. A large number of HLN will
not only increase the learning time of this model but also
lead to overfitting problems, thereby reducing the general-
ization ability of this BPNN model. Currently, there are no
scientific rules to determine the number of HLN. Gener-
ally, the initial value of the HLN number is obtained
according to an empirical formula, and then, the number
of nodes is gradually increased or decreased based on this
value to compare the predictive performance of each
BPNN model. Finally, few nodes as possible are selected
as the number of HLN for this BPNN model under the
premise of satisfying the predictive accuracy.

In the BPNN model, another important parameter is the
learning rate, which indicates the magnitude of the change
for the weight coefficient generated in each cycle. The larger
the learning rate value, the greater the weight change and the
faster the convergence speed. If the LR is too large, it will
cause the model to oscillate or fail to converge. If the LR is
small, the convergence speed will be slowed down, but it
can prevent the BPNN model from falling into local conver-
gence, and the model will eventually tend to the minimum
error. Therefore, to ensure the stability and predictive ability
of this BPNN model, a small learning rate should be selected,
typically between 0.01 and 0.7.

Figure 9 depicts the effects of HLN number and LR on
the predictive accuracy of this BPNN model under the

TCS. The results show that as the number of hidden layer
nodes increases from 23 to 33 with an interval of 1 and
the LR changes from 0.9 to 0.05, the MSE of the BPNN
model gradually decreases, and the correlation coefficient
gradually increases and approaches 1. These indicate that
the predictive performance of the proposed BPNN mode
is getting better gradually. Generally, a smaller MSE corre-
sponds to a higher correlation coefficient, and the effects
of the number for HLN on the MSE and correlation coef-
ficient are more significant than that of the learning rate.
When the number of HLN is greater than 30, no matter
how the learning rate changes, the BPNN model of
SFPE-LG always has a very low MSE and a high correla-
tion coefficient. When HLN = 31 and LR = 0 8, or HLN
= 32 and LR = 0 1, or HLN = 32 and LR = 0 4, the MSE
of the BPNN model gets the minimum value of
0.000167, and the correlation coefficient achieves the max-
imum value of 0.99972.

Figure 10 demonstrates the effects of HLN number and
LR on the predictive accuracy of this BPNN model under
the PCS. When the SFPE-LG operates at the PCS, the train-
ing results are similar to those of the TCS. When the number
of hidden layer nodes increases from 23 to 33 and the learn-
ing rate changes from 0.9 to 0.05, the MSE of the BPNN
model gradually decreases, and the correlation coefficient
gradually increases. This shows that the prediction perfor-
mance of the proposed BPNN model is gradually improving.
When HLN = 32 and LR = 0 4 or HLN = 32 and LR = 0 5,
the MSE of the BPNN model has a minimum value of
0.00017, and the correlation coefficient has a maximum
value of 0.99971. These working cases suggest that the

Table 4: Experimental conditions of SFPE-LG prototype used for model prediction and validation.

No. Inlet pressure (MPa) Intake duration (ms) Load resistance (Ω) Expansion duration (ms) Preset stroke (mm)

1 0.3 15 50 70 0

2 0.4 20 70 90 0

3 0.5 25 90 105 0

4 0.6 30 110 120 0

5 0.7 15 70 120 0

6 0.3 20 50 105 0

7 0.4 25 110 90 0

8 0.5 30 90 70 0

9 0.6 15 110 70 0

10 0.7 20 50 120 0

11 0.4 20 40 0 10-60

12 0.4 25 60 0 15-55

13 0.5 30 80 0 20-50

14 0.5 35 100 0 15-55

15 0.6 20 100 0 10-60

16 0.6 25 80 0 20-50

17 0.7 30 60 0 20-50

18 0.7 35 40 0 15-55

19 0.4 20 80 0 10-60

20 0.5 25 100 0 15-55

… … … … … …
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established BPNN model of SFPE-LG has high accuracy in
predicting the experimental data.

To sum up, the number of hidden layer nodes and the
learning rate for the BPNN model of SFPE-LG are uniformly
set to 32 and 0.4. In this way, the BPNN model has high pre-
diction accuracy under both control strategies. Table 3 lists the
detailed parameters of the established BPNN model, and the
remaining parameters not listed adopt the default values.

4. Results and Discussion

4.1. Training Accuracy of the BPNN Model. Before using this
established BPNN model to predict and optimize the perfor-
mance of SFPE-LG, its training and prediction accuracy
need to be verified. The S-fold cross-validation algorithm
randomly divides the dataset into S disjoint subsets, where
the (S-1) subsets are called the training set, and the remain-
ing one subset is called the validation set. During the model
training process, the training set is used to train the model,

and then, the validation set is used to verify the trained
model. Among the S subsets, each subset will be selected as
validation data for the above training process. In this study,
5-fold cross-validation was chosen to check the robustness
of the BPNN model.

The data used for the training, validation, and testing of
the BPNN were obtained from the experimental platform
shown in Figure 4, and some specific experimental condi-
tions are shown in Table 4. When the SFPE-LG adopts the
TCS, 6455 data points were selected and randomly divided
into 5 datasets, 4 datasets of which were used to train the
BPNN model, and the remaining one dataset (1291 data
points) was adopted to verify the training accuracy of the
BPNN model. Under the PCS, 6195 data points were
selected and randomly divided into 5 datasets, 4 datasets of
which were used to train the BPNN model, and the remain-
ing one dataset (1239 data points) was used to verify the
training accuracy of the BPNN model. The training error
during S training process is evaluated, and the model with

Table 5: Fivefold cross-validation results under the TCS.

Fivefold results Parameters MSE RMSE MAE RMAE MAPE R

First

Cylinder pressure A 0.0019 0.0431 0.0240 0.1550 1.29% 0.9958

Cylinder pressure B 0.0012 0.0345 0.0234 0.1530 1.20% 0.9982

Displacement 0.1034 0.3216 0.2533 0.5033 0.68% 0.9994

Voltage 0.3556 0.5963 0.4550 0.6745 2.75% 0.9970

Power 0.1484 0.3853 0.2914 0.5398 23.41% 0.9983

Velocity 0.0001 0.0097 0.0070 0.0835 0.78% 0.9992

Second

Cylinder pressure A 0.0016 0.0395 0.0224 0.1498 1.15% 0.9967

Cylinder pressure B 0.0015 0.0389 0.0248 0.1574 1.28% 0.9977

Displacement 0.0898 0.2996 0.2356 0.4854 0.64% 0.9995

Voltage 0.3495 0.5912 0.4339 0.6587 2.87% 0.9973

Power 0.1327 0.3643 0.2780 0.5272 12.26% 0.9987

Velocity 0.0001 0.0092 0.0071 0.0840 8.19% 0.9993

Third

Cylinder pressure A 0.0022 0.0472 0.0240 0.1548 1.21% 0.9955

Cylinder pressure B 0.0017 0.0416 0.0234 0.1531 1.20% 0.9974

Displacement 0.0926 0.3044 0.2417 0.4916 0.66% 0.9994

Voltage 0.3848 0.6204 0.4681 0.6842 3.00% 0.9970

Power 0.1630 0.4037 0.3059 0.5530 1.57% 0.9984

Velocity 0.0001 0.0087 0.0066 0.0811 4.15% 0.9993

Fourth

Cylinder pressure A 0.0013 0.0356 0.0197 0.1404 1.06% 0.9972

Cylinder pressure B 0.0012 0.0345 0.0220 0.1484 1.13% 0.9981

Displacement 0.0847 0.2911 0.2255 0.4749 0.60% 0.9995

Voltage 0.3270 0.5719 0.4389 0.6625 2.99% 0.9974

Power 0.1264 0.3556 0.2729 0.5224 11.27% 0.9987

Velocity 0.0001 0.0091 0.0069 0.0830 9.39% 0.9993

Fifth

Cylinder pressure A 0.0016 0.0399 0.0214 0.1462 1.13% 0.9965

Cylinder pressure B 0.0017 0.0417 0.0258 0.1608 1.25% 0.9977

Displacement 0.0879 0.2964 0.2280 0.4775 0.60% 0.9995

Voltage 0.3474 0.5894 0.4566 0.6757 2.93% 0.9970

Power 0.1609 0.4012 0.3006 0.5483 10.79% 0.9982

Velocity 0.0001 0.0099 0.0071 0.0841 4.76% 0.9991
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the smallest prediction error is selected. Finally, the predic-
tion ability of the BPNN model was evaluated using the test
set.

Table 5 shows the training accuracy of the BPNN model
using 5-fold cross-validation under the TCS. The values of
MSE and MAE with different folds are both small, and the
correlation coefficient is close to 1. These results indicate
that the trained BPNN model has a high prediction accuracy
when the SFPE-LG is run under the TCS. Besides, the BPNN
model has the best prediction accuracy at the fourth cross-
validation. In the fourth training process, the correlation
coefficients obtained from the linear regression analysis
between the prediction and experimental results are 0.9972,
0.9981, 0.9995, 0.9974, 0.9987, and 0.9993 for the cylinder
pressure in chamber A, cylinder pressure in chamber B, dis-
placement of the PMA, output voltage, output power, and
velocity of the PMA, respectively.

Table 6 shows the training accuracy of the BPNN model
using 5-fold cross-validation under the PCS. In all cross-

validation results, the values of MSE, RMSE, MAE, RMAE,
and MAPE are very small, and the correlation coefficients
are all close to 1. These results indicate that the established
BPNN model of SFPE-LG has a high prediction accuracy
when it runs at the PCS. The mean values of MAPE obtained
from the 5-fold cross-validation are 1.24%, 1.50%, 0.75%,
2.70%, 5.22%, and 1.59% for the cylinder pressure of cham-
ber A, cylinder pressure of chamber B, displacement of the
PMA, output voltage, output power, and velocity of the
PMA, respectively. Overall, the training results of the estab-
lished BPNN model are in very high agreement with the
experimental data under the two control strategies. In other
words, the established BPNN model shows strong learning
ability and generalization performance.

4.2. Prediction Performance of the BPNN Model. The estab-
lished BPNN model is used to predict the operating perfor-
mance of the SFPE-LG when operating at the TCS with an
inlet pressure of 0.5MPa, an intake duration of 30ms, an

Table 6: Fivefold cross-validation results under the PCS.

Fivefold results Parameters MSE RMSE MAE RMAE MAPE R

First

Cylinder pressure A 0.0014 0.0380 0.0209 0.1445 1.02% 0.9978

Cylinder pressure B 0.0016 0.0396 0.0244 0.1562 1.12% 0.9980

Displacement 0.0615 0.2479 0.1875 0.4330 0.74% 0.9997

Voltage 0.4629 0.6803 0.5317 0.7292 2.43% 0.9985

Power 0.1769 0.4205 0.2947 0.5429 8.13% 0.9989

Velocity 0.0001 0.0100 0.0074 0.0860 0.42% 0.9995

Second

Cylinder pressure A 0.0016 0.0398 0.0257 0.1602 1.30% 0.9975

Cylinder pressure B 0.0029 0.0542 0.0330 0.1816 1.70% 0.9964

Displacement 0.0531 0.2303 0.1776 0.4214 0.69% 0.9998

Voltage 0.5800 0.7616 0.5878 0.7667 2.80% 0.9983

Power 0.1516 0.3894 0.2865 0.5353 3.75% 0.9991

Velocity 0.0001 0.0098 0.0072 0.0848 0.68% 0.9995

Third

Cylinder pressure A 0.0040 0.0633 0.0281 0.1677 1.38% 0.9940

Cylinder pressure B 0.0030 0.0548 0.0333 0.1824 1.65% 0.9963

Displacement 0.1062 0.3258 0.2297 0.4793 0.89% 0.9996

Voltage 0.9066 0.9521 0.6614 0.8132 2.99% 0.9972

Power 0.2686 0.5182 0.3459 0.5881 1.21% 0.9984

Velocity 0.0002 0.0139 0.0089 0.0946 5.12% 0.9990

Fourth

Cylinder pressure A 0.0018 0.0422 0.0230 0.1518 1.17% 0.9972

Cylinder pressure B 0.0022 0.0464 0.0297 0.1724 1.48% 0.9975

Displacement 0.0526 0.2294 0.1774 0.4212 0.69% 0.9998

Voltage 0.5867 0.7660 0.5735 0.7573 2.54% 0.9982

Power 0.2121 0.4606 0.3289 0.5735 12.6% 0.9987

Velocity 0.0001 0.0104 0.0078 0.0886 0.25% 0.9994

Fifth

Cylinder pressure A 0.0026 0.0513 0.0269 0.1641 1.34% 0.9961

Cylinder pressure B 0.0028 0.0533 0.0321 0.1793 1.53% 0.9968

Displacement 0.0688 0.2624 0.1978 0.4448 0.74% 0.9997

Voltage 0.6793 0.8242 0.5958 0.7719 2.72% 0.9980

Power 0.2937 0.5420 0.3839 0.6196 0.41% 0.9983

Velocity 0.0002 0.0133 0.0091 0.0954 1.48% 0.9991
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expansion duration of 70ms, and a load resistance of 50Ω.
Figure 11 demonstrates the comparison of the prediction
results with the experimental results for one working cycle.
The comparison results show that the prediction curves of
these six output variables are consistent with the experimen-

tal curves during one working cycle, and only obvious differ-
ences are found at some inflection points.

Figure 12 shows the absolute errors between the predic-
tion and experimental results for the six output variables.
The constructed BPNN model exhibits high prediction
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Figure 11: Comparison of experimental and prediction results under the TCS.
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accuracy as a whole, with significant deviations in prediction
results only at certain points. The absolute errors of pre-
dicted cylinder pressures in chambers A and B are mostly
less than 0.008MPa, and it can be found that the places with
larger errors appear near the peak cylinder pressure. The
absolute error of PMA’s displacement is below 0.5mm, the
absolute error of output voltage is between -0.7V and 1V,
the absolute error of output power is basically within
±0.8W, and the absolute error of PMA’s velocity is between
-0.01m/s and 0.02m/s. The error results indicate that the
predictive ability of the BPNN model for the SFPE-LG under
the TCS is considered acceptable.

Figure 13 shows the comparison of experimental and
predicted results when the SFPE-LG operates under the
PCS with an inlet pressure of 0.7MPa, an intake duration
of 20ms, a load resistance of 100Ω, and a preset stroke of
20-50mm. Figure 14 gives the absolute errors between the
prediction and experimental curves of the six output vari-
ables. The data shows that the predictive values of this
BPNN model have good consistency with the experimental
results under the PCS, with significant deviations only
occurring at some inflection points. The absolute error of
the cylinder pressures in working chambers A and B is
mostly within ±0.007MPa, the absolute error for the PMA’s
displacement is between -0.7mm and 0.8mm, the absolute
error of the output voltage is within ±1.2V, the absolute
error of the output power is between -1W and 0.5W, and

the absolute error for the PMA’s velocity is mostly within
±0.016m/s. These results indicate that the constructed
BPNN model can be confidently adopted for predicting the
output performance of SFPE-LG under PCS.

Table 7 lists the comparison between experimental and
prediction results in terms of quantitative analysis (MSE,
MAE, RMSE, and RMAE). These statistical values are all
minimal, indicating that the developed BPNN model can
better predict the output performance of the SFPE-LG. In
conclusion, the established BPNN model can be applied to
SFPE-LG running under TCS and PCS at the same time.
However, there are differences in prediction accuracy for dif-
ferent output parameters.

4.3. Hypothesis Testing (Wilcoxon Signed-Rank Test). The
Wilcoxon signed-rank test is used to perform hypothesis
testing on the accuracy of the prediction results for the
established BPNN model. The Wilcoxon signed-rank test,
also known as the Wilcoxon signed-rank sum test and the
Wilcoxon matched-paired test, is a nonparametric statistical
test used to compare two dependent samples (namely, two
groups consisting of matched or paired data points). Like
other nonparametric tests, this test assumes that the data
being analyzed does not require a specific distribution, e.g.,
whether or not it takes a normal distribution [54, 55].

The Wilcoxon signed-rank test requires two observation
samples, such as the predicted results and actual results with
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N samples. In this study, the actual experimental results and
predicted results are considered as two samples for the Wil-
coxon signed-rank test. This test substantiates the proposed

BPNN model to contribute mean difference between pre-
dicted and experimental results. The Wilcoxon signed-rank
test is used to state the acceptance of null (H0) and
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Figure 13: Comparison of experimental and prediction results under the PCS.
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alternative (H1) hypotheses. The null and alternative
hypotheses adopted for this work are as follows.

H0. The mean different is equal to zero.
H1. The mean difference is not equal to zero.
The test statistic for the Wilcoxon signed-rank test is W,

defined as W + (sum of the positive ranks) and W − (sum

of the negative ranks). If the null hypothesis is true, we
would expect to see similar numbers of lower and higher
ranks that are both positive and negative (that is, W + and
W − are similar). If a pair of scores are equal (the same
value), then they are considered a tie and dropped from
the analysis. Moreover, the critical considerations for
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Figure 14: Absolute error of experimental and prediction results under the PCS.

Table 7: Comparative analysis of the BPNN model prediction results.

Parameters Strategy MSE MAE RMSE RMAE

Cylinder pressure A
TCS 0.0000067 0.0017611 0.0025909 0.0419656

PCS 0.0000072 0.0018398 0.0026849 0.0428924

Cylinder pressure B
TCS 0.0000163 0.0030739 0.0040333 0.0554431

PCS 0.0000142 0.0023757 0.0037683 0.0487415

Displacement
TCS 0.0155932 0.0963890 0.1248725 0.3104658

PCS 0.0989934 0.2567950 0.3146321 0.5067494

Voltage
TCS 0.1708170 0.3193996 0.4133002 0.5651545

PCS 0.6159420 0.6022896 0.7848197 0.7760732

Power
TCS 0.0703732 0.2029715 0.2652795 0.4505236

PCS 0.1110836 0.2566602 0.3332921 0.5066165

Velocity
TCS 0.0000614 0.0059993 0.0078326 0.0774551

PCS 0.0001166 0.0085662 0.0107977 0.0925540
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rejecting or accepting the null hypothesis depend on the Z
statistic value and the significance level of 5% (α = 0 05). A
P value larger than the significance level fails to reject the
null hypothesis, whereas a P value smaller than the signifi-
cance level rejects the null hypothesis.

Table 8 shows the Wilcoxon signed-rank test results
when the BPNN model is used to predict the output perfor-
mance of SFPE-LG under the TCS. The P values for cylinder
pressures A and B, displacement, and velocity are less than
0.05, which indicates that there is evidence to reject the null
hypothesis with a significance level of 95%. The P values for
the output voltage and power are greater than 0.05, which
indicates acceptance of the null hypothesis. Therefore, the
cylinder pressures in chambers A and B, displacement, and
velocity of the PMA predicted by the established BPNN
model are significantly different from the experimental
results under the TCS, while the predicted output voltage
and power results are not significantly different from the
experimental results.

Table 9 tabulates the Wilcoxon signed-rank test results
when the BPNN model is used to predict the output results
of SFPE-LG under the PCS. The P values for cylinder pres-
sures A and displacement are less than 0.05, which indicates
the evidence to reject the null hypothesis at a significance
level of 95%. The P values of the cylinder pressures B, veloc-
ity, output voltage, and power are greater than 0.05, which
suggests acceptance of the null hypothesis. Therefore, the
cylinder pressures in chamber A and displacement of the
PMA predicted by the BPNN model are significantly differ-
ent from the experimental results under the PCS. The other
predicted results are not significantly different from the

experimental results. This also reveals that the prediction
accuracy of the BPNN model for the output performance
of SFPE-LG running under the PCS is significantly better
than the output results running under the TCS. The positive
(W + ) and negative (W − ) ranks of cylinder pressure B,
voltage, and velocity are approximately equal, which shows
that the established BPNN model has higher prediction
accuracy for cylinder pressure in chamber B, output voltage,
and velocity of the PMA under the PCS.

4.4. Optimization of Output Power. The motion characteris-
tics and output performance for the SFPE-LG are affected by
multiple factors under different working conditions based on
experimental data [47, 48]. The output power is a critical
evaluation index considered in engineering applications.
To get optimal system performance and working parame-
ters, the maximum output power of SFPE-LG was optimized
by using this established BPNN model coupled with GA.
The output power prediction model of the SFPE-LG can be

Table 8: The Wilcoxon signed-rank test results under the TCS.

Parameters Rank N Mean rank Z statistic P value

Cylinder pressure A

W − 29 44.34

-4.038 ≤0.001W + 69 51.667

Ties 1

Cylinder pressure B

W − 15 59.97

-5.499 ≤0.001W + 84 48.22

Ties 0

Displacement

W − 31 34.84

-4.869 ≤0.001W + 68 56.91

Ties 0

Voltage

W − 48 43.88

-1.288 0.198W + 51 55.76

Ties 0

Power

W − 54 52.31

-1.222 0.222W + 45 47.22

Ties 0

Velocity

W − 40 39.83

-3.078 0.002W + 59 56.9

Ties 0

Table 9: The Wilcoxon signed-rank test under the PCS.

Parameters
Rank
(R)

N
Mean
rank

Z
statistic

P value

Cylinder pressure A

W − 53 44.92

-3.141 0.002W + 29 35.24

Ties 0 —

Cylinder pressure B

W − 42 40.75

-0.046 0.963W + 40 42.29

Ties 0 —

Displacement

W − 57 43.86

-3.691 ≤0.001W + 25 36.12

Ties 0 —

Voltage

W − 41 40.71

-0.150 0.881W + 41 42.29

Ties 0 —

Power

W − 46 42.91

-1.260 0.208W + 36 42.29

Ties 0 —

Velocity

W − 40 40.31

-0.411 0.681W + 42 42.63

Ties 0 —

Table 10: Optimization variable value range for the BPNN model.

Optimization variable Minimum Maximum Units

Inlet pressure (pin) 0.2 0.7 MPa

Intake duration (tin) 15 35 ms

Expansion duration (tex) 70 120 ms

Load resistance (R) 20 110 Ω

Preset stroke (Sp) 15-55 10-60 mm
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regarded as a multivariate function. The search and optimi-
zation process of GA can be seen as the process of finding
the optimum solution for multivariate functions. The opti-
mization process is shown in Figure 5, and the optimization
function can be expressed as equations (3) and (4). Under
the two control strategies, five operating parameters includ-
ing inlet pressure, load resistance, intake duration, expan-
sion duration, and preset stroke were selected as
optimization variables. The value range for each optimiza-
tion variable is shown in Table 10.

TCS Max Pout = f pin, tin, tex, R , 3

PCS Max Pout = f pin, tin, R, Sp 4

Table 11 provides the optimization results of this SFPE-
LG based on constructed BPNN and GA models. These data
indicate that the maximum output power of this SFPE-LG
can achieve 141.69W under the TCS, and the corresponding
operating parameters of inlet pressure, intake duration,
expansion duration, and load resistance are 0.7MPa, 35ms,
67Ω, and 104ms, respectively. When the SFPE-LG works
on the PCS, it can achieve a maximum output power of
138.03W, with corresponding operating parameters of
pin = 0 65MPa, tin = 35ms, R = 102Ω, and Sp = 11 − 59
mm. The differences in maximum output power between
the time and position control strategies are small, which
means that the multiple-point operating conditions can
achieve the same output power target.

5. Conclusions

This paper established a test bench for the SFPE-LG system
and proposed two kinds of valve timing control strategies,
namely, TCS and PCS. Based on the experimental data, a
BPNN performance prediction model of the SFPE-LG pro-
totype was established and validated. Then, the influences
of parameters such as the number of neural network layers,
transfer function, training function, number of HLNs, and
LR on the predictive accuracy for this BPNN model were
discussed, and the optimal parameter settings were deter-
mined. Moreover, the 5-fold cross-validation and Wilcoxon
signed-rank test are adopted to verify the training and pre-

diction accuracy of the BPNN model. Finally, the predictive
model was integrated with the GA to predict and optimize
the output power of SFPE-LG at full working conditions.
The main findings are summarized below:

(1) The BPNN model developed for predicting the
motion characteristics and output performance of
the SFPE-LG exhibits strong learning and prediction
abilities under the two control strategies. The predic-
tion accuracy of the BPNN model for the output per-
formance of the SFPE-LG running under the PCS is
significantly better than that of operating under the
TCS

(2) Different neural network layers, transfer functions,
training functions, hidden layer nodes, and learning
rates directly influence the prediction accuracy of
the BPNN model. HLN has a greater impact on
MSE and correlation coefficient than that of the
learning rate. When the number of HLNs is more
than 30, the BPNN model has low MSE and high
correlation coefficient regardless of the learning rate
value

(3) The optimization results of the BPNN model com-
bined with GA show that the maximum output
power of the SFPE-LG can achieve 141.69W under
the TCS, and the corresponding working parameters
are as follows: pin = 0 7MPa, tin = 35ms, R = 67Ω,
and tex = 104ms. The maximum output power of
the SFPE-LG can reach 138.03W under the PCS
with corresponding operating parameters of pin =
0 65MPa, tin = 35ms, R = 102Ω, and Sp = 11 − 59
mm

(4) The simulation results of the SFPE-LG output per-
formance prediction and optimization model based
on machine learning and genetic algorithm can give
valuable guidance for experiments, so as to quickly
and accurately obtain the maximum output power
and corresponding working parameters

This paper mainly predicts and optimizes the motion
characteristics and output power of the SFPE-LG and lacks

Table 11: Optimization results from the BPNN and GA models.

Operation strategy Optimization variable Values Units

Time control strategy

Inlet pressure (pin) 0.7 MPa

Intake duration (tin) 35 ms

Expansion duration (tex) 104 ms

Load resistance (R) 67 Ω

Output power (Pout) 141.69 W

Position control strategy

Inlet pressure (pin) 0.65 MPa

Intake duration (tin) 35 ms

Load resistance (R) 102 Ω

Preset stroke (Sp) 11-59 mm

Output power (Pout) 138.03 W
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the study of the energy conversion efficiency. Therefore, the
next step should be to conduct a detailed analysis of the ther-
mal-work, work-electric, and thermal-electric conversion
efficiencies for the SFPE-LG based on the optimization
results in this paper. Then, a combination of machine learn-
ing and optimization algorithms is used to perform multiob-
jective optimization on the indexes of output power and
energy conversion efficiency. The analysis results will pro-
vide important guidance for improving the output power
and overall energy conversion efficiency of the SFPE-LG,
so that the SFPE-LG can obtain maximum output power
while maintaining high energy conversion efficiency.

Nomenclature

Symbols

f : Operating frequency (Hz)
Pout: Output power (W)
pin: Inlet pressure (MPa)
P1, P2: Preset displacement point (mm)
R: Load resistance (Ω)
Sa: Actual stroke (mm)
Sp: Preset stroke (mm)
Sm: Maximum stroke (mm)
tin: Intake duration (mm)
tex: Expansion duration (ms)
H0: Null hypothesis (-)
H1: Alternative hypothesis (-).

Abbreviations

ANN: Artificial neural network
BDC: Bottom dead center
BPNN: Back propagation neural network
FPEG: Free piston expander
GA: Genetic algorithm
HLN: Hidden layer nodes
ICE: Internal combustion engine
LR: Learning rate
MAE: Mean absolute error
MAPE: Mean absolute percentage error
MSE: Mean square error
ORC: Organic Rankine cycle
PCS: Position control strategy
PMA: Piston mover assembly
PMLG: Permanent magnet linear generator
R: Correlation coefficient
RMAE: Root mean absolute error
RMSE: Root mean square error
SFPE-LG: Single-piston free piston expander-linear

generator
TCS: Time control strategy
TDC: Top dead center.
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