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While demand response programs inherently depend on consumer acceptance in order to be successful, consumer behavior is
often overlooked when designing such programs. This paper addresses the impact of consumer flexibility in terms of appliance
use on the success of a demand response program, measured through the overall grid stability assessed by the demand’s
peak-to-average ratio. We employ a bootstrapping approach to simulate energy communities from real-life consumer data and
implement a state-of-the-art demand response system. Results suggest that higher consumer flexibility under real-time energy
tariffs implies higher degrees of grid stability, with real-time pricing decreasing the average peak-to-average ratio by 4.6%
compared to time-of-use tariff and with highly flexible consumers showing a 23% lower peak-to-average ratio than regular
consumers on average. Yet, it is possible for higher flexibility to be detrimental to grid stability by increasing the peak-to-average
ratio under a time-of-use tariff. This result highlights the importance of understanding the interplay between different factors
that influence energy consumer behavior, a research stream that has been under investigated thus far.

1. Introduction

The core idea behind demand-side management (DSM)
resembles the management of energy generation resources.
Although electric utilities have historically had to adapt their
generation resources to demand estimates [1], DSM flips the
narrative by offering a collection of actions taken by utilities
with the aim of altering the load shape of end consumers so
as to match energy production [2]. Examples of such actions
include compensating consumers for keeping their energy
use below a certain level [3], increasing public awareness of
how energy is used and possibly wasted [4], and encouraging
consumers to replace their old equipment with more energy-
efficient versions.

DSM effects are expected to extend beyond utilities. In
particular, the key advantages of DSM when helping utilities

to balance supply and demand include (1) an increase in the
efficiency of energy generation resources since consumer
needs can be fulfilled with less generation; (2) a possible
delay in investments in costly infrastructure to boost energy
production as DSM can reduce peak demand, which is often
the driving factor for infrastructure investments; and (3) a
possible decrease in total operational costs since, for exam-
ple, lower demand translates to less wear and tear on gener-
ation equipment and a reduced need for maintenance [5]. In
turn, the above advantages may reduce wholesale electricity
prices, boost retailer profits, and possibly lower end con-
sumer energy costs [6]. In other words, both from the utility
and end consumer levels, there are tangible benefits to a suc-
cessful implementation of DSM practices.

End consumers traditionally participate in DSM pro-
grams through demand response (DR) initiatives, where
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they are able to make well-informed decisions about their
energy consumption practices and play a crucial role when
shifting loads [2]. A popular DR initiative is to promote
energy consumption outside of peak hours through different
time-varying rates, such as time-of-use (TOU), critical peak
pricing, and real-time pricing (RTP) [7]. These initiatives
provide an alternative to the energy market models based
on prices fixed throughout the day. The above discussion
highlights the need to incentivize end consumers to participate
in DR programs, which also explains the growing body of lit-
erature on the applications of incentive-design techniques,
such as from game theory, to create DR programs [8, 9].

A common trend in DSM research and programs is the
use of automated home energy management systems
(HEMS) [10, 11]. Specifically, the core premise behind these
systems is that humans are (or should be) passive instead of
active players in a demand response program. In other
words, technological solutions should act on behalf of con-
sumers when shifting energy loads according to the DR
goals. However, some social science researchers have chal-
lenged this perspective [12]. For example, it has been sug-
gested that energy consumer preferences evolve in complex
ways [13]. Additionally, it has been demonstrated that one
of the major obstacles to the adoption of autonomous DR
systems by residential users is the failure to recognize their
disruptive nature [14]. As a consequence, there have been
calls for end consumers to be involved in the design of
HEMS [15] to mitigate a range of issues such as discomfort,
privacy and security concerns, and technology anxiety. We
thus posit that DSM research must take into account the
possibility of active consumer involvement with the opera-
tion of demand response systems because the success of
any DR program depends on user engagement.

In this paper, we highlight issues in the operation of a
DR system when user preferences and proactive behavior
are not taken into account. We do so by modeling an energy
community based on a cutting-edge DR system [16] instan-
tiated with real-life data about consumer appliances and
flexibility regarding load shifts [17]. More specifically, flexi-
bility is assessed in terms of the amount of time a consumer
is willing to shift an appliance’s operation start-up time from
their habitual time. That combination allows us to investi-
gate our main research question, namely, how do inflexible
consumers impact the aggregate demand profile of an energy
community? We note that our research focus is on residen-
tial buildings, as opposed to, for example, industrial ones.
Overall, we find that a naive assumption that consumers
are all flexible regarding load shifts statistically significantly
and favorably impacts a DR program aiming at flattening
the aggregate (community) load by reducing the peak-to-
average demand ratio (PAR) [18]. In other words, a more
realistic condition of having inflexible end consumers nega-
tively affects the demand profile’s shape by resulting in a
higher PAR value. This result further emphasizes the need
for realistic, human-centered models within DR programs.

Besides this introductory section, the rest of this paper is
organized as follows. In Section 2, we provide an overview of
research on HEMS and our approach’s contributions.
Section 3 details the model we use in our experiments. We

discuss the data set and experimental design in Section 4.
Section 5 introduces and elaborates on the results of our
experiments. We finally conclude in Section 6.

2. Research Background and Literature Review

Recent years have seen a surge of DSM studies and solutions
targeting the residential sector through HEMS [19–23]. A
classic formulation of the DSM problem is to minimize costs
and/or the demand’s peak-to-average ratio [24]. A thorough
review of the progress in the field and the evolution of solu-
tions to optimize the PAR is presented in [25]. Modern
energy management systems use hybrid optimization strate-
gies to optimize important grid metrics, including the PAR,
while considering different model aspects of loads and resi-
dential distributed energy resources [26, 27]. Although these
solutions can capture some consumer preferences, they still
often ignore crucial human elements, such as the potential
for consumer discomfort and interventions or noncompli-
ance with the proposed load schedules [10]. For instance,
[28] suggests a hybrid DR mechanism based on real-time
incentives and pricing that minimizes both consumption
and consumer dissatisfaction costs. Even though consumer
preferences are captured in the form of utility and dissatis-
faction factors, the proposed HEMS requires consumers to
passively accept the optimal demand schedules in order for
them to receive any benefits from the DR program. A bilevel
mixed-integer linear programming model is suggested by
[29] for scheduling microgrid loads as part of a DR program
that considers the flexibility of appliances, potentially dis-
tributed energy resources, and the stability of the grid. In
particular, that model takes into account consumers’ prefer-
ences for usage schedules, uninterrupted consumption pat-
terns, and dependencies between various appliances in a
range of scenarios. However, similar to the previously refer-
enced work, the model in [29] does not contemplate the pos-
sibility that consumers may reject the suggested load plans.
Similar to the above, [16] constructs a DR program based
on a multiobjective optimization problem with competing
goals. Their bilevel model captures the desired features of
handling dynamic pricing, a variety of energy sources, and pro-
grammable consumption preferences for specific time periods.
However, it prevents rigid consumers from objecting to the load
decisions that the energy service provider imposes.

Although some suggested DR models allow for a rich
representation of consumer preferences and consumer flexi-
bility in accepting/rejecting proposed loads, they nonetheless
fail to take into account other crucial factors for the success-
ful operation of a DR program, such as decentralized energy
generation. That is the case of the DR model proposed by
[30], where consumer preferences are ascertained by nonin-
trusive load monitoring, and a Pareto optimization approach
is subsequently used to solve a multiobjective optimization
problem having two conflicting goals, namely, minimizing
costs and user dissatisfaction. Even though the proposed
approach allows for the automatic collection of consumption
patterns and the possibility of customizing the satisfaction
objective by enabling consumers to prioritize their appli-
ances, the underlying model nonetheless does not consider
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the effects of multiple energy sources on consumer prefer-
ences and optimized loads. This is a crucial point, as one
can see the increase in the share of renewable energy pro-
duction as a movement toward bringing energy technologies
closer to people’s lives.

The above discussion highlights the complexity of
designing DR programs and, in particular, how hard it is
to capture human preferences and nuances. The failure to
do so can have an undeniable impact on a DR program’s
success since its core promise is one of an energy system
with active consumer participation. This observation has
led to a flurry of energy-related research in humanities and
social science aiming at understanding the role of people as
end consumers on, for instance, low-carbon energy transi-
tions [12]. For example, there are many published articles
on how key individual traits such as attitude toward the
environment and policies, household attributes, and socio-
economic status can impact a transition to low-carbon soci-
eties [31–33]. Some of these works challenge the main
assumption behind several DR programs, namely, that con-
sumers are solely economic agents interested in maximizing
their benefits. In particular, it has been suggested that con-
sumers hardly ever actively think about how much energy
they use. Instead, energy use is a derived demand inter-
twined with various activities, e.g., traveling to work or pre-
paring a meal, and is connected to goals like maintaining
cleanliness or comfort [34–38].

We contribute to the above discussion by investigating the
consequences of assuming energy consumer flexibility in prac-
tice. Specifically, we focus on amodern DRmodel that (1) cap-
tures consumer preferences regarding when and which
appliances should be turned on, (2) incorporates the possibil-
ity of consumers using renewable energy sources; (3) suggests
individual load schedules by maximizing comfort while mini-
mizing costs, and (4) tolerates changes to schedules after con-
sumer interventions. We apply such a model to a realistic data
set that contains user preferences regarding appliance usage
[17], and we simulate what happens with a key grid stability
metric when consumers are and are not flexible. Ultimately,
our simulation results contribute to the literature by highlight-
ing the need to design DR programs that can effectively cap-
ture consumer preferences and behavior.

Table 1 compares different aspects of the most relevant
literature papers and our proposed approach. The relevant
aspects to compare the approaches were as follows: (a)
whether flexible appliances and consumer preferences are
modeled, (b) whether distributed energy resources are con-
sidered, (c) does it address response coordination (rebound
peaks), (d) whether schedule trade-off is evaluated, (e) does
it consider consumer noncompliance, (f) are there any sus-
tainability concerns, (g) does it consider grid stability, and
(h) does it model uncertainties.

3. Mathematical Model

In this section, we detail the demand-side management sys-
tem modeled in [16], which we adapt and subsequently use
in our experiments to enable demand response for a com-
munity of residential consumers. A key entity in the system

is the demand aggregator, which is responsible for encourag-
ing and managing the demand flexibility of a community
while representing them as a single resource before an
energy service provider or utility. Communities, in turn, are
analogous to microgrids in the sense that they can potentially
supply their own demand through distributed energy resources
(DERs), such as renewable energy sources or energy storage
systems. However, they nonetheless may still rely on the main
power grid to cover some of the energy demand, and thus,
they partake in the demand response program. Figure 1 illus-
trates this scenario and the links between the entities involved,
which are supported by the information and communication
technologies of the advanced metering infrastructure (AMI)
of the smart grid, including smart meters.

The proposed demand response system is formulated as a
bilevel optimization problem. In the first level (inner prob-
lem), a consumer-centric approach is adopted in which each
consumer optimizes the load allocation from their own house-
hold, focusing on changing the consumption patterns of home
appliances. The optimization process at this stage is distrib-
uted, and each consumer solves a multiobjective optimization
problem using an optimization technique. The conflicting
objectives are to minimize the household’s energy consump-
tion costs while minimizing the discomfort of rescheduling
appliances. The decision variables indicate when each appli-
ance should be operating throughout the scheduling horizon
and which energy source should supply their demand. The
inputs to the second and final level (outer problem) of the
optimization problem are the Pareto set of load schedules of
all consumers. This final stage is centralized and managed by
the demand aggregator, which determines the best combina-
tion of solutions that will benefit the community as a whole.
At this stage, the objective function consists in minimizing
the peak-to-average ratio of the community by finding an
optimal combination of demand profiles. Sections 3.1 and
3.2 further detail both levels of the optimization problem.

3.1. Consumer-Level Optimization. One of the main assump-
tions behind the model in [16] is that residential consumers
are concerned with minimizing their utility expenses. How-
ever, reducing energy expenses often implies changing con-
sumption habits, thus leading to discomfort. For example,
while a consumer may prefer to do laundry in the afternoon,
the optimal time cost-wise to use a dishwasher could be
found to be in the early morning; if the consumer weighs
their options, changing their preference to save energy could
be uncomfortable. The proposed optimization model takes
into consideration these conflicting aspects of residential
load optimization by formulating a multiobjective problem.

From the perspective of a given consumer k with access
to DERs, the utility expenses of their residence can be
expressed as its energy consumption cost minus the savings
from its power generation system. We denote the consump-
tion of consumer k regarding energy coming from the main
grid at time t as ck,t , which is formally defined as

ck,t = 〠
α∈Ak

ΔtPk,aMk,a,t 1
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In Eq. (1), Ak represents the set of all appliances under
consumer k’s control. The parameter Δt denotes the discrete
time step size in hours, while Pk,a refers to the nominal
power rate in kilowatts of the α-th appliance of consumer
k. The term Mk,a,t represents one of the decision variables
of the problem: the consumer k’s load state of appliance a
at time t with respect to the main grid. The decision vari-
ables encoded as binary values indicate whether an appliance
is turned on or off at a given time slot. When a variable
equals one, it indicates that a load should operate, or
demand energy, at that time period; otherwise, it equals zero.

Given the consumer’s generation system’s power output
Pres
k,t in kilowatts, we calculate the amount of energy surplus

that can be sold back to the utility—henceforth referred to
as gk,t—as described below:

gk,t = ΔtPres
k,t − 〠

α∈Ak

ΔtPk,aRk,a,t 2

From left to right, the terms on the right-hand side of Eq.
(2) denote the available energy from generation sources
minus the energy demanded from consumer k’s appliances.
Here, we introduce the decision variable Rk,a,t , denoting the
demand of the residential loads for the consumer’s distrib-
uted generation resources. In other words, we use different
symbols to represent the decisions with respect to the two
main energy sources considered in this model, namely, the
main grid resources Mk,a,t and the distributed generation
resources Rk,a,t . It is worth noting that these parameters are
obtained through the smart meter infrastructure in the con-
sumer’s household [45, 46].

Based on the previous definitions, we define the first
objective function, f kcost, as the total expenses of a residential
consumer k, as seen in the following equation:

f kcost = 〠
t∈T

ck,tpt − βk,tgk,tPt′ 3

Table 1: Comparison between related work and proposed approach.

Approach (a) (b) (c) (d) (e) (f) (g) (h)

[17] Yes Partially No No Yes Partially No No

[18] Yes Partially Yes No No Partially Partially No

[11] Yes No No No No No Partially No

[39] Partially No Partially No Yes No Partially No

[20, 23] Yes Yes No No Yes Yes Partially No

[40] Yes Yes Partially Partially No Partially Partially No

[30] Yes No No Yes No No No No

[41] Yes Partially Yes No Partially No No No

[42] No Yes No No No Yes Partially Yes

[43] Yes Yes No No No Yes Yes Yes

[28] No No Yes No No No Partially No

[44] Partially No No No No No No No

[29] Yes Yes Partially No No Yes Yes Yes

Proposed Yes Yes Yes Yes Yes Partially No No

Energy utility

Aggregator 1 Aggregator n

Residential consumer 1 Residential consumer k

...

...

Residential consumer ...

Community 1

Smart meters Distributed
energy

resources

Figure 1: Overview of the smart grid scenario and entities involved.
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In the above equation, pt and Pt′ represent the tariffs for
purchasing and selling energy at a time slot t, respectively.
Additionally, the term βk,t is an auxiliary binary variable that
equals one when consumer k is able to sell energy at time t,
or zero otherwise. Finally, T denotes the set of all time
intervals.

As previously discussed, the discomfort of following a
suggested load schedule is another aspect that directly
influences consumers in residential load management. The
discomfort associated with a given load when scheduled at
a different time slot than the one preferred by the consumer
is defined next as the difference between an appliance’s
programmed start-up time and the consumer’s preferred
start-up time.

f kdisc = 〠
a∈A flex

k

xk,a − uk,a 1 − δk,a wD
k,a − δk,aw

A
k,a 4

In Eq. (4), A flex
k is consumer k’s subset of appliances that

are flexible, for which their programmed start-up time xk,a
can be shifted away from the consumer’s preferred start-up
time uk,a. The difference between these two start-up times
is computed in terms of time intervals, which in turn is con-
verted into a cost when multiplied by an appropriate cost
factor. Here, wA

k,a represents the cost factor for when the sug-
gested schedule advances the start-up time of a flexible
appliance, while wD

k,a represents the cost factor for when it
gets delayed. We use an auxiliary binary variable δk,a to
apply the appropriate cost factor to the difference between
the start-up times, meaning δk,a equals one when xk,a is less
than uk,a, or zero otherwise.

We must consider some constraints regarding the state
of the decision variables and the distributed generation sys-
tem. First, due to the binary encoding of the decision vari-
ables, a load cannot be supplied by more than one energy
source at once in the same time interval. Therefore, let
Xk,a,t of a given consumer k be the sum of the decision
matrices of the energy sources, i.e., Xk,a,t =Mk,a,t + Rk,a,t , for
a given appliance a consuming energy at time t. Then, the
following constraint must be respected:

Xk,a,t ≤ 1 5

Additionally, any consumer’s generation system’s power
output must be greater than or equal to zero Pres

k,t ≥ 0 , and
the consumer’s demand cannot exceed the energy coming
from DERs. Formally,

ΔtPres
k,t ≥ 〠

α∈Ak

ΔtPk,aRk,a,t 6

For the sake of conciseness, we refer the reader interested
in DER modeling and related constraints to [16].

3.2. Aggregator-Level Optimization. As the inner level of the
optimization problem finds a set of equally optimal (i.e.,
nondominated) load schedules for each consumer through

a multiobjective optimization method, it then becomes pos-
sible to define an additional procedure to determine which
schedule would be the most advantageous to the whole com-
munity if performed in practice. The demand aggregator is
in a privileged position to perform this procedure, as it can
gather the relevant information about the schedules from
all consumers and make a globally informed decision. This
section details how the aggregator is able to determine which
solution from its consumers should benefit the community
as a whole.

In this context, a load schedule is simply a set of instruc-
tions to either keep an appliance on or off for each discrete
time step of the planning horizon. Thus, it is important to
know the number of distinct load schedules that a given con-
sumer has as options. This number depends on several fac-
tors regarding consumer preferences, such that it is not
possible to expect all consumers to have the same number
of options. Additionally, we consider that a consumer may
deliberately prefer to exclude a subset of their load schedules
for any reason so that the reported number of schedules they
are willing to assign to their appliances is smaller than the
initial number of optimal schedules found by the previous
optimization level. That said, we define Sk as the number
of schedules informed by consumer k, with Sk ≥ 1. Moving
forward, these are the only schedules that will be taken into
account by the aggregator.

It is important to note that at this stage of the problem,
the nature of the system changes from distributed to central-
ized. More precisely, the optimization problem is no longer
distributed among the consumer’s HEMS, and instead, it is
solved by the aggregator’s central controller. This centraliza-
tion implies that the input data for the next optimization
procedure will be transmitted to the aggregator via AMI,
which raises concerns about data privacy and security [47].
Although the issue of secure protocols and infrastructure is
outside the scope of this paper, privacy is an important fac-
tor that can be addressed at this optimization level. In partic-
ular, to prevent sharing sensitive information that could
reveal consumer habits, the optimal load schedules from
each consumer are not sent directly to the aggregator.
Instead, for each schedule, the aggregator receives the aggre-
gated consumption of all the appliances expected to be
turned on during a time window. Thus, we define the term
lik,t to denote the total demand from consumer k given by
their i-th optimal load schedule, with i ∈ 1,⋯, Sk , and sat-
isfied by the main grid M at time t, as detailed in

lik,t = 〠
α∈Ak

ΔtPaM
i
k,a,t 7

In Eq. (7), the superscript i is also added to other vari-
ables whose state changes depending on the load schedule
to which they refer. For example, let k = 1 be the index of a
consumer who has two valid load schedules Ik = 2 that
program a washing machine (say, a = 2) to run at different
time intervals: the first (i = 1) at 8:00 a.m. (t = 8) and the
second (i = 2) at 9:00 p.m. (t = 21). In this scenario, M1

1,2,8
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is equal to one when M1
1,2,21 is equal to zero while, con-

versely, M2
1,2,8 is equal to zero when M2

1,2,21 is equal to one.
Given the load profiles from all consumer solutions, the

optimization process performed by the aggregator can be
expressed as a combinatorial optimization problem, for
which the main goal is to find the aggregate demand profile
of a community that optimizes a particular metric. At this
level, we introduce the load factor as a useful metric of the
aggregate demand profile. The load factor is defined as the
average load over a specific time period divided by the peak
load in that period:

LF =
1/T ∑tLt
maxtLt

8

In the equation above, Lt represents a community’s
aggregate demand at time interval t. We use the inverse of
the load factor, also known as the peak-to-average ratio
(PAR), to define a minimization problem. In other words,
the aggregator’s job is to select a load profile from each con-
sumer such that their aggregate demand profile has the low-
est peak-to-average ratio among all possible combinations.
Minimizing PAR achieves the goal of securing the grid by
avoiding overloading it during peak times. The above model
can be formalized as follows.

min
i
 f PAR i =

T · max
t∈T

Lt i

∑t∈T Lt i
9

In Eq. (9), i represents a vector of K indices, for which

the k-th value of i ik denotes which load profile from

consumer k is being selected. The function Lt i can be
expressed as follows:

Lt i = 〠
k∈K

likk,t 10

In other words, Lt i stands for the aggregate demand

of all consumers given the indices of the load profiles ( i )
to select for each consumer.

4. Experiments

As some authors discussed in Section 2, the model we dis-
cussed in the previous section relies on the behavioral
assumption that consumers are flexible. In our experiments,
we investigate the consequences when that assumption is
invalid. The model by [16] is particularly suitable for our
purposes in that it allows one to naturally measure how
changes in individual preferences (consumer-level optimiza-
tion) affect the whole community (aggregator-level optimi-
zation). More precisely, in what follows, we describe the
design of experiments to assess the effect of flexible con-
sumers on the final PAR of an energy community using
the bilevel optimization method described in Section 3.

The data set introduced by [17] serves as the base for all con-
sumer profiles within this experiment. This data set is briefly
described in Section 4. The data transformation procedures
required to fit the model from [16] to that data, the experi-
mental design and optimization tools are detailed in Sections
4.2, 4.3, and 4.4, respectively.

4.1. Data Set. The data set chosen for this experiment was
collected from [17]. In that study, a survey was conducted
with over 400 subjects to understand how these consumers
typically use specific home appliances. The questionnaires
asked each subject about when they would prefer to use their
home appliances during the day, whether they were willing
to postpone or bring forward this usage in exchange for
energy bill savings, and how annoyed they would be, on a
scale from 1 to 5, if they were asked to shift the time of
use such appliances from 30 minutes to 3 hours away from
their preference. Then, the collected data was clustered and
used to map different consumer annoyance profiles for each
appliance and each kind of consumer. Subsequently, this
study produced a database with 1000 simulated consumers
proportionally representing the types of consumer found in
the survey.

In [17], the authors defined four groups of electrical
devices used by the simulated consumers: the devices in
group one (G1) are household appliances whose use is not
flexible and therefore cannot be rescheduled by the system,
e.g., fridge, house lights, and computers; group two (G2) fea-
tures household appliances that can be rescheduled up to
three hours before and after the consumer’s preferred time,
e.g., washing machines and dryers; appliances in group three
(G3) are those controlled by a thermostat, i.e., they have a
temperature range that is considered acceptable and must
be regulated to keep the environment’s temperature within
that range, such as HVAC and water heaters; and finally,
group four (G4) features solar and wind power generation
systems represented by a single profile denoting the percent-
age of the aggregate power output at any given time slot of
the day.

4.2. Data Transformation. Although the data set from [17]
realistically represents residential consumers, it was none-
theless necessary to adapt that data characterizing weekly
usage preferences to the daily preference model expected
by the model in [16]. For example, the data available to char-
acterize G1 devices, specifically the operating state (on/off)
of the device at each time interval, was originally represented
by a time series of probabilities of the device in question
being turned on at each time interval over the period corre-
sponding to one week. We proceeded by averaging the prob-
abilities over the week, thus reducing the values to the
dimensions of a single day. Then, those values were used
as the probabilities of success (of the device being on) in
the given time interval, using a binomial probability density
function to generate a binary usage profile for the given
device. Finally, each continuous usage interval was con-
verted into an inflexible preference window.

For the G2 devices, on the other hand, the operation
preference times were not characterized by probabilistic
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distributions, but by indices of preferred time intervals dur-
ing the week. We decided to use the time intervals of the
weekday with the highest amount of operation preference
times for each device, and each interval, together with the
predetermined device runtime, was converted into a flexible
preference window. In addition, the annoyance levels
reported on a scale of 1 to 5 for each 30-minute delay or
advance from the consumer’s preferred schedule were
grouped, and the calculated average was used as the respec-
tive delay (wD

k,a) or advance factor (w
A
k,a) of the appliance.

The last two groups of appliances were either partially or
completely removed from this experiment. For example, the
thermostat-controlled appliances in G3 were not considered
because there was not a lot of usage flexibility in the obtained
data. A potential explanation for this phenomenon is that
the consumers had a reference point regarding temperature
levels and HVAC operation times and were not that willing
to move away from it. Additionally, since our goal is to ana-
lyze the demand and PAR of the main power grid, the wind
power systems in G4 were not considered as well because the
scale of their power output in the original data set was nearly
high enough to supply most remaining loads and even allow
some consumers to operate in island mode. Thus, we have
converted the percentage output of the generation units
from the data set into a power output profile and aggregated
all similar units into a single generation profile. Nonetheless,
the remaining loads are sufficient to represent the consumers
and their range of flexibility as obtained from the original
data set.

The above said, we henceforth call devices in G1 and G2
as inflexible and flexible, respectively, where flexibility means
that some consumers are willing to accept delaying the oper-
ations of appliances. Figures 2 and 3 show the number of
devices per category and the number of consumers who
own these devices.

4.3. Experimental Design. In order to calculate reliable
statistics in our data analysis, we used a bootstrapping tech-
nique [48] to generate multiple resamples from the initial
sample of consumers. Specifically, the initial sample of
1,000 consumers was resampled 100 times, each having
100 consumers. Each consumer in a bootstrap sample would
then perform their consumer-level optimization and, subse-
quently, participate in the aggregator-level optimization
together as a community. This process gave us a total of
100 PAR values to analyze, one for each bootstrap sample.
We henceforth refer to this group of values as the base group.

Besides that control group, we also created two treat-
ment groups by varying the proportion of flexible to inflex-
ible appliances. That process helps us assess the impact of
more or less flexibility on the final PAR of a given commu-
nity and, thus, answer our research question. To show the
robustness of our results, we also analyzed the impact of
flexibility under two DR pricing strategies/tariffs adopted
by the aggregator. Beyond helping to determine how robust
our findings are, analyzing two different tariffs enables us to
measure how much influence the pricing strategy used in the
first optimization level influences the schedules of each con-
sumer and, consequently, the final PAR value.

We varied the ratio of flexible to inflexible devices by
randomly selecting up to a given number of devices and
switching consumer preferences from flexible to inflexible
or vice versa. The chosen amount of appliances to convert
was four, as this is the maximum number of flexible appli-
ances for any consumer in the data set, as seen in Figure 3.
For the pricing strategy, we have adopted two pricing tariffs,
the time-of-use (TOU) tariff from [17] and the real-time
price (RTP) tariff from [16]. We highlight these tariffs in
Figure 4 for a given day.

4.4. Optimization Methods. We next discuss the optimiza-
tion methods selected to solve the bilevel optimization prob-
lem introduced in Section 3. We note that any optimization
method suitable for solving combinatorial problems can be
employed to solve the aggregate-level optimization problem.
In our experiments, we adopted a simple genetic algorithm.
Alternatively, it is necessary to be more careful with the
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model selection for the consumer-level optimization prob-
lem as it has multiple and conflicting objectives. In our
experiments, we require an optimization method that can
provide us with a set of nondominated solutions that reveal
a spectrum of load schedules ranging from the schedule with
the lowest cost but highest discomfort to the schedule with
the least discomfort but highest cost. To this end, we use
the Nondominated Sorting Genetic Algorithm (NSGA-II)
optimization metaheuristic [49]. This evolutionary algo-
rithm allows us to observe a population of individual solu-
tions that are recombined and mutated in an attempt to
move toward a global optimum. NSGA-II is well-suited for
the proposed mathematical model because it is a fast and
effective algorithm designed for multiobjective optimization
problems [50].

5. Results and Discussion

Having described our experimental setting, we next present
the results of our data analyses. Specifically, we first discuss
our findings for the inner level of the optimization problem
(consumer-level optimization). In this step, the parameters
applied to NSGA-II were (1) population of 100 individuals,
(2) iteration of 500 generations, (3) polynomial mutation
with probability of 0.01 and crowding degree of 3.0, and
(4) simulated binary crossover with crowding degree of 3.0.
Next, Section 5.2 introduces the results of the outer level of
the optimization problem (aggregator-level optimization).
In this step, the genetic algorithm operated with a popula-
tion of 50 individuals over 100 generations, using integer
adaptations of the simulated binary crossover and polyno-
mial mutation methods [50]. Finally, Section 5.3 presents
the results of statistical tests performed on the PAR values
of the bootstrap samples.

5.1. Individual Optimization. Since we cannot yet measure
the impact of different degrees of consumer flexibility on
the PAR values during the first consumer-level optimization

phase, this subsection, thus, focuses on explaining the differ-
ences between the intermediary results found under the RTP
and TOU tariffs. The individual optimization results are
summarized in Table 2. First, we can observe the variation
in the number of solutions—referred to as “count” in the
table—between test cases. The results suggest that both the
pricing method and the number of flexible loads contribute
to increasing the average number of schedules on the con-
sumers’ Pareto front. On average, the number of solutions
per test case with the RTP tariff was 235.02% higher than
their TOU counterpart. A possible explanation for this find-
ing is that the flattened TOU price curve (see Figure 4)
reduces the potential amount of load shifting that would
result in cost reductions compared to a typical RTP price
curve. In other words, a load shift that would certainly result
in a cost change under the RTP tariff does not necessarily
result in a cost change under the TOU tariff. This means that
more load schedules under TOU can be eliminated from the
population of nondominated solutions by multiobjective
optimization methods.

Another way to visualize the difference created by the
tariffs is by observing the spread of the solutions within the
base test case on the two-dimensional histograms illustrated
in Figures 5 and 6 with the TOU and RTP tariffs, respec-
tively. We binned the range of solution space values within
a 50 × 50 grid. One can see that the range of values occu-
pied by the solutions under the TOU tariff (Figure 5) is less
comprehensive than the range under the RTP tariff
(Figure 6). Moreover, despite covering a larger area, the
density of the solutions under RTP is more prominent than
the one under TOU, as evidenced by the dark-colored bins.
Considering that the number of nondominated solutions
under RTP was almost four times larger than the number
of solutions under TOU, this difference in the spread in
the solution space was expected. Nevertheless, these results
demonstrate the role of tariffs in influencing the behavior
of potential consumers regarding a shift in their consump-
tion patterns.

We illustrate a consumer’s Pareto front under each pric-
ing method in Figures 7 and 8. In particular, the figures
show the Pareto fronts of consumer #655 under TOU and
RTP, respectively. We chose this consumer specifically
because they presented a greater than average number of
flexible appliances (4) and an average number of inflexible
appliances (10). Figure 7 shows eight solutions that are
seemingly paired in terms of cost and vary more clearly in
terms of discomfort. In reality, the pairs of solutions have
different but very close costs; otherwise, the solution with
the least discomfort would have dominated the other and
caused it to be out of the Pareto front. That reflects the
nature of the TOU price curve with only two pricing
regions, which makes many load shifts equivalent in cost.
The same cannot be said about the pricing curve of the
RTP tariff. Figure 8 shows a more typical Pareto front with
30 solutions and an elbow region in orange and yellow.
The leaps in cost and discomfort from one solution to
another are smoother in this graph. It is also noticeable that
the Pareto front under RTP spans a wider range of values
than under TOU.
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Figure 4: TOU and RTP tariffs.
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Table 2: Summary of the resulting load schedules from the first-level optimization problem.

Base Flexible Inflexible
Cost Discomfort Cost Discomfort Cost Discomfort

p = TOU count = 4,292 count = 12,202 count = 1,286
Mean 2.56 12.95 2.36 17.47 2.46 0.00

SD 1.38 13.62 1.30 13.15 1.28 0.00

Min 0.23 0.00 0.20 0.00 0.23 0.00

Max 8.78 92.38 8.76 107.29 8.92 0.00

p = RTP count = 17,088 count = 61,787 count = 1,293
Mean 6.55 26.14 5.56 35.43 6.37 0.00

SD 2.83 20.43 2.58 22.09 3.06 0.00

Min 0.72 0.00 0.57 0.00 0.75 0.00

Max 18.34 119.69 17.76 142.00 17.81 0.00
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Figure 5: 2D histogram of all base case solutions under the TOU tariff.
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Figure 6: 2D histogram of all base case solutions under the RTP tariff.
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Besides differences produced by distinct tariffs, we can
also see in Table 2 that there was a significant increase in
the number of solutions for the flexible treatment group.
In fact, the number of solutions in that group was, on aver-
age, 222.94% greater than the respective number in the base
case. To illustrate this finding, Figure 9 shows 87 solutions in
the Pareto front for the consumer #655, the same consumer
we highlighted in Figures 7 and 8, but now under the flexible
treatment.

The results for the inflexible treatment group showed a
very low number of solutions compared to the other groups.
Moreover, we can see in Table 2 that the solutions for the
inflexible treatment group did not have a discomfort value
greater than zero. That result was expected due to the
proposed experimental design. Specifically, it happened
because all consumers had up to four flexible devices trans-
formed into inflexible ones, meaning the load-shifting flexi-
bility of all consumers was removed by design. Thus, the
problem for these consumers reduces to a single-objective
cost minimization problem where the costs are determined
solely based on the utilized energy source, i.e., whether

energy comes from distributed generation resources or the
main grid.

5.2. Community Optimization. The previous subsection
highlights that the higher the flexibility in terms of appliance
usage and the more dynamic the energy tariff, the higher the
number of optimal solutions that will be found on the con-
sumer’s Pareto front. In this subsection, we discuss the
impact of flexibility and tariffs on PAR values, i.e., on grid
stability and, consequently, on the community of con-
sumers. Table 3 summarizes the PAR values resulting from
each group. Recall that we obtained these values by following
the bootstrapping procedure previously described in Section
4.3; i.e., these results refer to the 100 trials based on ran-
domly selected groups of 100 (out of 1,000) consumers.

At a first glance, one can see that the average PAR for the
flexible group is 23% lower than the base group’s PAR, and
the results under the RTP tariff seem either similar or
slightly better (lower) than the results under the TOU tariff.
Figure 10 highlights that difference in average PAR values.
Based on Figure 10, communities under RTP pricing achieved
a 4.6% lower PAR on average when compared to communities
under the TOU tariff. As we suggested in the previous subsec-
tion, that finding can be explained by the greater diversity of
solutions presented by consumers under RTP, which contrib-
utes to increasing the combinatorial search space of the second
optimization stage under the utilized model. This result high-
lights the impact energy tariffs can have on consumer behavior
and, consequently, on a community of energy consumers.

To further corroborate the above point, we next illustrate
some aggregate load profiles under different tariffs. Starting
with the base case, Figures 11 and 12 illustrate the aggregate
load profiles for the first bootstrap sample under the TOU
and RTP pricing schemes, respectively. In both charts, flexible
demand is highlighted in red over inflexible demand in blue.
At first glance, the differences between the two demand pro-
files are not immediately obvious. Both profiles peak at the
timeslot t = 43, at 135.52kW under TOU and 131.74kW
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under RTP. However, the aggregate RTP profile achieves a
PAR of 5.89, while the TOU profile reaches 6.05.

For the flexible treatment group in Figures 13 and 14, the
effects of the greater diversity of load profiles are more
noticeable. The aggregate profile under the TOU tariff
achieves a PAR of 4.87, while the profile under the RTP tariff
achieves 4.32. There are some potential explanations for the
differences in Figures 13 and 14. For example, focusing on
the time slot at around 40, we notice that there is more flex-
ibility under the TOU tariff than under RTP. We posit that
under RTP, consumers might not respond as quickly to
real-time pricing signals, whereas they know about the pric-
ing scheme under the TOU tariff in advance, which allows
them to plan accordingly. Another possibility is that the
prices might be rather flat and/or peaks may be short-lived
under the RTP tariff while being more volatile under TOU,
which may cause consumers to take advantage of the price
changes in the latter in order to reduce costs.

Finally, as expected, the sample profiles for the inflexible
treatment group are nearly identical under both tariffs, as
Figures 15 and 16 show, since no flexible devices are used
by consumers in this scenario.

5.3. Statistical Analysis. Having discussed the effects of tariffs
on PAR values, we next discuss the impact that flexibility in
terms of appliance use can have on grid stability and, thus,
provide an answer to our research question, namely, how
do inflexible consumers impact the aggregate demand profile
of an energy community? To answer that question, we com-
pared the flexible and inflexible treatment groups against the
base case to determine whether the differences in PAR values
reported in Table 3 are statistically significant. In particular,
we performed two-sample, two-sided t-tests, whose results
are presented in Table 4.

Focusing first on the results under the RTP tariff, the p
values from all statistical tests reject the null hypothesis that
the PAR values are the same for any reasonable statistical

Table 3: Summary of the PAR results for different groups.

Base Inflexible Flexible
PAR PAR PAR

p = TOU
Mean 6.048 5.920 4.871

SD 0.001 ≈0 0.009

Min 6.047 5.920 4.868

Max 6.051 5.920 4.906

p = RTP
Mean 5.890 5.923 4.321

SD 0.004 ≈0 0.004

Min 5.883 5.923 4.314

Max 5.902 5.923 4.332
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Figure 10: Bar chart comparing the mean PAR values for all
groups.
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Figure 11: Sample aggregate load profile of the base group under
the TOU tariff.
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Figure 12: Sample aggregate load profile of the base group under
the RTP tariff.
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significance threshold. In particular, increasing flexibility
directly results in lower average PAR values. Arguably, that
is an expected finding because greater flexibility results in
more solutions in the Pareto front during the first optimiza-
tion phase (consumer-level optimization), as we previously
discussed in Section 5.1, which may, in turn, likely generate
a global solution that has a lower PAR value during the sec-
ond optimization phase (aggregate-level optimization).

However, the above finding is not robust with respect to
different tariffs. In particular, Tables 3 and 4 show that,
under the TOU tariff, the average PAR value for the inflexi-
ble treatment group is statistically significantly lower than
the average PAR value for the base group, in which con-
sumers have flexible appliances. That result shows that,

under certain tariffs, flexibility can actually be detrimental
to grid stability and, thus, be worse for a community of
energy consumers. In technical terms, the flexibility con-
sumers have when choosing when to use their appliances
can generate solutions that dominate others that are
produced by solely minimizing costs while disregarding
comfort. However, it turns out that the latter solutions
may end up producing lower PAR values.
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Figure 13: Sample aggregate load profile of the flexible treatment
group under the TOU tariff.
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Figure 14: Sample aggregate load profile of the flexible treatment
group under the RTP tariff.
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Figure 15: Sample aggregate load profile of the inflexible treatment
group under the TOU tariff.
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Figure 16: Sample aggregate load profile of the inflexible treatment
group under the RTP tariff.

Table 4: Summary of the results of the two-sample, two-sided
t-tests.

TOU RTP
T score p value T score p value

Inflexible 1,266.99 <10−16 -93.12 <10−16

Flexible 1,316.66 <10−16 3,095.80 <10−16
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What the above results show is the inherent need of
DSM proponents to take a holistic view when designing
DR programs by not only considering individual factors that
may affect energy consumer behavior, such as tariffs and
flexibility, but also the interplay between them. At the same
time, it is important to note, though, that these findings may
not apply universally to all types of communities or energy
systems. The specific conditions and variables of each com-
munity can significantly influence the outcomes of the inter-
play between energy tariffs and consumption flexibility. This
observation naturally calls for more research on human
behavior under different DR programs.

Elaborating on the above point, under real-time energy
tariffs, consumers have access to real-time information
about electricity prices and consumption, and that informa-
tion allows consumers to make informed decisions about
their energy use. In this setting, our studied DR system
may successfully incentivize consumers to shift their energy
usage to off-peak hours through a combination of strategies,
including personalized recommendations, real-time energy
usage data, and financial incentives. The result is the effec-
tive management of demand and improved grid stability.
Alternatively, unlike real-time energy tariffs, time-of-use tar-
iffs can be detrimental to grid stability because consumers
with flexible appliances may still choose to use them during
peak hours. That happens because time-of-use tariffs do not
offer as many opportunities for effective load shifts (i.e., load
shifts that lead to a cost reduction) as real-time tariffs, thus
causing a higher peak demand and a less stable grid. As we
discuss in the following section, to mitigate this negative
impact and maintain grid stability while still encouraging
consumer flexibility in the context of time-of-use tariffs,
DR system designers should ideally provide consumers with
the tools and information they need to make informed
decisions about their energy usage, even with limited oppor-
tunities for load shifting. For example, we conjecture that
informing consumers about current grid conditions during
peak and sensitive times may still lead tomore responsible con-
sumption behavior, regardless of the underlying energy tariff.

6. Conclusion

The practice of demand-sidemanagement is all about influenc-
ing the demand side of an energy system so as to achieve the
primary goal of shifting and/or reducing energy consumption.
That goal naturally relies on consumer acceptance and behav-
ioral changes [51]. In this paper, we have investigated the
impact of certain behavioral changes—measured in terms of
flexible appliance use—on the success of a demand response
program, measured in terms of flattening energy consumption
by reducing the peak-to-average ratio. Experiments were con-
ducted using a data set of 1,000 residential household profiles
based on data from questionnaires offered to real-life con-
sumers [17] and a modern DR model [16]. Our results show
that flexibility does increase grid stability under the real-time
energy tariff, but surprisingly, that is not necessarily true under
the time-of-use tariff. That discrepancy is explained by the
peculiar interplay between tariffs and flexibility and their joint
influence on consumer behavior. This insight points to the

importance of understanding a diverse set of factors that lead
to the successful implementation of DR programs.

It is important to acknowledge that our results come
from the use of a single DSM model instantiated by a realis-
tic data set. As such, more experiments are required to cor-
roborate our findings. Nonetheless, these initial results shed
light on the importance of understanding energy consumers
(and prosumers) when designing DR programs. In particu-
lar, technology and program designers should be aware of
the impact of various factors/interventions as well as their
interplay on the behavior of end users. That is in line with
prior calls from social science scholars asking for sociotech-
nical knowledge to be incorporated into technology and
design education since energy consumer behavior and DR
designers’ expectations might not be well-aligned [52]. Over-
all, we expect the following benefits when actively involving
energy consumers in the design of DR programs:

(i) Enhanced efficiency: consumers who are actively
engaged can provide valuable feedback, helping to
optimize DR programs for better performance and
efficiency

(ii) Increased adoption: when consumers are involved in
the DR design and operation, they may feel a sense
of ownership and are potentially more likely to par-
ticipate and adopt energy-saving behaviors

(iii) Empowerment and education: engaging consumers
educates them about their energy consumption pat-
terns, empowering them to make informed decisions

Naturally, there are some requirements in order to fulfill
these expected benefits; e.g., educational resources, support,
and feedback mechanisms must be in place to help consumers
understand and effectively participate in DR programs and to
continuously gather feedback and adjust programs accord-
ingly. After this initial understanding and learning phase, we
believe automation through machine learning algorithms
embedded into smart appliances might significantly enhance
the effectiveness of DR programs by reducing the need for
continuous manual intervention. Such a conjecture opens
the door to exciting research directions, e.g., on how willing
consumers are to accept algorithms acting on their behalf.

Recognizing that users’ energy consumption and behav-
ior are just as important to a sustainable energy system as
new technologies opens up several other research opportuni-
ties for understanding consumer preferences and on how to
alter energy behavior. For example, besides flexibility on
appliance use and energy tariffs, what other potential factors
can influence consumer behavior? And how do these factors
work when implemented together instead of individually?
We posit that a successful answer to the above questions is
crucial for the successful implementation of demand-side
management policies and practices.
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