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Prediction of state of health (SOH), a crucial aspect of battery management systems, necessitates accurate and reliable estimations
for lithium-ion batteries. However, achieving high-precision SOH estimation using the deep extreme learning machine (DELM)
in complex environments is challenging due to the instability caused by its random key parameters. To address this, we propose a
novel approach that combines the improved bald eagle search (IBES) algorithm with DELM. By utilizing the IBES algorithm, we
can extract highly relevant health indicators from the battery’s parameter curve during charging and discharging, as well as the
incremental capacity curve. These indicators serve as inputs to the constructed estimation model, which predicts SOH under
different working conditions. The proposed method has been validated using publicly available experimental data, with an
overall error in SOH estimation of less than 1%. In comparison to the existing model, the proposed method achieves RMSE,
MAE, and MAPE values lower than 0.35%, 0.26%, and 0.21%, respectively. These findings demonstrate that the proposed
method excels in terms of both the speed and accuracy of SOH estimation, showcasing its enhanced robustness and reliability.

1. Introduction

Lithium-ion batteries (LiBs) are extensively used in various
applications, including new energy vehicles and battery
energy storage systems, due to their excellent energy effi-
ciency, high power density, and prolonged self-discharge life
[1]. The state of health (SOH) of LiBs is influenced by com-
plex electrochemical reactions, resulting in internal irrevers-
ible changes [2]. Additionally, external factors such as
ambient temperature, storage conditions, charge-discharge
rate, and discharge depth can also impact the SOH [3, 4].
Since direct measurement of SOH using sensors is impracti-
cal, it is commonly characterized based on measurable
parameters including voltage, current, temperature [5–7],
and internal resistance [8]. Accurately and consistently esti-
mating SOH is crucial as it enhances battery lifespan,
reduces safety risks associated with battery aging and failure,
improves battery energy storage system performance, and
aids in the operation and maintenance of electrical equip-
ment and ensuring driving safety.

There are two primary categories of existing methods for
estimating the SOH: physical model-based methods and
data-driven methods. The physical model-based methods
establish effective physical models describing the degrada-
tion performance of LiBs through state-space equations or
internal mechanisms. Examples of such models include
equivalent circuit models [9] and electrochemical models
[10]. Shi et al. [11] developed a second-order resistance-
capacitance (RC) equivalent circuit model and employed an
improved unscented particle filter (UPF) to estimate SOH.
Sadabadi et al. [12] formulated a parameter-enhanced
single-event model for predicting the remaining useful life,
which can leverage electric vehicle charging data. Xiong
et al. [13] simplified the P2D model using finite analysis
and genetic algorithm optimization. Although physical
models comprehensively consider lithium battery aging con-
ditions and degradation mechanisms, offering high accuracy
in SOH estimation, they are susceptible to battery load con-
ditions, internal structure, and material quality [14]. The
complexity of their principles and discretization of space
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make calculations computationally intensive, making them
less suitable for practical applications.

The data-driven model eliminates the need to consider
the complex mechanisms inside the battery. Instead, it estab-
lishes a nonlinear mapping relationship between the health
factor and SOH in high-dimensional space using indicators
that affect battery performance degradation as parameters
[15]. By employing data processing and machine learning
techniques [16], this model achieves SOH prediction for
lithium-ion batteries. It offers strong flexibility and online
scalability [17]. In recent years, data-driven methods such
as support vector machines [18], Gaussian regression pro-
cesses [19], logistic regression [20], random forest regression
[21], artificial neural networks [22], and particle filters [23]
have been widely applied in the estimation of the state of
lithium-ion batteries. Li et al. [24] focused on short-term
battery SOH estimation and long-term battery RUL predic-
tion. They proposed a novel method called partial incremen-
tal capacity and double Gaussian process regression (GPR)
fusion. Although GPR is an effective method for SOH esti-
mation, its performance heavily relies on the selection of
kernel function and hyperparameters. It is also sensitive to
data noise and not suitable for high-dimensional data.
Kumar et al. [25] estimated the SOH of a lithium-ion battery
pack by analyzing capacity increment and combining it with
the support vector regression (SVR) method. They verified
the applicability and rationality of the framework through
simulation. However, SVR involves numerous hyperpara-
meters that profoundly impact the model’s prediction
ability, generalization ability, and execution efficiency. Sever-
son et al. [20] utilized logistic regression for predicting and
classifying the cycle life of batteries. However, this method
assumes linear relationships and is sensitive to outliers.
Wang et al. [26] proposed a method that combines random
forest (RF), empirical mode decomposition (EMD), and
gated recurrent unit (GRU) to effectively estimate the SOH
of lithium-ion batteries. Nonetheless, this approach is sensi-
tive to the selection of hyperparameters. Based on the anal-
ysis of traditional particle filter algorithm (PF), Niu et al.
[27] combined genetic algorithm to improve PF and estab-
lished a mapping model of health index and SOH. To
enhance the prediction performance of the PF, Ye et al.
[28] proposed a prediction method based on chaotic particle
swarm optimization particle filter (CPSO-PF).

In contrast to the aforementioned methods, the neural
network model, due to its high fault tolerance and excellent
stability, is more suitable for nonlinear and time-varying
SOH estimation. Zhang et al. [29] proposed an online
SOH estimation method for Li-ion batteries by incorporat-
ing attention mechanisms into long short-term memory
(LSTM) neural networks. Catelani et al. [30] combined
state-space estimation technique with recurrent neural net-
work (RNN) to predict the remaining useful life of
lithium-ion batteries. To overcome the limitation of RNN’s
short memory, Li et al. [31] developed a model that com-
bines recurrent neural networks with long short-term mem-
ory (LSTM-RNN) for accurate SOH estimation in Li-ion
batteries. Based on the transfer learning method, Ma et al.
[32] used convolutional neural network (CNN) to automat-

ically extract features from raw charging voltage trajectories
and then combined the improved domain adaptation
method to construct the SOH estimation model. While the
above-mentioned neural network models accurately predict
SOH, they overlook the computational cost associated with
the reverse fine-tuning process and the complexity of the
network structure. It becomes challenging to strike a balance
between network structure complexity and high-precision
prediction. In comparison to traditional neural networks,
extreme learning machines (ELM) achieve optimal model
training without backpropagation [33]. ELM boasts advan-
tages such as low computational cost, strong learning ability,
minimal parameter adjustment requirements, and a simple
structure. As a result, it finds numerous applications in Li-
ion battery SOH estimation. For example, Ma et al. [34]
designed an extensive learning extreme learning machine
for battery SOH estimation. Nevertheless, ELM is still lim-
ited by its inherent model structure and may not fully cap-
ture feature information, particularly when dealing with
higher dimensions and more complex data.

Deep learning methods have gained significant attention
in the field of SOH estimation due to their powerful repre-
sentation learning capabilities and advantages for handling
large-scale data. Han et al. [35] introduced a novel deep
learning framework that incorporates domain adaptation.
They used a small number of target battery cycle data to
establish a general capacity estimation model for differential
batteries through deep LSTM. Xia and Qahouq [36] devel-
oped an index to quantify the aging behavior of batteries
and used deep neural network (DNN) to extract and model
the nonlinear complex correlation between the defined SOH
index and SOH value of LiBs. Fei et al. [37] considered par-
tial charging segments during incomplete charging based on
two mainstream charging modes; then, an online SOH esti-
mation method based on deep learning is proposed. To
uncover the intricate connections between input and output,
the deep extreme learning machine (DELM) combines the
deep learning strategy with the ELM [38]. This integration
facilitates the exploration of deeper relationships within the
data. Compared to traditional deep learning models, DELM
simplifies the complexity of the model, resulting in faster
training speed and stronger generalization ability when pro-
cessing large-scale and high-dimensional data. In the pursuit
of high-precision SOH estimation, Li et al. [39] investigated
the utilization of an improved sparrow search algorithm to
optimize DELM. Similarly, Zhou et al. [40] incorporated
the improved grey wolf optimization algorithm with DELM
to predict remaining life and diagnose SOH in Li-ion batte-
ries. While these methods have shown promising results, the
identification of optimal initial weights and thresholds for
the DELM network is still required. This enhances its ability
to extract distinctive features and improve learning effi-
ciency when handling vast amounts of data, ultimately
enabling accurate and high-precision SOH estimation.

To overcome the challenges discussed earlier, this study
proposes the utilization of the improved bald eagle search
(IBES) algorithm to optimize key parameters within DELM
for SOH estimation. The IBES algorithm addresses issues
such as convergence towards suboptimal solutions and the
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balance between local and global search capabilities through
corresponding enhancements. The proposed method
extracts highly sensitive health indicators (HIs) from charge
and discharge curves, as well as the incremental capacity
curve, and employs them as input for the SOH estimation
model based on IBES-DELM. Training and testing are
performed using datasets encompassing various types of bat-
teries under different operating conditions. The results
showcase the superiority of the proposed method in terms
of prediction accuracy, speed, and robustness. Consequently,
it offers an effective approach to enhancing the reliability of
battery systems.

2. Experimental and Methodology

2.1. Experimental Data Preparation. The charge and dis-
charge characteristics vary among different types of batte-
ries, which can lead to differences in the extraction of HIs
and the prediction of SOH. To implement and validate the
proposed method, this study selects two publicly available
battery aging experimental datasets: the National Aeronau-
tics and Space Administration (NASA) dataset [41] and
the Center for Advanced Life Cycle Engineering (CALCE)
dataset from the University of Maryland [42]. The specific
details of the single cell tests are presented in Table 1.

A set of 34 18650 lithium-ion batteries (LiBs), each with
a nominal capacity of 2Ah, was selected by the NASA
research center for conducting experiments. Three batteries
from this set were chosen to undergo charge and discharge
experiments at an ambient temperature of 24°C, and the cor-
responding details of the testing procedure are provided in
Table 1. During the experiments, the batteries were initially
charged at a constant current of 1.5A until reaching a volt-
age of 4.2V. Subsequently, the charging process switched
to constant-voltage mode until the current decreased to
20mA, indicating the completion of the charging phase. Fol-
lowing this, the batteries were discharged at a current of 2A
until the voltages of the three battery groups reached 2.7V,
2.2V, and 2.5V, respectively. Once these voltage thresholds
were reached, the discharge process was terminated.

In addition, four batteries from the CALCE dataset, each
initially with a capacity of approximately 1.1Ah, are selected
for further analysis. These batteries undergo a charging pro-
cess with a constant current of 1A until reaching a voltage
level of 4.2V. Subsequently, the batteries are kept at a volt-
age of 4.2V while the charging current decreases to 0.05A,
indicating the completion of the charging phase. Once fully
charged, the batteries are discharged at a constant current
of 1C until the voltage drops below the cut-off value of 2.7V.

2.2. Health Indicator Extraction. The state of health of LiBs is
commonly used as an indicator to assess the current level of
degradation. In most cases, SOH is quantified in terms of
capacity, which is calculated as the ratio of the current
capacity to the nominal capacity [43].

SOH = Qi

Q0
× 100%, 1

where Qi is the capacity of the i
th cycle of the battery and Q0

is the nominal capacity of the battery.
Accurately estimating the SOH of LiBs is of utmost

importance to ensure their safety and reliability. A crucial
step in this process involves extracting HIs that reflect
the level of battery degradation. The accuracy of this
extraction directly impacts the precision of SOH predic-
tion. To illustrate this, we use a NASA battery as an exam-
ple. Figure 1(a) shows the capacity decay curve, while
Figure 1(b) depicts the complete voltage and current curve
of the B005 battery throughout a cycle, including the
constant-current charge (CC Charge), constant-voltage
charge (CV Charge), and constant-current discharge (CC
Discharge) stages. In this study, HIs are extracted from
parameter curves obtained during the battery’s charging
and discharging processes. It is worth noting that the HI
extraction process may produce some abnormal values,
which are subsequently replaced with the average of the
adjacent values.

Figure 1(c) displays the voltage variation curve during
the constant-current discharge (CC Discharge) stage,
extracted from the B005 battery. Additionally, Figure 1(d)
presents the extracted current change curve during the
charging process from the B005 battery. It is evident from
these figures that both the voltage and current curves
undergo noticeable changes during the charge-discharge
cycle. Moreover, the point at which the battery reaches the
cut-off condition gradually shifts to an earlier time. This
change exhibits a certain correlation with the SOH and fol-
lows a specific pattern that corresponds to the degradation
of SOH.

As the SOH diminishes, changes occur in the internal
electrochemical reaction of the battery. This leads to a grad-
ual reduction in the duration of constant-current charging
during the charging process. Concurrently, as the batteries
discharge, their capacity decreases while internal resistance
increases. Consequently, the time taken for the voltage to
drop from 4.2V to 2.7V becomes progressively shorter. To
capture this phenomenon, the duration of constant-current
charging during the charging process is denoted as HI1,
while the duration of the same voltage drop in the discharge
process is recorded as HI2. The change curves of these HIs
for the two types of batteries are depicted in Figure 2. More-
over, Figure 2(c) illustrates that the average discharge volt-
age decreases with each cycle, exhibiting a trend similar to
the decline in capacity. This observation suggests that the
average discharge voltage, denoted as HI3, can be utilized
as an additional HI to characterize the SOH.

Currently, the main methods employed for extracting
HIs include incremental capacity analysis (ICA), differential
voltage analysis (DVA), and isobaric energy analysis (IEA).
The DVA method transforms the voltage curve platform
into a valley on the DV curve, establishing a relationship
between the internal and external changes of battery. How-
ever, it often introduces cumulative errors when utilizing
the capacity obtained through current and time integration
as the abscissa [44]. On the other hand, ICA converts the
voltage platform into an IC peak, establishing a relationship
between external characteristics and internal electrochemical
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characteristics [45]. By measuring the changes in current
and voltage during battery charging and discharging, the
residual capacity and performance state of the battery can
be analyzed. Additionally, the IEA method is employed for
HI extraction. IEA focuses on observing the energy change
caused by the charging equivalent voltage during the

constant-current charging process, effectively characterizing
battery aging [46]. It estimates the SOH by measuring the
voltage and current of the battery and analyzing the energy
loss within it.

In this study, the ICA method is chosen to extract the
HIs. ICA emphasizes the behavior of the battery system

Table 1: Lithium battery test information.

Battery number
Capacity
(Ah)

Cycle
Charging
current (A)

Charging cut-off
voltage (V)

Charging cut-off
current (mA)

Discharge
current (A)

Discharge cut-off
voltage (V)

B005 2 168 1.5 4.2 20 2 2.7

B007 2 168 1.5 4.2 20 2 2.2

B018 2 132 1.5 4.2 20 2 2.5

CS2-35 1.1 717 1 4.2 50 2 2.7

CS2-36 1.1 694 1 4.2 50 2 2.7

CS2-37 1.1 758 1 4.2 50 2 2.7

CS2-38 1.1 757 1 4.2 50 2 2.7
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Figure 1: Parameter curve of NASA battery.
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under small changes and unbalanced conditions. It offers
the advantages of simplicity, rapidity, and accuracy, which
make it suitable for real-time monitoring and evaluation of
batteries during actual operation. This method is particu-
larly well suited for estimating the SOH of batteries in
dynamic environments. The IC curve is a valuable tool
for evaluating the sensitivity of battery capacity changes.
Analyzing the IC curve enables the timely implementation
of measures to optimize battery utilization and manage-
ment, leading to improved performance and reliability of
LiBs. The dQ/dV curve, which represents the derivative
of capacity with respect to voltage, is obtained by perform-
ing finite difference calculations on a set of n sampling
points. The specific formula utilized for this calculation
is as follows:

dQ
dV

≈
Q k −Q k − n
V k −V k − n

2

In the given formula, Q k denotes the charging capac-
ity of the battery for the kth sample, while V k represents
the corresponding charging voltage. For this calculation,
we assume a value of n = 10, ensuring sufficient sampling
points are considered.

To minimize the impact of noise and enhance the clarity
of the IC curve, the Gaussian filtering method is employed.
This filtering technique effectively reduces noise and pro-
duces a smoothed curve, as demonstrated in Figure 3. The
filtered curve clearly displays the peak positions, facilitating
the extraction of health indicators. In the case of the CALCE
dataset, Figure 3(b) represents the voltage variations
observed at different charge levels in LiBs. The changes in
the peak value of the IC curve directly correlate with the deg-
radation of the active material inside the battery. This phe-
nomenon effectively reflects the electrochemical reactions

occurring during the charge and discharge stages. Hence,
the health indicators extracted from the IC curve are the
maximum peak value (HI4) and the corresponding maxi-
mum peak voltage (HI5). As depicted in Figures 4(a) and
4(b), both the maximum peak value and the maximum peak
voltage exhibit a reduction as the number of cycles increases.

In conclusion, there exists a correlation between the
attenuation trend of the HIs and the degradation process
of SOH. Therefore, the health indicators HI1 to HI5 are uti-
lized to characterize the degradation characteristics of SOH.
These indicators are used as input for training the IBES-
DELM model. The SOH can be mathematically expressed
as follows:

SOH = f HIi 3

2.3. Correlation Analysis of Health Indicators. The appropri-
ate health indicators are one of the important factors that
quantify the accuracy of battery degradation prediction
results. Each HI exhibits a distinct correlation with the state
of health. Furthermore, different combinations of these HIs
as input variables in models can yield varying results in
terms of SOH prediction. To accurately determine the rela-
tionship between these HIs and SOH, a quantitative analysis
is required. The Pearson correlation coefficient is used to
quantitatively measure the linear correlation between the
HIs and SOH. The calculation of the Pearson correlation
coefficient is determined as follows:

rHI,SOH = ∑n
i=1 HIi −HI SOHi − SOH

∑n
i=1 HIi −HI 2∑n

i=1 SOHi − SOH 2
4

In the formula, r is the Pearson correlation coefficient,
HI is the average value of the overall health indicator, and
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Figure 2: Health indicators of NASA battery and CALCE battery: (a) HI1; (b) HI2; (c) HI3.
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SOH is the average value of the overall health states.
The correlation between the health indicators (HI1 to

HI5) and the SOH can be assessed by examining the coeffi-
cient r. A stronger correlation is indicated by a higher abso-
lute value of r closer to 1 or -1, while a value closer to 0
implies a weaker correlation. Figure 5 presents a heat map
depicting the correlation coefficients between the selected
health indicators and the SOH value. It is evident from the
heat map that these health indicators exhibit a high correla-
tion with the SOH, indicating their effectiveness in accu-
rately reflecting the state of health in LiBs. This strong
linear correlation provides robust support for the efficacy
of the proposed IBES-DELM model.

2.4. DELM Battery Degradation Model. The degradation
of LiBs is characterized by nonlinear and time-varying
processes, coupled with intricate internal electrochemical

reactions. Quantifying and modeling the degradation mech-
anism using specific spatial equations present significant
challenges. Gated recurrent unit (GRU), broad learning sys-
tem (BLS), and long short-term memory (LSTM) are com-
monly employed for constructing degradation models of
lithium-ion batteries in the field of deep learning. LSTM, as
a deep learning neural network, exploits the memory units
in place of conventional hidden nodes and will not facing
the issue of gradient disappearance [47]. Although it boasts
high prediction accuracy, its convergence speed is relatively
slow, and it incurs a high computational cost. GRU, as a var-
iant of LSTM, simplifies the structure by employing only
reset gate and update gate mechanisms. As a result, GRU sig-
nificantly reduces complexity through a decreased number of
parameters and can take into account both efficiency and
accuracy [48]. However, it is vulnerable to the problem of
gradient disappearance or gradient explosion. BLS, on the
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other hand, represents a single-layer neural network learning
system, comprising random vectorization. Unlike certain
neural networks, BLS eliminates the need for iterative param-
eter updates by effectively extracting crucial features from
measurement data through random and enhanced feature
mappings. This learning system demonstrates rapid learning
speed and excellent generalization performance and avoids
local optima issues [44]. However, due to its single-layer
architecture, BLS depends significantly on the initial network
parameters, and its capacity to express complex nonlinear
relationships is relatively limited. Furthermore, while LSTM
and GRU are well suited for handling sequential data and
long-term dependencies, training and parameter tuning pro-
cesses can be rather intricate.

DELM introduces a multilayer feedforward neural net-
work, based on deep learning techniques. By extending the
traditional ELM structure and incorporating multiple hid-
den layers, DELM enhances the model’s representation and
learning abilities. This method benefits from rapid training
speed, excellent generalization performance, and the lack
of a need for extensive manual adjustment of hyperpara-
meters. Compared to other deep learning neural networks,
DELM exhibits lower structural complexity and offers strong
applicability in SOH estimation. Consequently, the DELM
method enables the establishment of a nonlinear mapping
relationship between the input and output of LiB degrada-
tion features. This allows for effective SOH regression fitting
through model training.

Figure 6(a) showcases the network structure of ELM,
which serves as the foundation for DELM. By adhering to
the principle of extreme learning machine, DELM preserves
the rapid learning and strong generalization capabilities of
ELM. Specifically, DELM consists of an extreme learning
machine as autoencoder (ELM-AE) acting as the metastack.
The weights within the network are initialized randomly and
analytically solved, eliminating the requirement for layer-by-
layer backpropagation. Despite its simpler structure, DELM
achieves comparable performance to conventional deep neu-
ral networks while exhibiting faster convergence speed.

ELM-AE is a special neural network that can use autoen-
coder to extract and reduce the dimension of data features;
its structure is shown in Figure 6(b). The training set con-
sists of samples with features, denoted as S = HIi, SOHi ,
i = 1, 2,⋯N , where HIi = HIi1, HIi2,⋯,HIin T represents
the feature vector of the ith training sample, HIi ∈ Rn. SOH
denotes the regression value associated with the ith sample,
SOHi ∈ Rm.

Meanwhile, the output of hidden layer neurons, with L
nodes in the hidden layer and employing an activation func-
tion g x , is determined as follows:

hi HI = g wiHI + bi 5

Within the equation, hi HI denotes the output of the ith

neuron located in the hidden layer. In this regard, the input
weights wi and the threshold bi are randomly generated for
each neuron within the hidden layer. Subsequently, these
weights and thresholds are orthogonalized. The network
output closely approximates the input, while the HI is fitted
through regression via the output layer following the hidden
layer. The regression function of the ELM-AE can be math-
ematically expressed as

SOHj = HIj, j = 1, 2,⋯,N ,

wTw = I, bTb = 1,
6

SOH =HI = 〠
L

i=1
βihi HI =Hβ 7

Here, βi represents the output weight of the ith hidden
layer, β = β1, β2,⋯,βi . H denote the output matrix of the
hidden layer, H = h1 HI , h2 HI ,⋯,hi HI . I is the unit
matrix.

To enhance the generalization capability and mitigate
overfitting in ELM-AE, the introduction of a regularization
coefficient C is imperative. The network loss function serves
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as the objective function, which is minimized to obtain the
optimal weight β.

f HI =min 1
2 β 2 + C

2 HI −Hβ 2 8

The weight matrix β is obtained through the orthogonal
mapping method, as shown in Equation (9). When N < L,
ELM-AE achieves sparse representation, mapping the original
high-dimensional features. When N = L, ELM-AE achieves
feature representation in the same dimension. When N > L,
ELM-AE achieves dimension compression, mapping the
feature input from a high-dimensional space to a low-
dimensional space.

β =

I
C

+HTH
−1
HTHI,N < L,

H−1HI,N = L,

HT I
C

+HTH HTHI,N > L

9

DELM adopts a layer-wise training approach to develop
deep logical relationships embedded in the input data through
independent multiple layers. Figure 6(c) portrays the training
structure of DELM. In this process, the initial ELM-AE solves
for β1 using the original sample data. During the training
phase, the input weights wi for each layer are represented by
the transpose matrices of βi. Subsequently, the hidden layer
of each ELM-AE takes the output matrixH i−1 from the previ-
ous hidden layer as its current input. This iterative process
continues until the last ELM-AE is reached. Mathematically,
this process can be expressed as follows:

Hi =
g HIβTi , i = 1,

g Hi−1βTi , 1 < i ≤ k
10

The parameter k represents the number of stacks within
the ELM-AE framework.

Building upon the preceding analysis, it can be concluded
that DELM harnesses the power of matrix multiplication
and exhibits orthogonal properties. This attribute enables
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Figure 6: The network topology: (a) the structure of ELM; (b) the structure of ELM-AE; (c) the structure of DELM.
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DELM to expedite the training process of neural networks,
minimize data loss during propagation, effectively capture
intricate relationships within the data, and enhance the repre-
sentation and nonlinear fitting capabilities of deep learning
models. As a result, DELM emerges as a highly suitable
method for SOH estimation.

Furthermore, in the original DELM approach, the initial
weight wi and threshold bi hold significant importance as
they significantly impact the accuracy of estimation and
regression fitting during model training. In the conventional
method, these parameters are randomly initialized. How-
ever, due to their dynamic nature during network training,
this paper adopts the IBES method to determine an optimal
initial parameter set wi, bi . The objective of this approach
is to enhance the ability and efficiency of network in learning
feature inputs.

2.5. BES Optimization Algorithm. The bald eagle search
(BES) optimization algorithm is a recently developed meta-
heuristic approach [49]. This algorithm possesses its own
exploration and exploitation capabilities, allowing it to effec-
tively search for globally optimal solutions to nonlinear opti-
mization problems while exhibiting fast convergence speed
and strong learning capabilities [50]. At the core of the
BES algorithm lies the idea of mimicking the hunting behav-
ior of bald eagles. By leveraging variations in their positions,
this algorithm seeks to locate individual optimal solutions,
thereby contributing to the search for a global optimum.

Given a D-dimensional search space, randomly initialize
a population of n bald eagles:

P = P1, P2,⋯Pn 11

The position of the ith bald eagle within a D-dimensional
space is denoted as follows:

Pi = pi1, pi2,⋯piD
T 12

The fitness of the population is employed to guide the
search capability, wherein it is determined by the fitness
function that is defined based on the mean square error loss
function.

fitness = 1
m
〠
m

i=1
yi ′ − yi

2
13

Here, m indicates the number of local variables, yi ′
denotes the predicted value, and yi represents the actual value.

To initialize the search space, random initialization is
conducted. Just as bald eagles rely on predation density
assessment to determine the optimum search space for opti-
mization, the update process of the position vectors Pi,new at
this stage can be described as follows:

Pi,new = Pbest + α × rand × Pmean − Pi 14

Here, Pbest denotes the current optimal position in the
search, α is a parameter that controls the changes in posi-

tion, α ∈ 1 5, 2 , and Pmean represents the current average
distributed position in the ongoing search.

Once the search space is determined, the bald eagles sim-
ulate the flight behavior of vultures as they search for opti-
mal positions to dive and capture prey. The flight distance
is determined by their current position, the position of the
population center, and the location of the subsequent itera-
tion. The flight behavior of a bald eagle is characterized by
a spiral motion, which can be mathematically described
using polar coordinate equations. Consequently, the position
vectors Pi,new in the prey phase update process of the search
space can be represented as

θ1 i = a × π × rand,
r1 i = θ1 i + R × rand,

x1 i = r1 i sin θ1 i
max r1 i sin θ1 i

,

y1 i = r1 i cos θ1 i
max r1 i cos θ1 i

,

15

Pi,new = Pi + x1 i Pi − Pmean + y1 i Pi − Pi+1 16

In the given context, the shape change parameters are
denoted as a and R, a ∈ 5, 10 , R ∈ 0 5, 2 . Further, θ1 i
represents the polar angle, while r1 i represents the polar
radius during the spiral flight of the bald eagle. The function
rand generates a random value within the range of (0,1).
Meanwhile, x i and y i represent the position of the
bald eagle in polar coordinates, with values falling within
the range of (-1,1). Pi+1 corresponds to the next updated
position.

Once the optimal position within the search space is
identified, the bald eagles undergo a rapid descent towards
their prey. During this stage, the population converges
towards the best position and commences a targeted attack.
The dynamic behavior of the bald eagles in this stage is still
described by the polar coordinate equation. The updating
process for the position vectors Pi,new during the diving
and hunting stage can be expressed as follows:

θ2 i = a × π × rand,
r2 i = θ2 i ,

x2 i = r2 i sin h θ2 i
max r2 i sin h θ2 i

,

y2 i = r2 i cos h θ2 i
max r2 i cos h θ2 i

,

17

Pi,new = rand Pbest + x2 i Pi − c1Pmean + y2 i Pi − c2Pbest ,
18

where c1 and c2 are motion intensities, with a range of values
between [1,2].

2.6. IBES Optimization Algorithm. The traditional BES
algorithm demonstrates excellent optimization capabilities

11International Journal of Energy Research



within the search space, requiring minimal adjustable param-
eters and offering ease of implementation. However, during
the training process, the algorithm still encounters the fol-
lowing challenges: (1) As the number of iterations increases,
the BES algorithm tends to become trapped in local optima,
resulting in lower convergence accuracy. (2) In high-
dimensional search spaces, the exploration and exploitation
abilities of the BES algorithm can diminish. This imbalance
negatively impacts both the local and global optimization
capabilities, resulting in slow convergence speed and a need
for enhanced search efficiency. These issues highlight areas
that require improvement in order to enhance the effective-
ness and efficiency of the BES algorithm during the training
process.

2.6.1. Levey Flight Strategy. In the initial stage of the BES
algorithm, the random initialization of the bald eagles’ posi-
tions can result in an uneven distribution of individuals,
leading to reduced population diversity and slower optimi-
zation speed. To address this issue, the BES algorithm incor-
porates the Levy flight strategy, which combines accuracy
and diversity in information exchange among the individ-
uals. This strategy is aimed at enabling the algorithm to
timely escape local optima, enhancing the exploration capa-
bility in the solution space, and improving the overall con-
vergence effect. The Levy distribution formula, which
underlies the Levy flight strategy, is as follows:

Levy s ∼ u = t−1−β, β ∈ 0, 2 19

The random step size is solved by normal distribution:

s = u

v 1/β ,

δu =
Γ 1 + β sin πβ/2
Γ 1 + β /2 β 2 β−1 /2

1/β

,

δv = 1,

20

where β = 1 5, δu and δv are parameter variances, u and v
are both normally distributed with N 0, δ2u and N 0, δ2v ,
respectively. Г denotes the standard gamma function inte-
gral operation.

Equation (14) becomes the following equation after the
introduction of the Levy flight strategy.

Pi,new = Pbest + α × rand × Pmean − Pi × Levy 21

2.6.2. Dynamic Adaptive Inertia Weight. In the second stage,
to mitigate the impact of individual neighborhood search
ranges on the flight path of the bald eagles, the BES algo-
rithm incorporates a dynamic adaptive inertia weight ω
balancing algorithm. This algorithm adaptively adjusts the
search positions during different iterations by introducing
the fitness function into the inertia weight. By dynamically
reflecting the current performance, the concentration of bald

eagles at different positions is automatically adjusted. This
balance enables the BES algorithm to strike a good compro-
mise between local and global searches, thereby improving
search accuracy. The proposed dynamic adaptive inertia
weight ω can be described as follows:

ω = ωmin + ωmax − ωmin × fitness i − fitnessmin
fitnessavg − fitnessmin

, 22

where fitness i represents the fitness of the ith particle dur-
ing the iteration process.

According to Equation (16), the bald eagle position
update becomes the following equation:

Pi,new = ωPi + x1 i ωPi − Pmean + y1 i ωPi − Pi+1 23

2.6.3. Golden Ratio Coefficients. The diving stage of the bald
eagle, where it captures prey, plays a crucial role in deter-
mining the convergence speed of the BES algorithm. In this
stage, the BES algorithm incorporates the golden ratio coef-
ficients from the golden sine algorithm [51] as a local oper-
ator in the position updating formula. Furthermore, a
warning threshold A is set to scan regions that are likely to
yield favorable outcomes, effectively narrowing the search
range.

By incorporating these measures, the BES algorithm
experiences a notable acceleration in optimization speed,
leading to improved search efficiency and convergence accu-
racy. This approach facilitates more efficient exploration of
the search space and enables the algorithm to swiftly con-
verge towards optimal solutions. The golden ratio coeffi-
cients a1 and a2, as well as the formula for calculating the
golden ratio τ, can be described as follows:

a1 = −π + 2π 1 − 2τ ,
a2 = −π + 2πτ,

τ =
5 − 1
2

24

According to Equation (18), the updating formula for
the position becomes as

Pi,new = sin r1 rand Pbest + x2 i Pi − c1Pmean
+ rand a1P1 − a2c2Pbest r2y2 i sin r1

25

Here, r1 denotes a randomly generated number within
the range of 0, 2π , while r2 represents a random number
in 0, π . In addition, the threshold value A is set to 0.6,
and Equation (25) needs to satisfy the condition A > r.

IBES assists DELM in automatically learning and
extracting crucial features from data through parameter
optimization, thereby enhancing the model’s expressiveness
and accuracy. Through continuous iterations, the IBES algo-
rithm systematically searches for the optimal individual and
determines the optimal position, denoted as Pbest, within the
solution space. This optimal position represents the best
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feature subset. This process not only reduces dimensionality
but also improves the generalization ability of the model.
The key parameters of DELM, such as the connection
weights wi and thresholds bi between the initial input layer
and the hidden layer of the initial ELM-AE, are then set to
their optimal values corresponding to the optimal feature
subset obtained through IBES. These adjusted parameters
contribute to improving the training speed and learning
capability of the DELM network.

To recapitulate, the SOH within LiBs undergoes a grad-
ual and slow-varying change. In real-world scenarios, the
choice of an appropriate model is crucial for accurately esti-
mating SOH. The IBES-DELM model has displayed excep-
tional performance, making it an ideal selection for such
purposes. The complete framework for SOH estimation is
visually illustrated in Figure 7.

3. Results and Analysis

3.1. Parameter Settings and the Estimation Results of SOH
Model. This experiment is conducted using MATLAB soft-
ware, and the NASA dataset and CALCE dataset are
selected as the experimental objects. The feature sample
data obtained from these datasets is first normalized during
the preprocessing stage. To create the training set, the ini-
tial 80 sample data points from the NASA dataset and the
first 400 sample data points from the CALCE dataset are
chosen. The remaining sample data points are then used

as the test set. The formula for data normalization is repre-
sented as follows:

y∗ = y − ymin
ymax − ymin

26

Here, the sample eigenvalues before and after data
training are represented by y and y ∗, respectively.

To evaluate the performance of the proposed method for
SOH estimation, HI1~HI5 are utilized as input features for
the estimation model, while the lithium-ion battery SOH
values are considered as the output. The neural network
architecture is configured with 5 neurons in the input layer,
6 neurons in the hidden layer, and 1 neuron in the output
layer. In the IBES-DELM model, the population size of the
bald eagles is set to 20, and the dimension of the fitness func-
tion D is 16. The maximum iteration times T is set to 100,
while the position control parameter α is set to 2. The shape
change parameters a and R are assigned values of 10 and 1.5,
respectively. The motion intensities c1 and c2 are both set to
2. The upper and lower bounds for the inertia weight are set
to 0.9 and 0.4, respectively. The search boundaries for the
bald eagle are set to 1 and -1.

Figure 8 provides a visual representation of the SOH
estimation results and error analysis for different models
on the NASA battery dataset. On the other hand, Figure 9
depicts the performance of various models in estimating
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the SOH curve on the CALCE battery dataset. The analysis
of the estimation results and errors highlights the superior
performance of the IBES-DELM model in effectively captur-
ing the SOH curve and delivering high fitting accuracy. The
IBES-DELM model exhibits the capability to track the entire
degradation process of LiBs accurately and capture local fluc-
tuations well, showcasing enhanced accuracy and robustness.
This signifies the optimization effect of IBES on DELM,
achieving a balance between local and global searches,
improving search efficiency, and enabling more accurate
SOH estimation. In terms of error results, there may be a
few individual data points with relatively large errors among
the 7 battery samples. These errors could be attributed to
complex internal electrochemical reactions within the batte-
ries, environmental differences, and other factors. However,
the errors for most data points are small and close to zero.
The overall estimation error does not exceed 1%, further
demonstrating the capability of the IBES-DELM model to
accurately estimate the SOH.

The ELM model is capable of effectively tracking the
overall degradation trend of SOH in LiBs. However, it faces
difficulties in promptly capturing localized capacity regener-
ation phenomena. This is mainly due to the randomly
assigned weights wi and thresholds bi in the ELM model,
which introduce instability in its later-stage predictions.
Consequently, the ELM model gradually deviates from the
actual values, resulting in the highest overall estimation
error. In contrast, the DELM model exhibits comparable

learning capabilities to LSTM and demonstrates superior
generalization by effectively capturing complex relationships
within large learning datasets. However, it is still susceptible
to fluctuations caused by the randomly determined parame-
ters. As a result, the prediction curve of the DELM model
displays significant fluctuations, with a maximum error
ranging from 3% to 4%.

The PSO-DELM and BES-DELM models slightly
improve the accuracy of SOH estimation compared to the
ELM and DELM models. However, they demonstrate exces-
sive sensitivity to the positioning of the data and are less
effective in capturing data fluctuations. In the later stages,
these models may encounter overfitting or underfitting
issues due to data fluctuations, resulting in an overall error
ranging from 2% to 3%.On the other hand, the IPSO-
DELM model performs well in terms of estimation accuracy,
exhibiting relatively small errors. However, when compared
to the IBES-DELM model, it shows relatively inadequate
convergence and exhibits less stability in representing and
fitting battery degradation data. Overall, the IBES-DELM
model stands out by effectively capturing the complex degra-
dation patterns of LiBs, displaying superior estimation accu-
racy, stability, and robustness.

3.2. Model Performance Analysis. To further assess the fitting
capabilities of the models in the graph and quantitatively
compare their estimation performance for lithium-ion bat-
tery SOH, the IBES-DELM model is compared with other
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models. The estimation performance is analyzed using com-
monly employed quantitative evaluation metrics, which can
be categorized into absolute and relative error metrics. To

evaluate the performance of the SOH estimation models,
this study employs root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error

Table 2: Indicators of estimation error under different models.

Battery ELM LSTM DELM PSO-DELM BES-DELM IPSO-DELM IBES-DELM

RMSE

B005 2.110 0.859 0.726 0.504 0.437 0.333 0.319

B007 2.641 0.478 0.392 0.274 0.243 0.188 0.154

B018 1.137 0.603 0.539 0.456 0.400 0.308 0.105

CS2-35 2.804 1.453 1.087 0.944 0.469 0.177 0.107

CS2-36 1.544 0.862 0.753 0.699 0.530 0.240 0.169

CS2-37 2.386 0.727 0.594 0.477 0.410 0.081 0.071

CS2-38 1.721 0.665 0.553 0.451 0.204 0.098 0.063

MAE

B005 1.163 0.618 0.674 0.403 0.305 0.269 0.251

B007 2.469 0.242 0.371 0.339 0.217 0.145 0.097

B018 0.938 0.658 0.567 0.561 0.315 0.239 0.265

CS2-35 2.053 1.300 0.788 0.777 0.360 0.323 0.254

CS2-36 1.222 0.733 0.645 0.564 0.396 0.308 0.205

CS2-37 2.224 0.571 0.568 0.526 0.390 0.225 0.209

CS2-38 1.213 0.571 0.449 0.427 0.364 0.236 0.192

MAPE

B005 2.410 0.516 0.380 0.332 0.318 0.110 0.010

B007 2.931 0.433 0.278 0.255 0.167 0.010 0.002

B018 0.703 0.539 0.456 0.235 0.179 0.019 0.004

CS2-35 1.977 1.561 1.474 1.260 0.017 0.010 0.003

CS2-36 1.865 1.037 0.980 0.642 0.098 0.082 0.004

CS2-37 2.107 1.607 1.053 0.009 0.008 0.007 0.003

CS2-38 2.049 1.832 1.436 0.009 0.007 0.005 0.002
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Figure 9: The SOH estimation and error results for CALCE battery.
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(MAPE) as performance metrics. The equations represent-
ing these metrics are provided below:

RMSE = 1
n
〠
n

i=1
SOHi − SOHi′

2
, 27

MAE = 1
n
〠
n

i=1
SOHi − SOHi′ , 28

MAPE = 100%
n

〠
n

i=1

SOHi − SOHi′
SOHi

29

Here, n represents the total number of samples, while
SOHi and SOHi′ denote the true value and predicted value
for the ith sample, respectively.

Table 2 presents the comparative results of evaluation
indicators using different cycling data for LiBs. The findings
clearly demonstrate that the IBES-DELM model outper-
forms other models in terms of fitting performance. Particu-
larly, the IBES-DELM model excels in accuracy and stability
for each battery sample, highlighting its superior advantages.
Specifically, when compared to the BES-DELM estimation
model, the IBES-optimized model reduces the RMSE indica-
tors for the seven different battery samples by 0.12%, 0.23%,
0.30%, 0.36%, 0.36%, 0.34%, and 0.14%, respectively. The
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Figure 10: The bar chart of evaluation metrics for each model: (a) the value of RMSE, (b) the value of MAE, and (c) the value of MAPE.
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MAPE values are reduced by 0.05%, 0.12%, 0.05%, 0.11%,
0.19%, 0.18%, and 0.17%, respectively. The MAE values are
reduced by 0.31%, 0.17%, 0.18%, 0.01%, 0.10%, 0.01%, and
0.01%, respectively. These results indicate that, under identi-
cal conditions, the IBES-DELM model achieves varying
degrees of reduction in RMSE, MAE, and MAPE indicators,
highlighting its superior fitting performance compared to
other models. This advantage significantly facilitates accurate
estimation and prediction of the health status of lithium-ion
batteries, playing a vital role in battery management and
maintenance. It provides robust support for extending bat-
tery life and enhancing system reliability.

Figure 10 depicts the estimation performance of different
models on SOH through a visual representation using the
numerical values derived from Table 2. This bar chart pro-
vides a concise and clear comparison of the models’ perfor-
mance based on the indicators. The IBES-DELM model
showcases exceptional accuracy in estimating SOH, with
RMSE values below 0.4% and MAE values below 0.3% across
all seven battery samples. Moreover, the MAPE values
remain consistently low, not exceeding 0.1%. Remarkably,
the IBES-DELM model exhibits outstanding performance
in MAPE values for the CS2-36, CS2-37, and CS2-38 battery
samples, approaching an error margin of 0. This noteworthy
achievement indicates the highly accurate estimation of
model and prediction of SOH for these samples. Such results
hold great practical significance in real battery management
systems, especially in applications where precise estimation
of battery states is critical.

Table 3 presents a comparison of different methods
using the NASA dataset. In Reference [52], the improved
quantum particle swarm optimization (IQPSO) algorithm
was employed to optimize the hyperparameters of the LSTM
model, resulting in the IQPSO-LSTM model for SOH esti-
mation. Reference [53] proposed an improved particle
swarm optimization (IPSO) algorithm to optimize the
SOH estimation model of GPR, providing only RMSE and
MAE values. Upon careful examination, it is evident that
the IBES-DELM model exhibits superior estimation results
when applied to the NASA dataset. Its MAPE value is signif-

icantly lower compared to the value reported in Reference
[52], while its RMSE and MAE values are lower than those
of the other two methods. It is noteworthy that the method
utilized in this paper yields smaller errors, effectively
enhancing the accuracy of SOH estimation.

Table 4 illustrates the comparison results of various
methods using the CALCE dataset. In Reference [54], a
layer-wise relevance propagation-driven (LRP-driven) CNN
model was proposed for SOH estimation. Reference [55] uti-
lized an improved bidirectional gated recurrent unit method
with an attention mechanism (BiGRU-AM) for SOH pre-
diction. The comparative analysis reveals that the estimation
method employed by the IBES-DELM model outperforms
others when applied to the CALCE dataset, with lower
RMSE, MAE, and MAPE values in comparison to Reference
[54, 55]. For instance, the IBES-DELM model reduces the
RMSE, MAE, and MAPE values of the CS2-37 battery by
1.74%, 1.24%, and 2.0%, respectively, in comparison to Ref-
erence [55]. Furthermore, compared to Reference [55], the
IBES-DELM model decreases the RMSE, MAE, and MAPE
values of the CS2-37 battery by 0.52%, 0.25%, and 0.57%,
respectively. These findings further emphasize the minimal
estimation error of the IBES-DELM model on these sam-
ples, effectively enabling accurate prediction of SOH.

4. Conclusion

To tackle the nonlinear and time-varying challenges of LiBs
in practical operations, we propose an innovative approach
that integrates the DELM and IBES algorithms. This integra-
tion is aimed at achieving reliable and accurate prediction of
state of health (SOH) for LiBs. By addressing the limitations
encountered in traditional DELM models, such as unstable
network behavior and low convergence accuracy due to ran-
domly generated key parameters, we incorporate the IBES
algorithm. This integration optimizes the key parameters
of the DELM model, resulting in the development of the
IBES-DELM model. Consequently, improved network sta-
bility and enhanced convergence accuracy are achieved.
Additionally, we extract five physically meaningful HIs that

Table 4: Comparison of results of different methods in CALCE dataset.

RMSE (%) MAE (%) MAPE (%)
Battery IBES-DELM Ref. [54] Ref. [55] IBES-DELM Ref. [54] Ref. [55] IBES-DELM Ref. [54] Ref. [55]

CS2-35 0.107 1.233 0.34 0.254 1.076 0.55 0.003 1.336 0.45

CS2-36 0.169 2.301 0.63 0.205 1.838 0.52 0.004 2.383 0.68

CS2-37 0.071 1.816 0.59 0.209 1.446 0.46 0.003 2.020 0.58

CS2-38 0.063 9.303 0.41 0.192 9.216 0.33 0.002 11.072 0.40

Table 3: Comparison of results of different methods under NASA dataset.

RMSE (%) MAE (%) MAPE (%)
Battery IBES-DELM Ref. [52] Ref. [53] IBES-DELM Ref. [52] Ref. [53] IBES-DELM Ref. [52] Ref. [53]

B005 0.319 0.6454 0.3505 0.251 0.4931 0.2663 0.010 0.6485 —

B007 0.154 0.5219 0.4668 0.097 0.419 0.375 0.002 0.5296 —

B018 0.105 0.6085 0.8055 0.265 0.4658 0.6196 0.004 0.608 —
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are suitable for real-world conditions and daily LiB opera-
tions. The Pearson correlation coefficient analysis demon-
strates a strong correlation between the extracted HIs and
SOH. Finally, the proposed method is validated using NASA
and CALCE battery datasets. Experimental results demon-
strate that compared to other models, the IBES-DELM esti-
mation model has advantages in exploration ability, high
convergence accuracy, and effectively improving the preci-
sion and stability of model predictions, achieving accurate
SOH estimation and reliable forecasting. These results high-
light the superior performance of the IBES-DELM model,
aiding in timely detection of battery performance degrada-
tion trends, implementing corresponding maintenance and
optimization measures to extend battery life, and enhancing
system reliability.

In future work, it would be valuable to gather and utilize
a wider range of lithium-ion battery datasets to evaluate the
performance of model across different types of batteries and
operating conditions, enhancing the diversity of the dataset.
This would involve conducting performance tests under
varying temperature changes, discharge rates, cycles, and
usage environments. By expanding the dataset and improv-
ing the generalization ability of model, its applicability to
real-world scenarios can be ensured. Furthermore, this study
only extracts five HIs to train the prediction model. In future
endeavors, we can explore the extraction of more concise,
physically meaningful, and highly effective indirect charac-
teristic variables. By thoroughly understanding the working
principle, electrochemical processes, and degradation mech-
anisms of lithium-ion batteries, we can identify multiple
physical parameters closely associated with changes in
SOH. These parameters can then undergo multivariate cor-
relation analysis to evaluate their physical interpretability
and operational suitability in relation to SOH changes. This
approach will enhance current research methods and improve
the performance of SOH estimation.
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