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This research article presents a comprehensive study on the prediction of thermal conductivity (TC) as a primary outcome for an
artificial neural network (ANN) model in the context of nanoenhanced phase change materials (NEPCMs). To improve predictive
accuracy and to reduce variation within the NEPCM dataset, a targeted dataset was employed, consisting exclusively of NEPCMs
synthesized using paraffin wax (PW) and metal oxide nanoparticles. Unlike existing empirical models that predict TC of NEPCM
without simultaneously considering multiple factors influencing it, this study integrates multiple factors, providing a more
accurate prediction of NEPCM thermal conductivity. Additionally, the study explores the impact of synthesis parameters on
the thermal performance of NEPCMs, focusing on the examination of factors such as the melting temperature of pure phase
change material (PCM), nanoparticle size, and NEPCM composition. The thermal characterizations demonstrate outstanding
thermophysical properties in NEPCMs, particularly in terms of thermal conductivity, phase change enthalpy, and thermal
stability compared to their respective base PCM. An ANN TC prediction model demonstrates exceptional correlation (>99%)
with reported NEPCMs, providing a reliable tool for TC forecasting in similar NEPCM categories. The backpropagation ANN
model predicts NEPCM TC with a mean squared error (MSE) of 0.031124 within eight epochs. The dataset used exhibits high
fit values, with R-values of 0.99825, 0.99208, and 0.9824 for training, validation, and testing, respectively. These values closely
match experimentally determined TC, with less than 4% error.

1. Introduction

In 2023, phase-change materials (PCMs) are widely recog-
nized among all materials associated with the field of
renewable energy. PCMs are known as a category of energy
materials that utilize the latent heat of phase transition, mak-
ing them valuable thermal energy-storage substances. In the
era of tough energy crises, the significance of any energy-
storage material cannot be overlooked; hence, the utmost
priority should be given to the development of its material
characteristics to harness its utilization potential.

PCMs were introduced in the early 1900s by Alan Tower
Waterman, a prominent researcher at Yale University [1].
Subsequently, significant research evolved toward under-
standing the thermophysical properties of PCMs. Reports
in the last few years have demonstrated the continuous
development of the thermophysical properties of PCMs
[2–5]. Thermal energy-storage systems, which predomi-
nantly depend on solar energy, the limited availability of
solar energy during daylight hours presents a significant
challenge. The primary obstacle in effectively utilizing this
limited time lies in the low TC of pure PCMs. This low TC
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restricts the fast heat transfer necessary for efficient charging
and discharging processes within thermal energy-storage
devices. Consequently, the limited duration of solar energy
availability cannot be effectively harnessed, as the charging
and discharging rates, and overall performance of these ther-
mal systems are adversely affected by the low TC of PCMs.
Therefore, thermal conductivity emerges as the critical factor
that determines the effectiveness of these energy-storage sys-
tems [6–8].

Similarly, to avoid the poor TC inherent in pure PCM,
different types of nanoadditives have already been intro-
duced as a class of materials termed nanoenhanced PCMs
(NEPCMs) [9]. The class of NEPCMs is associated with
diverse groups and dimensional categories of nanomaterials
including 0D [10, 11], 1D [12], 2D [13], and 3D [8]. Further-
more, these particles can be subdivided into metallic, metal
oxides, and carbon-derived particles, which offer distinct
advantages in the formation of NEPCMs [14, 15].

In the current research scenario, similar to other conven-
tional materials, the use of artificial intelligence (AI) to
predict the thermophysical properties of advanced energy
materials has also gained interest among researchers. Artifi-
cial neural network (ANN) algorithms, which have been the
most common approach recently, can be employed for the
accurate prediction of the TC of NEPCMs. The typical train-
ing of an ANN model requires a robust dataset; however, as
some cutting-edge research is in the development phase,
narrow and concise datasets for training ANNs can be
scarce. To address this concern, some cases have already
reported the accurate prediction of material properties with
dataset restrictions. Several reports have shown the potential
to utilize a limited dataset with advanced techniques like
Levenberg-Marquardt [16–19], k-nearest neighbors (KNN)
[20], automatic relevance determination [20], support vector
machines [21], stochastic gradient descent [21], and adap-
tive neuro-fuzzy inference system [22] for effectively train-
ing the ANN model even with the lack of a comprehensive
and long dataset.

Jaliliantabar [6] predicted the TC of various NEPCMs
using a dataset extracted from twenty-five separate studies,
each of which provided different numbers of data points.
The study included particles of metal, metal oxides, carbon
nanostructures, and ceramics as nanoagents, whereas the
PCMs comprised both organic and inorganic materials.
The input layer of the training consisted of nanoconcentra-
tions, the temperature at which TC is measured, the phase
of the NEPCM for TC measurement, the TC of the PCM,
and the TC of nanomaterials. Three machine-learning
methods, namely, ANN, MARS, and CART, were selected
for prediction in the study. Through the collective study of
all three methods, it was found that the TC of the PCM
was the dominant factor among all input layers for the pre-
diction of TC as an output layer. In addition, it was men-
tioned that the sample size and frequency of data at a
diverse range of temperatures are critical for the number of
data points. Among the three AI models, ANN performed
well in terms of mean squared error (MSE) and R-squared
values. The model training for this study was in the range
of 20°C–90°C. Nevertheless, the development of new models

is required to increase the pace of further research for
expanding the working-temperature range of PCMs.

In another study conducted byMotahar and Sadri [17] for
the prediction modeling of the TC of oxide-dispersed PCMs,
an ANN model with the Levenberg-Marquardt backpropaga-
tion algorithm was trained to predict the TC of Cuo-, Al2O3-,
TiO2-, and SiO2-enhanced n-octadecane. The study included
one hundred and twenty-two experimental datasets extracted
from the literature. The input dataset was in the range of
5°C–60°C and 0.5–12wt% for temperature and nanoconcen-
tration, respectively. The input layer included the temperature,
mass fraction of nanoparticles, and TC of nanoparticles. The
model performance was validated through MSE, mean abso-
lute percentage error (MAPE), average absolute deviation,
and correlation coefficient (R). The validation accuracy of data
was achieved as an MSE value of 3 8059 × 10−5, and the
maximum percentage error of 2.31% was achieved for CuO-
enhanced n-octadecane. Furthermore, the accuracy and per-
formance of the network’s predictions were found to have
absolute errors of 0.000363 and 0.000320W/m·K, respectively,
for liquid- and solid-phase TC.

Research on the TC of NEPCM has significantly grown in
the last decades; however, its exploration using AI techniques
is relatively new. Consequently, the available literature related
to the present study is exceptionally limited. For this reason,
and to obtain a clearer understanding of the ANN-based
approach, a few closely aligned and similar approaches are also
included as a part of the present research.

Kumar et al. [23] developed an ANN model to predict
the heat flow during the differential scanning calorimetry
(DSC) of a nanoenhanced binary eutectic PCM. Dispersed
multiwalled carbon nanotubes (MWCNTs) with three
different mass fractions were experimentally observed in a
mixture of LiNO3 and NaCl for TC, chemical stability, and
thermal stability. However, most of the characterization
parameters of the study were not evaluated using AI, except
for the heat flow prediction at different heating rates. More-
over, this study did not reveal the number of datasets for
ANN modeling, which were taken from the experimental
results of the study itself. During training and testing,
remarkably small values of 0.000191 and 0.00505, respec-
tively, for root mean square error were observed, which are
most desirable for predicting the experimental DSC data
samples accurately. In particular, the ANN model was used
to predict the melting temperature and latent heat value with
impressively low errors of 0.07% and 1.075%.

Kumar et al. [24] conducted experimental cum AI-
based studies to predict the thermal properties of nanoen-
capsulated molten salt samples during DSC at different
heating rates. The performance of 10−9 was targeted in
the study by using a feedforward backpropagation algo-
rithm. Similar to the previous study of the authors [23],
DSC data prediction was the only parameter associated
with ANN modeling; other characterizations were indepen-
dent of AI modeling. It was reported that the trained neural
network was sufficient to predict the experimental data,
achieving a coefficient of determination (R2) of 0.9985
and 0.9973 during the sampling of the training and testing
datasets, respectively.
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Jaliliantabar et al. [25] collected a dataset comprising
twenty different nanoparticles to develop an AI-based model
for the prediction of latent heat of an NEPCM. The training
input layer consisted of nine neurons including a density of
dispersed nanoparticles, particle size, latent heat value of
PCM, density of pure PCM, and latent heat of the NEPCM.
The study was based on four types of nanoparticles, namely,
metal, metal oxides, carbon, and ceramic, and for all these,
paraffin wax (PW) was considered the base PCM. The mix-
ing concentration of nanoparticles was considered a domi-
nant factor for the latent heat of the NEPCM. A multilayer
perceptron (MLP) ANN was chosen to create a structure
of the ANN model, and 10 neurons in the hidden layer were
selected to predict the output. Notably, the dataset of
paraffin-based NEPCMs was only considered to achieve
the accuracy of the prediction model. The major conclusion
drawn from the study is that the prediction accuracy of the
output depends upon the number of data points provided
for the range of the same input.

The current study is focused on experimentally explor-
ing the TC of synthesized NEPCMs. It has two primary
objectives: the first is to examine how various synthesis
parameters affect thermal conductivity, and the second is
to develop an AI-based model for predicting the TC of the
same NEPCM. Despite growing research in this field, there
is a notable absence of in-depth, AI-based prediction models
specifically for NEPCMs synthesized using paraffin wax and
nanoscale metal oxides. To address this issue, the present
research is distinct in its approach, utilizing concise datasets
comprising NEPCMs synthesized solely with the composi-
tion of paraffin wax and metal oxide nanoparticles. The sig-
nificance of this specific paraffin and metal oxide-based
NEPCM will be provided in the subsequent section of the
manuscript.

In the present research work, our objective is to predict
the TC of NEPCMs within this specific category. We
acknowledge that if the AI model is trained using diverse
categories of nanoparticles to synthesize NEPCM, it may
lead to variations between predicted and observed values.
Therefore, the primary objective of this research is to ensure
the accuracy of the proposed model in predicting TC, which
is why we have selected specific categories of NEPCM.

Furthermore, while various empirical models exist for
TC prediction in NEPCMs, they often fail to incorporate
the full spectrum of factors considered collectively in the
present study [6]. Additionally, the choice of TC as the
preferred outcome in our ANN-based model is driven by
its direct relevance to the primary objectives of studying
NEPCMs, crucial for applications like thermal energy
storage, insulation, and electronics cooling. Measuring TC
experimentally is often difficult and expensive, making
ANN-based predictions practical and cost-effective. The
availability of a reliable and significant number of TC data
for validation adds to its significance in the present research.
This research addresses identified gaps by offering more
accurate TC predictions for paraffin wax and metal oxide-
based NEPCMs, bridging discrepancies and providing a
cost-effective alternative to experimental methods within
this category.

2. Material Synthesis and
Thermal Characterizations

As a part of the ANN training, nine distinct datasets for the
TC of the NEPCM and copper oxide (CuO) nanopowders
were obtained from experimental work in the present
research. CuO nanoparticles were used as nanoadditives in
PW for the synthesis of the NEPCM. Paraffin wax stands
as a prime candidate for thermal energy storage materials
due to its remarkable attributes, including thermal stability,
nontoxicity, ready availability, high energy density, and its
ability to maintain near-constant temperatures during phase
transformations. Additionally, the exceptional thermal con-
ductivity, chemical stability, and cost-effectiveness of nano-
sized copper oxides render them an ideal choice for the
widespread production of high-performance phase change
materials. In combination, these factors were the driving
force behind the selection of these specific materials for
inclusion in the current study [26–28].

2.1. Materials. Laboratory research-grade pure PW (CAS:
8002-74-2) with three different thermal properties (Table 1)
was purchased from Sigma-Aldrich and Aladdin Chemical
Korea. Further, high-purity CuO nanoparticles (CAS 1317-
38-0) of three different particle sizes (Table 1) and surfactant
SPAN-80 (CAS:1338-43-8) were purchased from Avention
and Sigma-Aldrich Korea, respectively.

2.2. NEPCM Synthesis. Apart from the literature, experimen-
tal data points for ANN training were obtained from the
thermal characterization of different NEPCMs prepared by
the combinations of three types of PW and nanoparticles.
Additionally, the variation in the composition weight
percentage of CuO particles was considered in the synthesis
of NEPCMs. More specifically, the NEPCM synthesis
process employs a fractional factorial approach, enabling a
comprehensive exploration of key variables and efficient
experimentation through robust process design to minimize
the required number of experiments. In detail, the fractional
factorial approach for material synthesis involves systemati-
cally varying a subset of process parameters while keeping
others constant. By examining the effects of these selected
factors on the material’s properties, it allows for efficient
experimentation and optimization. This approach enables
researchers to identify critical process variables and their
impact on the final product, streamlining the synthesis pro-
cess [29].

The details of the NEPCM synthesis and composition
are presented in Figure 1 and Table 2, respectively. The
NEPCM sample preparation was carried out by direct phys-
ical mixing of CuO nanoparticles into liquid PW with the
addition of SPAN-80 as a surfactant. All individual NEPCM
samples were first prepared through the liquefication process
of 50 gm pure paraffin in a magnetic stirring setup by
keeping the temperature 5°C above the melting point of
the individual PW. The process of nanoparticle addition in
pure PCM involved strong magnetic stirring at 500 rpm for
50min followed by ultrasonication at 40 kHz for 40min. In
addition to this physical mixing, SPAN-80 was used to
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reduce the agglomeration behavior by reducing the surface
tension between liquid PW and the nanoparticles. Moreover,
to reduce the viscosity effect caused by temperature rise in
the probe-type sonicator, the sonication process for all
NEPCM samples was performed within the temperature
range of 70°C–80°C. By maintaining similar procedures,
nine different NEPCM samples were prepared, collected,
and solidified for further characterization.

2.3. Thermal Conductivity Measurement. The LFA 457
MicroFlash (NETZCH, Germany) system was used to mea-
sure the TC of pure PW and NEPCM samples. In this setup,
the thermal diffusivity of the material was measured, which
was followed by the determination of its TC. All samples
were prepared by a molding process to obtain a thickness

of 2mm and 10mm sides. The schematic of the laser flash
technique is provided in Figure 2, where the sample is placed
in between two plates. The front surface of a plate parallel to
the NEPCM sample provides heat by a short-energy light
pulse, which generates a sudden and localized increase in
temperature on one side of the sample. Simultaneously, the
infrared detector measures the temperature of the rear face
of the NEPCM.

By analyzing the temperature rise over time, it can be
determined how quickly heat is being conducted through
the material. The reference specimen samples were used to
determine the thermal diffusivity and specific heat. The mea-
sured density of the NEPCM samples, thermal diffusivity,
and specific heat were together used to calculate the TC
through the following equation [30, 31]:

k T = α T Cp T ρ T , 1

where k is the TC (W/(m·K)), α is the thermal diffusivity
(m2/s), Cp is the specific heat (J/(kg·K)), and ρ is the bulk
density (kg/m3).

The measurement of TC has been carried out in two seg-
ments with the utmost precision. As per the instruments’
calibration, the thermal diffusivity measurements were con-
ducted with an accuracy within ±3%, while the specific heat
capacity was determined with an accuracy within ±5%.
Moreover, to verify the accuracy of the experimental results,
twelve individual measurements were conducted for each
NEPCM sample. Subsequently, the mean value was calcu-
lated and considered as the final measurement value.

2.4. Data Acquisition and ANN Modeling. The robust and
concise data acquisition process for the present AI modeling
and training purposes is completely based on experimental
studies. The data acquisition even in previous studies
exclusively relied on experimental results as the primary data
source. As revealed by Table 3 and Figure 3, the data
acquisition process captured one hundred sixty-nine
datasets from various literature sources and the present
experimentation work; out of one hundred sixty-nine data
points, nine data points were contributed by the present
experimentation.

Table 1: Thermophysical properties of PCM and nanoadditives.

CuO nanoparticles

Average particle size
(nm)

TC (knp)
∗ (Exp.) (W/m·K)

CuO-10 10 1.064

CuO-40 40 1.127

CuO-80 80 1.069

PW (base PCM)

Melting temperature
(°C) (Experimented)

TC (W/m·K) (kpw)∗ (Exp.) Density (ρpw)
∗ (Exp.) (kg/m3)

PW-10 51 0.206 799

PW-11 51.8 0.212 778

PW-12 62.2 0.234 874
∗Measured at 25°C. Exp.: experimental values.

Molding

Sonication

Liquid PCM

Cu oxide SPAN80

Solidifed
samples

Melting

Magnetic
stirring

Figure 1: Schematic of the NEPCM synthesis process.
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The dataset comprised only the class of NEPCMs
synthesized exclusively by using metal oxides and PW. In
particular, the dataset encompassed seven different nanopar-
ticles (Fe3O4, Fe2O3, CuO, TiO2, Al2O3, SiO2, and ZnO2)
with PW, which is more common in such studies. This data-
set was prepared by considering all significant influencing
factors for the TC (kNEPCM) of NEPCMs. The influencing
factors are nanoparticle size (PS), melting temperature of
PW (Tm), TC of PW (kpw), TC of nanoparticles (knp), and
the temperature at which the TC of the NEPCM is measured
(Tk). Moreover, the TC of the NEPCM (kNEPCM) in W/m·K
was considered as an outcome of the prediction model. This
compiled dataset has been made available through the data
availability section of the manuscript.

However, it is infrequently mentioned in the literature
that the type of nanoparticle should not be considered a
significant factor for such studies, which implies that diverse
categories of nanoadditions can be considered collectively to
form a dataset [6]. By contrast, the present study considered
only metal oxides to be of particular interest and attempted
to justify the model accuracy within this selection.

The compilation of a dataset encompassing a wide cate-
gory of materials (including metal oxides, carbon nanotubes,
organic, inorganic, refractory, and metal particles) may lead
to reduced accuracy for predicting the TC of a particular
subset of NEPCM. By keeping this fact in mind to predict
the TC within a specific category, it is crucial to gather data
exclusively from that particular category to achieve a high
level of predictive accuracy. A generalized model architec-
ture was developed as illustrated in Figure 4, which shows
the input, hidden, and output layers of an ANN model used
in the present modeling.

Neurons comprising each layer are interconnected
through weighted links. Every neuron receives inputs and pro-
duces an output derived from stored information and the pro-
cesses within the hidden layers [46]. The distribution of the
dataset for training, testing, and validation purposes is 70%,
15%, and 15%, respectively. The choice for modeling involves
a backpropagation neural network employing the Levenberg-
Marquardt algorithm for training [16]. To achieve optimal
accuracy, a 12-10-1 architecture was adopted for the model-
ing, and the software employed was the MATLAB 22b tool-
box. The number of neurons in the hidden layers should be
determined based on the problem’s complexity and the
amount of data available. Thus, determining the number of
neurons in the hidden layers involves a trade-off between the
complexity of the problem and the amount of available data.
Starting with a balanced number and adjusting as needed
allows you to find the right level of complexity that ensures
your neural network can effectively learn the underlying
patterns in the data without overfitting or underfitting.
The adjustment process often involves iteratively fine-
tuning the network architecture until it performs optimally
on specific tasks.

Choosing to use a single hidden layer in an ANN can be
a suitable option for several reasons, particularly when the
problem is relatively simple or when you have limited data
and computational resources. In addition, single hidden
layer networks are computationally efficient and straightfor-
ward to implement. They have fewer parameters to opti-
mize, making training faster and requiring less data. More
specifically, we established a backpropagation model with a
12-10-1 architecture, comprising 12 neurons in the input
layer, 10 neurons in the hidden layer, and 1 neuron in the

Table 2: NEPCM compositions.

S. no. NEPCM label
Pure PW melting
temperature (°C)

CuO nanoparticle
(Avg. particle size) (nm)

CuO in PW
(wt%)

Surfactant
(SPAN-80) (wt%)

1 NEPCM-1 51 10 0.3 0.3

2 NEPCM-2 51.8 40 0.3 0.3

3 NEPCM-3 62.2 80 0.3 0.3

4 NEPCM-4 51.8 10 0.6 0.6

5 NEPCM-5 62.2 40 0.6 0.6

6 NEPCM-6 51 80 0.6 0.6

7 NEPCM-7 62.2 10 0.9 0.9

8 NEPCM-8 51 40 0.9 0.9

9 NEPCM-9 51.8 80 0.9 0.9

Power
source 

IR receiver

Sample
thermocouple

PCM
sample 

Protective
tube

Heating
element 

Figure 2: Schematic of the laser flash setup (TC measurement).
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output layer. Specifically, the input layer functions as the
entry point for ingesting raw data, while the hidden layer(s)
undertakes the data processing and learning tasks. Subse-
quently, the output layer generates the ultimate predictions
or results.

Additionally, the utmost care was taken in data acquisi-
tion for the present modeling by considering preceding
research works that matched in terms of the methodology
of synthesis and characterization of the NEPCMs. In this

context, it is worth noting that most of the literature is pri-
marily focused on reporting only the thermophysical prop-
erties of the NEPCMs rather than nanoadditive properties.
Consequently, there is a scarcity of data on nanoadditive

Table 3: Sources of the ANN training dataset.

No. Nanoparticles
Ranges of nanoparticles

(wt%)
Ranges of temperature
for TC measurement

Number of data points Reference

1. Fe3O4 10–20 15 2 [32, 33]

2. CuO 2–10 35–65 12 [34, 35]

3. TiO2 0.5–4 70 6 [35, 36]

4. Al2O3 2.5–10 55 4 [33, 37]

5. SiO2 0.5–2 25 3 [26]

6. CuO 0.3–1.2 24.7–70.5 8 [33, 35]

7. Al2O3 5––10 30–60 14 [33, 38]

8. CuO 0.1–5 25 4 [35, 39]

9. Fe2O3 2–8 25 4 [40]

10. Al2O3 2–8 25 4 [40]

11. ZnO 2–8 25 4 [40]

12. SiO2 2–8 25 8 [40]

13. Al2O3 0.5–3 25–45 12 [33, 41]

14. Al2O3 1 14 2 [42]

15. TiO2 0.5–7 15–65 41 [35, 43]

16. TiO2 0.25–1 25 4 [35, 44]

17. CuO 0.25–1 25 4 [35, 44]

18. CuO 0.3–1.2 5–30 24 [45]

19. CuO 0.3–0.9 35 9 Present study

Total data points 169

ZnO Present
study

SiO2Al2O3

Nano particles

N
um

be
r o

f d
at

a p
oi

nt
s

TiO2CuOFe3O4

2
4

11

36

5152

9
4

0

10

20

30

40

50

Fe2O3

Figure 3: Data acquisition summary.

Inputs 

Outputs 

kNEPCM

Hidden layers 

ZnO

PS

Tm

kpw

knp

Tk

SiO2

Al2O3

TiO2

CuO

Fe3O4

Fe2O3

Figure 4: Architecture of the ANN model.
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properties, which was the primary obstacle during the data
collection for the present research work. Therefore, for com-
prehensive dataset collection, such situations were handled
with the support of other literature sources, particularly for
the TC of nanoparticles.

To provide more insights into data acquisition, the data-
set was compiled using available literature data. Specifically,
when the melting temperature of PW was observed as a
range rather than a distinct value, the average value of that
range was considered. Similarly, the average values of nano-
particle size from the specified ranges were adopted. More-
over, some reports contained information only on the TC
of the PCM but lacked data on the nanoparticles used; in
such cases, the values of the TC of the nanoparticles were
sourced from alternative references, regardless of the tem-
perature at which the TC of the nanoparticles was measured.

3. Results and Discussion

This section presents a comprehensive analysis of TC
through a comparison of the percentage improvement in
TC for NEPCMs with respect to their base PCM. Addition-
ally, the comparison between experimental and predicted
thermal conductivities of NEPCMs is also presented.

3.1. Thermal Conductivity of NEPCMs. The prime objective
of the present research is to develop a prediction model for
the TC of NEPCMs under the effect of melting temperature
and TC of PW as well as the size, TC, and composition of
CuO nanoparticles. The experimental values of the TC for
all the measured samples are presented in Table 4. In addi-
tion to presenting the individual TC values, a comparative
analysis for all NEPCMs in terms of the reference values of
thermal conductivities of pure PW (PW-10, PW-11, and
PW-12) is presented in Table 4 and Figure 5.

The improved TC of the NEPCMs, in comparison to
their base PCM, was analyzed among nine different samples
prepared by varying the compositions. A brief discussion of
TC improvement is given below. The experimental observa-
tions of the present study for the improved TC values in all
NEPCM samples range from 0.213 to 0.264W/m·K, with an
enhancement in TC values ranging from 3.30 to 18.44%. As
mentioned in the introduction, there has been limited

research, especially regarding ANN-based TC prediction
using CuO nanoparticles and paraffin wax. However, find-
ings from the current experimental work, particularly in
relation to TC, can be aligned with existing literature. This
alignment is evident in the closely matching values found
in the present study, which have been used to develop vari-
ous ANN models for TC prediction [17].

3.1.1. PW-10 as Base PCM. A comparison of NEPCM-1,
NEPCM-6, and NEPCM-8 with PW-10 revealed that all
three NEPCMs exhibited improvements in TC. NEPCM-1
was found to have the lowest improvement (3.39%),
followed by NEPCM-6 (15.5%) and NEPCM-8 (16.01%).

3.1.2. PW-11 as Base PCM. PW-11 was taken as a reference
for NEPCM-2, NEPCM-4, and NEPCM-9, and for all these
samples, improved thermal conductivities were found com-
pared to PW-11. NEPCM-2, NEPCM-4, and NEPCM-9
demonstrated improvements of 6.13%, 8.49%, and 3.3%,
respectively, compared to their base PW.

3.1.3. PW-12 as Base PCM. In the samples NEPCM-3,
NEPCM-5, and NEPCM-7, which were synthesized using
PW-12 as the base PCM, substantial improvements in TC
were observed. NEPCM-3, NEPCM-5, and NEPCM-7
exhibited improvements of 5.98%, 12.82%, and 4.27%,
respectively, compared to their base PW.

3.2. Thermal Stability and Heat Transitions. To quantify the
heat exchange and thermal stability during the temperature
variation of NEPCMs, DSC and thermogravimetric analysis
(TGA) were, respectively, performed. The equipment details
of these two experiments are provided in Table 5.

In this study, we determined the onset, endset tempera-
tures, and latent heat using NETZSCH Proteus software.
This software operates on the principle that the onset and
offset temperatures are the points where extrapolated base-
lines intersect with tangents drawn at the inflection points
to the left and right sides of the DSC curve, while the peak
temperature corresponds to the highest point on the DSC
curve. Apart from this, the latent heat during the melting
and solidification of the NEPCM samples was calculated by
integrating the area enclosed by the temperature axis within
the DSC curve [47]. The phase transition heat curves and

Table 4: TC improvement.

NEPCM labels TC of base PCM (kpw)
∗ W/(m·K) TC of NEPCM (kNEPCM)

∗ W/(m·K) Improved TC (%)

NEPCM-1 0.206 0.213 3.39

NEPCM-2 0.212 0.225 6.13

NEPCM-3 0.234 0.248 5.98

NEPCM-4 0.212 0.230 8.49

NEPCM-5 0.234 0.264 12.82

NEPCM-6 0.206 0.244 18.44

NEPCM-7 0.234 0.244 4.27

NEPCM-8 0.206 0.239 16.01

NEPCM-9 0.212 0.219 3.30
∗Measured at 25°C.
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mass decomposition curves during the phase change of pure
PW are collectively presented in Figures 6(a) and 6(b),
respectively, while both the patterns for all NEPCM samples
are shown in Figures 7 and 8.

The in-depth analysis of DSC curves as tabulated in
Table 6 reveals that the majority of NEPCM samples showed
an upward trend in melting enthalpy. The incorporation of
nanoparticles into phase change materials (PCMs) enhances
their latent heat capacity through increasing the number of
nucleation sites for phase change, allowing a greater portion
of the PCM to participate in the phase transition. Addition-

ally, nanoparticles improve thermal conductivity, ensuring
more effective heat transfer and leading to alterations in
their phase transition behavior [45]. However, among a
few NEPCM samples, the maximum reduction in melting
enthalpy of ~0.9% was observed for NEPCM-9. Decrements
in melting and solidification enthalpies are rarely encoun-
tered, and their impact can be neglected because of the nom-
inal change in the latent heat capacities of NEPCMs. All the
fluctuations of melting and solidification enthalpy presented
in Table 6 were observed with respect to the base PCM of all
individual NEPCMs.
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Figure 5: Percentage improvement in the TC of NEPCMs compared to the respective base PCMs.

Table 5: Experimentation and equipment details (DSC and TGA).

Equipment model Heating/cooling rate Purge atmosphere Observation range

DSC DSC200F3Maia (NETZSCH) 5°C/min Nitrogen 15°C–85°C

TGA NETZSCH STA 449F3 10°C/min Nitrogen 28°C–650°C
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For instance, all three NEPCM samples synthesized from
PW-12 exhibited a continuous rise in melting enthalpy
(NEPCM-3, NEPCM-5, and NEPCM-7). This increased
melting enthalpy can be observed to have a linear relation
with the increasing size of the incorporated nanoparticles.
Among all NEPCMs, the highest improvement of 9% in
melting enthalpy was observed for NEPCM-3. This highest
improvement can be correlated with the high melting
temperature of PW-12 as the base PCM for NEPCM-3.
Similarly, the most substantial improvement in solidification
enthalpy was observed to be ~4.5% for NEPCM-5 with
respect to its base PCM. This improved solidification
enthalpy was the most noticeable improvement across all
the NEPCMs.

Additionally, Figure 8 illustrates the mass decomposition
of the synthesized NEPCM samples. This pattern of thermal
decomposition confirms the potential for their application
within the degradation onset temperature for each individual
NEPCM. The degradation onset temperature justifies the tem-
perature range within which these NEPCMs can be effectively
used without undergoing undesirable changes in their proper-
ties due to thermal degradation. It has also been observed that
all the NEPCMs displayed lower degradation onset tempera-
tures relative to their corresponding base PCMs. This phe-
nomenon shows the impact of metal oxide nanoparticles,
which enhance phase transition efficiency by lowering the
energy barrier and improving thermal conductivity.

As noted in prior research studies, interactions between
the nanoparticles and the PCM at the nanoscale influence

thermodynamic properties, including intermolecular forces,
resulting in alterations in the energy needed for phase tran-
sition [48, 49].

3.3. Prediction through ANN. The MSE holds prime impor-
tance in achieving precise prediction outcomes. Hence, it
was utilized as the key criterion for model selection. Despite
numerous attempts resulting in accurate predictions, this
study ultimately opted for the most favorable outcome,
which was the TC of the NEPCMs. For regression tasks,
MSE measures the average squared error or absolute differ-
ence between predicted and actual values, respectively. The
lower MSE values indicate better predictive accuracy. In
addition, R-squared is a metric for regression models that
indicates the proportion of the variance in the dependent var-
iable that is explained by the model. So, a higher R-squared
value is desirable to achieve a high degree of accuracy.

Figure 9(a) illustrates a histogram showcasing the distri-
bution of discrepancies between target and predicted values
following the training of a feedforward neural network.
These disparities can assume negative values, signifying the
extent of deviation between projected and desired values.
The histogram comprises vertical bars and termed bins,
which categorize the overall range of errors into 20 more
manageable segments. The y-axis indicates the count of
samples falling within each bin. For instance, the bin cen-
tered around an error of 0.02103 exhibits a height close to
~60 for the training dataset and values between 60 and 70
for the validation and test datasets. The x-axis represents
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Figure 6: Thermal behavior: DSC and TGA of pure PW.
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the zero-error line for reference. In this context, the zero-
error point coincides with the bin centered at 0.02103.

During the training process, many trials are performed
in order to find the best ANN structure that has the least
mean squared error (MSE). As the significance of the valida-
tion performance (Figure 9(b)) is based on the MSE, which
is the most important factor in choosing a suitable model,
the best result has been chosen and presented in the work.
Since such kind of a trial is made by hundreds of iterations
on an error and trial basis.

Thus, during the training, validation, and testing,
Eqs. (2)–(4), respectively, were calculated by the models
that are as follows.

Output ≅ 1 × Target + 0 0077, 2

Output ≅ 0 85 × Target + 0 045, 3

Output ≅ 1 × Target + 0 046, 4

where output is the model’s final result, and the target
is the actual experimental value.

The choice of the 12-10-1 architecture was driven by the
minimal MSE value to achieve the highest accuracy [50]. As
depicted in Figure 9(b), the 12-10-1 ANN model demon-
strated its superior validation performance, reaching an
MSE of 0.031124 after eight epochs. Furthermore, the corre-
lation of the selected model was demonstrated with an over-
all R-value of 0.99368. The predictions from the ANN
predictive model can be visualized and compared with the
experimental findings to assess their level of agreement. As
depicted in Figure 10, the experimental outcomes of the

10
–3

–2

–1

0

1

2

20 30 40 50 60
Temperature (°C)

D
SC

 (m
W

/m
g)

70 80 90 10
–3

–2

–1

0

1

2

20 30 40 50 60
Temperature (°C)

D
SC

 (m
W

/m
g)

70 80 90 10
–3

–2

–1

0

1

2

20 30 40 50 60
Temperature (°C)

D
SC

 (m
W

/m
g)

70 80 90

10
–3

–2

–1

0

1

2

20 30 40 50 60
Temperature (°C)

D
SC

 (m
W

/m
g)

70 80 90 10

–2

–1

0

1

2

20 30 40 50 60
Temperature (°C)

D
SC

 (m
W

/m
g)

70 80 90 10
–3

–2

–1

0

1

2

20 30 40 50 60
Temperature (°C)

D
SC

 (m
W

/m
g)

70 80 90

3

10

–2

–1

0

1

2

20 30 40 50 60
Temperature (°C)

D
SC

 (m
W

/m
g)

70 80 90 10
–3

–2

–1

0

1

2

20 30 40 50 60
Temperature (°C)

D
SC

 (m
W

/m
g)

70 80 9010
–3

–2

–1

0

1
2

20 30 40 50 60
Temperature (°C)

D
SC

 (m
W

/m
g)

70 80 90

3

NEPCM-1
NEPCM-2
NEPCM-3
NEPCM-4
NEPCM-5

NEPCM-6 
NEPCM-7
NEPCM-8
NEPCM-9

Figure 7: Thermal behavior: DSC analysis of NEPCMs.

10 International Journal of Energy Research



present study closely align with the anticipated results, as
evidenced by the R-values (correlation coefficient) of
0.99825, 0.9828, and 0.99208 for training, testing, and vali-
dation, respectively, with an overall R-value of 0.99368
(Figures 10(a)–10(d)).

In addition, to validate the choice of the LM algorithm,
the simulation has also been formed by using the same
model by altering the LM algorithm which is, namely,
Bayesian regularization backpropagation and scaled conju-
gate gradient backpropagation algorithm. It is found that
R = 0 98133, 6 0134 × 10−5 for Bayesian regularization and
R = 0 96736 and MSE = 0 06773 for the scaled conjugate
gradient. Thus, the result shows a better prediction as
compared to the other two algorithms.

Moreover, plotting the experimental results and the out-
put of the ANN model together revealed an exact match of
the TC (kNEPCM) predictions. Detailed results of the projected
TC are provided in the data availability section of the manu-
script, indicating an overall absolute error of ~3.83%.

The TC projection shown in Figure 11 exhibits an out-
standing resemblance to the experimental curve, showcasing
the practicality of the ANN model in predicting the TC of
NEPCMs to identify a new class of NEPCMs. This under-
scores the reliability and consistency of the ANN model as
a robust approach for TC prediction in alloy systems.

3.4. Validation of Model. In order to validate the accuracy of
the model employed in the present study, a comparison has
been made in Table 7 among different models, including the
present study by adopting different algorithms (LM-BP, Bayes-
ian regularization backpropagation, and scaled conjugate gradi-
ent backpropagation) by evaluating the MSE, R, and R2 values.

Through this comparison, it can be concluded that in the
context of a present ANN model for predicting TC in
NEPCMs, key considerations include the utilization of
advanced regularization techniques, custom loss functions,
and interpretability tools to capture complex and nuanced
correlations in the data. These advanced techniques enable
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Figure 10: Correlation of the dataset with (a) training, (b) validation, (c) test, and (d) overall for the 12-10-1 ANN model.
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the model to better understand and predict TC, even when
dealing with limited data and intricate relationships between
input variables, ultimately enhancing the model’s accuracy
and its ability to uncover meaningful correlations in NEPCMs.

4. Limitations and Challenges

The conclusions drawn from this research are valuable, but
it is essential to consider the limitations of the ANN predic-
tion model used:

(i) Data Requirements. The neural network model
typically requires a large amount of training data
to perform well. In cases where data is limited,
ANNs may overfit, making them unreliable for
prediction. Despite the model’s success in this
study, the limited dataset could potentially affect
its reliability in broader applications. Addition-
ally, challenges include the quality of thermal
conductivity data, which can affect the model’s
performance
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Figure 11: Comparison of experimental and ANN-predicted densities.

Table 7: Comparison of different ANN model accuracy.

Materials Model used Accuracy level Ref.

Miscellaneous PCM+ metal oxide nanoparticles
Levenberg-Marquardt backpropagation

algorithm
MSE = 1 3512 × 10−5
R = 0 999964948 [17]

Paraffin wax + metal oxide nanoparticles

Huber regression method
MSE = 0 971172

R2 = 0 998

[21]KNN (K = 3)
MSE = 0 41809
R2 = 0 999

SVM (RBF kernel)
R2 = 0 999

MSE = 0 000016

Paraffin wax + metal oxide and carbon-based
nanoparticles

MARS
CART
ANN

R2 = 0 93
R2 = 0 93
R2 = 0 96

[6]

Paraffin wax + metal oxide nanoparticles

ANN (Levenberg-Marquardt
backpropagation)

R = 0 99368
MSE = 0 031124

Present
work

ANN (Bayesian regularization
backpropagation)

R = 0 98133
MSE = 6 0134 × 10−5

ANN (scaled conjugate gradient
backpropagation)

R = 0 96736
MSE = 0 06773
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(ii) Overfitting Mitigation. It is mentioned that the used
ANN model was optimized with several iterations,
and the learning algorithm was carefully selected.
However, in practice, overfitting can still be a con-
cern, especially if the dataset is small and not
diverse. The reliability of the model may vary in
situations with significantly different data

(iii) Scope Limitations. The study is limited to specific
parameters, such as the size of nanoparticles, a
specific temperature range of measurement, PCM
melting temperature, thermophysical properties of
materials, and specific materials (metal oxide with
paraffin wax). This makes the model’s applicability
outside of these constraints uncertain. In real-world
applications with different materials or conditions,
the model may not perform as well

(iv) Data Preprocessing Complexity. Data preprocessing
can be intricate, involving the cleaning and prepa-
ration of data for training. Developing complex
ANN models can be challenging and making them
interpretable can be an issue

(v) Generalization Requirement and Data Diversity.
Achieving generalization to different materials and
conditions is crucial for the model’s utility. The
diversity of materials, data imbalance, and the need
for domain knowledge further complicate the
modeling process

(vi) Data Handling and Fine-Tuning. Addressing these
challenges may involve rigorous data handling
and model fine-tuning to ensure accurate predic-
tions of thermal conductivity

(vii) Model Optimization. The 12-10-1 model used in
this study was optimized with several iterations
and the proper selection of the learning algorithm
to overcome these challenges and produce the best
results

In summary, while the ANN prediction model demon-
strated strong correlation and reliability within the defined
scope of the research, its limitations related to data require-
ments, overfitting, and limited scope should be considered
when applying it in broader contexts or with different
parameters. Researchers and users should be cautious about
extrapolating the model’s performance beyond the specific
conditions tested in this study.

5. Conclusions

A significant part of the present investigation has been
accomplished by the synthesis and thermal characterization
of different NEPCMs. The thermal characterization revealed
excellent thermophysical properties of NEPCMs over their base
PCMs. Three major thermophysical properties, namely, TC,
melting, and solidification enthalpies, were extensively com-
pared for improving the thermal performance of NEPCMs.
Furthermore, an ANN model was developed to predict the

TC of NEPCMs through a comparison with literature data.
Some key conclusions drawn from this study are as follows:

(i) The incorporation of CuO nanoparticles along with
varying PCM composition and melting temperature
contributes significantly to TC improvement, with
enhancements ranging from 3.4% to 18.44%

(ii) Adding larger nanoparticles to a low-melting-
temperature PCM significantly increases TC com-
pared to NEPCMs with high-melting-temperature
base PCMs. Higher nanoparticle concentrations do
not consistently yield the highest TC enhancement

(iii) In two different NEPCMs with the same nanoparti-
cle size, a minor reduction in the melting tempera-
ture of the base PCM (1.5%) combined with
comparatively low concentrations of nanoparticles
can result in a substantial enhancement in TC up
to 15.14%

(iv) Similar to melting enthalpy, the most substantial
improvement of 4.5% in solidification enthalpy is
observed for one of the NEPCMs having the highest
melting temperature for its base PCM

(v) A backpropagation ANN model is established, which
successfully predicts the TC of NEPCMs with anMSE
of 0.031124 at eight epochs. It is found that the used
dataset has fitted R-values 0.99825, 0.99208, and
0.9824 for training, validation, and testing, respec-
tively, in the prediction of TC using the ANN model,
which is well correlated with the experimentally
determined TC with less than 4% error

(vi) The ANN prediction model for TC has an outstand-
ing correlation (>99%) with the reported NEPCMs,
which could be used as an effective and readily
available tool for determining the TC of NEPCMs
according to their application

6. Future Scope and Recommendations

To enhance the applicability of AI models for predicting
thermal conductivity in NEPCMs, future research should
expand the model’s training dataset to include a wider range
of nanomaterials commonly used in NEPCM synthesis and
with using different prediction models. This diversification
equips the model to predict thermal conductivity across var-
ious NEPCM materials, enhancing its versatility and making
it a valuable tool for a comprehensive understanding of these
materials. In the current study, the authors have addressed
the challenge of collecting extensive thermal conductivity
data for different NEPCMs under varying synthesis condi-
tions by developing an efficient ANN prediction model. This
model can serve as a valuable supporting tool for optimizing
the composition of NEPCMs, particularly in cases where
collecting large experimental datasets is challenging, contrib-
uting to advancements in the field. Additionally, the correla-
tion between AI modeling and thermal conductivity is
evident in how these models enable industries to optimize
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processes, reduce energy consumption, and improve mate-
rial design. This, in turn, leads to more sustainable and
cost-effective practices. The applications of AI in predicting
TC have far-reaching implications in various sectors,
making them a valuable tool for research, development,
and manufacturing.

Nomenclature

0D: Zero-dimensional
1D: One-dimensional
2D: Two-dimensional
3D: Three-dimensional
AI: Artificial intelligence
Al2O3: Aluminum oxide
EG: Ethylene glycol
ANN: Artificial neural network
CART: Classification and regression trees
Cp: Specific heat (J/(kg·K)
CuO: Cupric oxide
DSC: Differential scanning calorimetry
Fe3O4: Magnetite
K: Thermal conductivity (W/m·K)
kHz: Kilohertz
LM-BP: Levenberg-Marquardt backpropagation
MARS: Multivariate adaptive regression
MAPE: Mean absolute percentage error
MASE: Mean absolute percentage error
MWCNT: Multiwalled carbon nanotubes
MSE: Mean squared error
MLP: Multilayer perceptron
m3: Volume
NaCl: Sodium chloride
NEPCMs: Nanoenhanced phase-change materials
nm: Nanometer
PW: Paraffin wax
PCM: Phase-change materials
PS: Nanoparticle size
R: Correlation coefficient
R2: Coefficient of determination
SAE: Society of Automotive Engineers
SPAN-80: Sorbitan monooleate
SiO2: Silicon dioxide
rpm: Revolutions per minute
TGA: Thermogravimetric analysis
TC: Thermal conductivity
TiO2: Titanium dioxide
Tk: Temperature at which the TC of the NEPCM is

measured
%: Percentage
ρ: Bulk density (kg/m3)
α: Thermal diffusivity (m2/s)
°C: Degree Celsius.
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