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In recent years, due to the increase in electricity consumption and environmental problems, power system expansion planning
requires new technologies. In this regard, the incorporation of renewable energy sources (RESs) and utilization of demand
response (DR) programs need disruptive variations in the present power system configurations. This paper proposes a mixed-
integer linear robust multiobjective model for generation and transmission expansion planning (GEP-TEP) taking into account
wind farms (WFs) and a DR program based on time-of-use pricing. The suggested model is presented via mixed-integer
nonlinear programming (MINLP) at the first stage and then transformed into mixed-integer linear programming (MILP) using
the Big M linearization technique. Moreover, long- and short-term uncertainties of load demand and WFs are incorporated
into the recommended model to achieve more accurate results. The interval-based method is applied for taking into account
long-term uncertainties while the scenario-based stochastic model is applied for modeling short-term uncertainties in the
recommended GEP–TEP model. Lastly, the suggested model is investigated on various standard test systems to evaluate the
effectiveness of the GEP-TEP model.

1. Introduction

Coordinated generation and transmission expansion plan-
ning (GEP-TEP) plays a key role in response to the load
growth in the future power system. The use of this approach
can couple the GEP-TEP problem and simplify the integra-
tion of renewable energy sources (RESs) into the power sys-
tem. In addition, various demand response (DR) programs
can also be incorporated into the GEP-TEP problem. How-
ever, solving such type of nonlinear optimization problem
is computationally complex, and reaching the global optimal
solution cannot be ensured. Another complexity with this
optimization problem is the random behavior of some
parameters such as load demand and RESs. These uncer-
tainties in the problem formulation provide inaccurate
results for the planning. Consequently, it is required to pro-
pose an appropriate model for the coordinated GEP-TEP
problem to obtain an optimal, simple, and robust solution.

So far, many papers are published to address the GEP-
TEP problem either by the AC [1–3] or DC power flow
equations [4]. The AC power flow provides a nonlinear
model; therefore, it is not easy to deal with such complicated
equations, especially in a large-scale power system. To pre-
vent such complicated equations and to cope with the non-
linearity of the GEP-TEP problems, DC models are applied
[5]. The GEP-TEP model can be based on a multi or single
objective. Even though multiobjective GEP-TEP can provide
many advantages for power system planning, the method
employed to solve this type of optimization is very complex.
In [6], a bilevel GEP-TEP model based on game theory is
proposed. In this study, the upper level deals with the TEP
while the lower level addresses the GEP in a deregulated
power system. In [7], a three-level GEP-TEP problem is pro-
posed. In [8], a new model is recommended to eliminate
seismic risk. In [9], the GEP-TEP problem is considered
with storage systems to provide more flexibility. Some
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review papers have been also published in these areas in
[10–12]. Nevertheless, in the above-mentioned works, the
GEP-TEP problem is addressed without considering
uncertainties.

A few papers are presented to address power system
planning considering uncertainties. In [13], a multistage sto-
chastic MILP formulation is applied to optimize the GEP
problem. Similarly, a multistage linear model to cope with
uncertainties is proposed in [14]. A stochastic adaptive
robust optimization technique for the GEP-TEP problem is
suggested in [15]. To minimize the cost and environmental
pollution, a robust multiobjective GEP-TEP problem is pro-
posed in [16]. In [17], using the linear formulation, uncer-
tainties in the GEP-TEP are solved. The TEP problem with
optimal transmission switching in wind farms (WFs) con-
sidering the uncertain parameters is recommended in [18].
The stochastic bilevel model of the TEP problem is also
assessed in [19, 20], to model the random behavior of the
uncertain parameters.

To cope with the limitations of the above-mentioned
papers, this paper proposes a GEP-TEP problem formula-
tion that efficiently coordinates the investment in generation
and transmission. It also considers DR as a way to increase
the flexibility of the wind-integrated power system. The
aim of the model is to reduce the combined cost of genera-
tion expansion, transmission expansion, operation, and fuel,
while satisfying the uncertainties and constraints of both
expansion and operation, and achieving the adequacy and
flexibility goals.

Moreover, most of the previous methods for solving the
multiobjective GEP-TEP problem are complicated, they
suffer from a high computational burden, and the global
optimal solution cannot be ensured. Furthermore, the mul-
tiobjective GEP-TEP problem taking into account long-
and short-term uncertainties and DR at the same time is
not investigated in previous works. The Lp-metric method
is a powerful tool to address multiobjective problems [21].
The interval-based robust approach has not been used along
with the Lp-metric method to deal with the GEP-TEP prob-
lem in the literature. Furthermore, the conventional models
have not considered the fuel constraints, gaseous emission,
and load shedding at the same time. Moreover, the previous
models have not simultaneously considered the flexible coor-
dinated GEP-TEP problem with time-of-use DR (TOUDR)
programs under long- and short-term uncertainties. The
main contributions of this study are listed as follows:

(i) A multiobjective-coordinated GEP-TEP model with
integrating WFs and considering the TOUDR pro-
gram under long- and short-term uncertainties is
recommended and solved via the Lp-metric method

(ii) The interval-based method is proposed for model-
ing long-term uncertainties in the GEP-TEP prob-
lem including the peak of load demand and the
installed capacity of WFs on the horizon year

(iii) A stochastic approach is suggested for modeling
short-term uncertainties in the GEP-TEP problem
including daily loads and WF generations

The rest of the paper is prepared as follows: the multiob-
jective optimization using the LP-metric method is pre-
sented in Section 2. The mathematical formulation is
developed in Section 3. Section 4 presents the methodology.
Section 5 presents case studies and simulations. The conclu-
sion is presented in Section 6.

2. Multiobjective Optimization Using
LP-Metric Method

2.1. Multiobjective Optimization. Equation (1) indicates a
basic form of the multiobjective problem as

Min z1 x , z2 x ,⋯zπ x 1

The objective functions shown in (1) are typically incon-
sistent with each other. Enhancing one objective function
can ruin the others. The notion of optimality changes into
the Pareto optimality in multiobjective problems. The
Pareto solution cannot control all of the objective func-
tions [22].

2.2. LP-Metric Method. The LP-metric method is a multiob-
jective optimization technique that combines different objec-
tives into a single dimensionless objective by using a
weighted distance measure. Some of the benefits of the LP-
metric method over the simple weighting method are [21]
as follows:

(i) It can handle nonconvex objective spaces, while the
simple weighting method can only find Pareto-
optimal solutions in convex regions

(ii) It can find solutions that are compatible with the
decision maker’s preferences, while the simple
weighting method requires the user to specify the
weights in proportion to the relative importance of
the objectives

(iii) It can avoid the issue of scaling of the objectives,
while the simple weighting method can be sensitive
to the units and ranges of the objectives

The considered problem in this study is formulated asmul-
tiobjective mixed-integer linear programming (MOMILP).
The LP-metric approach as a well-known multicriteria
decision-making (MCDM) is used to solve the MOMILP
model. In this method, the multiobjective function is divided
into two parts, where each part corresponds to one of the
objective functions. In each part, the normalized value of
each objective function is multiplied by its own weight fac-
tor. In this regard, the multiobjective problem is resolved
by taking into account each objective function distinctly,
and then, a single objective is reformulated. It targets to
minimize the summation of the normalized variation
between each objective and the optimal values of them. In
the suggested model, it is assumed that z1 and z2 are two
objective functions. According to the LP-metric scheme,
MOMILP must be addressed by each one of these two objec-
tives, distinctly. The optimal values for such two objective
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functions include z∗1 and z∗2 . The LP-metric objective func-
tion can be given as [21]

z3 = ϒ
z∗1 − z1
z∗1

+ 1 −ϒ
z∗2 − z2
z∗2

, 2

where 0 ≤ϒ ≤ 1 is given by the planner. By means of the
LP-metric taking into account function and considering
MOMILP model constraints, the problem becomes a single
objective mixed-integer linear programming (SOMILP)
model, which can be powerfully handled by the MILP
solvers.

3. Mathematical Formulation

3.1. Deterministic GEP-TEP Model. In this part, the deter-
ministic GEP-TEP model is presented and in which the peak
load and WFs are considered without uncertainty. Equation
(3) is the objective function consisting of four terms. The
first term is the GEP cost, including new conventional and
WFs. The second term is the cost of installing new transmis-
sion lines. The fuel cost of existing and new conventional
units is given in the third term. The fourth term is the oper-
ation cost, which is obtained by the total energy generated
via conventional and WFs.

S.t:
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The power balance equation is presented in (4). The total
power generation equality by power consumption is indi-
cated in (5). Equation (6) ensures that the generated energy
by the system must be more than the required energy
demand. The energy generated by new power plants is based
on the yearly maximum hours of their operation and contri-
bution factor as can be seen in (7). The load shedding cannot
be higher than the load as forced by (8). Equation (9) indi-
cates that the total annual load shedding should be smaller
than the maximum allowable amount per year. The power
generated by conventional and WFs should be lower than
the planned amount as presented in (10) and (11), respec-
tively. The installed WFs must be greater than the minimum
amount in the 5-year horizon as forced by (12).

Equations (13) and (14) decide on the installation of con-
ventional and WFs, respectively. Equations (15) and (16)
impose the restriction on transmission power flow capacity
before and after planning, while these values are obtained from
equations (17) and (18), respectively. Upper and lower limits
in voltage angle are applied by (19). Equations (20) and (21)
can be achieved by replacing (17) and (18) in (15) and (16).
It is notable that (21) is nonlinear because of themultiplication
of two decision variables comprising ΔB and Δθ. The Big M
linearization scheme [23] is used to tackle the nonlinearity of
(21) (see [23] for details). The change in transmission power
flow and susceptance matrix can be calculated by (22) and
(23), respectively. The gaseous emission of conventional units
is limited by (24). The fuel consumption of conventional units
is calculated by (25) and limited by imposing (26) and (27).

3.2. Scenario-Based Modeling and TOUDR Program. Consid-
ering uncertainties in the planning model to obtain more
accurate results is required. The random behavior of WFs’
generation and daily loads necessitates considering short-
term uncertainties. On the other hand, considering the DR
program along with these uncertainties can greatly neutral-
ize the destructive effects of uncertainty parameters. Here,
the scenario-based method has been employed to consider
the daily uncertainties in the production of WFs and electri-
cal load as short-term uncertainties. Scenarios present oper-
ation circumstances in each hour of the horizon year.
Consequently, a scenario with the probability of occurrence
has been created for each hour of the target year, which has
been reduced using the K-mean algorithm to 48 operational
scenarios [24]. As a result, a number of constraints related to
the production of WFs and electrical load should be chan-
ged, while the most important of them are as follows:
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Since various uncertainties in this model are considered,
a stepwise approximation-based TOUDR scheme is used in
this paper. Five peak load rates are expected here. The pre-
dictable demand after using the TOUDR is given in (29). It
is assumed that only one peak load rate is active as guaran-
teed by (30). Furthermore, customer demand cannot be
adversely affected by the TOUDR as (31).

It is well-known that the DR program is based on peak
load demand and electricity price and can be implemented
in different schemes such as TOUDR. Since the peak load
and, also, energy price are forecastable in the future with
acceptable accuracy, the DR is also predictable. In addition,
the elasticity for different types of load in any country is
known [25].

LoadTOUDRi,t,w = klw × Loadi,t〠
plr
udi,t,w,plr × drrplr, 29
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3.3. Multiobjective Model Using Interval-Based Optimization.
In the previous section, short-term uncertainties in daily
load and WF productions were modeled by the scenario-
based method. There are different methods and tools that
can be used to account for the stochastic nature of load
demand in the long-term horizon. One of the most efficient
methods for considering this uncertainty is the robust
method. This is a decision-making technique that considers
the worst-case scenarios of uncertainties and provides solu-
tions that are immune to deviations from the expected
values. It can handle nonconvex and complex problems
and provide rigorous guarantees on the future operation risk
of planning [26].

An interval-based model together with the LP-metric
technique is offered here to integrate the long-term uncer-
tainties in the GEP-TEP model. The interval-based GEP-
TEP model is defined as follows:

min z x , 32

f n x ≤ 0, 33

gk x ≤ blok , b
up
k , 34

hn x = dlon , d
up
n , 35

where x is decision variables and (32) denotes the objective
function (3). Equation (33) indicates deterministic con-
straints. Equations (34) and (35) are interval-based inequal-
ities and equalities constraints, respectively. Here, there is
no inequality constraint, (4)–(6) and (8) are interval-based
equality constraints, and the rest of the constraints are
deterministic. In addition, dlon , d

up
n indicates the interval

forms of Loadloi,t , Load
up
i,t and Pwg lo

i,y,t , Pwg up
i,y,t . The equality
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(equations (4)–(6) and (8)) can be replaced by (36)–(39),
respectively.
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3.3.1. The Probability Degree Definition and Transferring
Model. In this paper, the probability degree (λ) is employed
to transfer the interval-based constraints into deterministic
ones. In interval mathematics, the comparison of the two
intervals is to determine which one is better than the other.
For this reason, the probability degree is used to describe
the degree to which interval is better than another interval.
More details are given in [27]. An example is provided here
for the better understanding of the difference between an
interval and a real number. Assuming that “a” is a real
number and B = blo, bup is an interval, “a” can be located
in three positions as displayed in Figure 1, and the related
probability degree can be given as

P a ≤ B =

1, a ≤ blo

bup − a

bup − blo
, z < a ≤ bup

0, a > bup

40

In (40), the variable in the interval tracks a uniform dis-
tribution, and P a ≤ B donates the probability degree for
a ≤ B. The value of the probability degree is changing based
on the level of risk where λ ∈ 0 ; 1 . When a ≤ B in (39), P
a ≤ B ≥ λ can be obtained as follows:

a ≤ bloλ + bup 1 − λ 41

Based on the description of probability degree, λ is the
level of risk to address uncertainties. If the λ is close to zero
in equation (41), the interval-based inequality approaches
to bup, which is optimistic for WFs and extremely pessimis-
tic for electrical load. Also, if the λ is close to one, the
interval-based inequality approaches to blo and has a ten-
dency to minimize the uncertainties of the interval blo,

bup , which is extremely pessimistic for WFs and extremely
optimistic for electrical load. Consequently, the higher value
of λ specifies the tighter bound of the uncertainties and vice
versa. Using (41), the equation of the interval-based model
changes to deterministic ones as follows:

hn x = dlon λh,n + dupn 1 − λh,n 42

So (36)–(39) can be transformed to
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To cope with the robust multiobjective model, first, the
deterministic model must be addressed, and the total cost in
the stochastic case should be attained. Next, an upper
bound on the total expansion cost is set based on the sto-
chastic cost. In (43)–(46), the forecasted peak of electrical
load and the peak of WF installation are allowed to change
by λ. Moreover, an extra constraint must be set to the total
cost, to make the model economically operational while
maximizing its robustness as indicated in (47).

zRobust ≤ 1 +U zstochastic 47

Now, the problem should be solved to minimizing λl

and maximizing λwg by LP-metric method as follows:

z = ϒ
λl ∗ − λl

λl ∗
− 1 −ϒ

λwg ∗ − λwg

λwg ∗ 48

It is noteworthy that the multiplication of two decision
variables including λwg and Pwg

i,y,t in (43), and (44), makes
the model nonlinear.
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Figure 2: Flowchart of the suggested technique.
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Figure 1: Relation between a real number and an interval [27].
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4. Solution Methodology

The robust interval- and scenario-based approaches have
been used to take into account long- and short-term uncer-
tainties, respectively. The model allows the planner to select
the appropriate planning considering uncertainties and
demand response. The optimal planning steps are as follows:

(i) Input the equations and parameters

(ii) The Big M linearization is applied to handle
nonlinearities

(iii) The GEP-TEP problem is solved via the determin-
istic methodology

(iv) The model is improved based on scenario-based
stochastic to deal with daily uncertainties in elec-
trical load and the power produced by WFs as pre-
sented in Section 3.2

Table 1: Candidate generation units and transmission lines.

Technology

Generation units
Capacity
(MW)

Candidate lines
1 2 3 1 2

Capacity
(MW)

Cost
(∃/MW)

Capacity
(MW)

Cost
(∃/MW)

Capacity
(MW)

Cost
(∃/MW)

Susceptance
(pu)

Cost
(∃/MW)

Susceptance
Cost

(∃/MW)

WFs 15 19.5 20 26 50 65 50 0.128 144.39 0.192 129.95

Hydro 50 62.5 60 70 70 82.6 80 0.192 151.17 0.224 136.05

Steam 75 75 100 95 125 112.5 100 0.224 155.69 0.336 140.12

Gas 30 27 40 34 50 40 150 0.392 163.49 0.420 147.14

Combined 135 148.5 160 168 180 180 180 0.420 220.26 0.490 198.23

G

G

80 MW

60 MW

240 MW

40 MW

120 MW

240 MW

90 MW 80 MW

B1B5

160 MW

B4

B2

B3

B6

G

Existing line

Existing generator

Forecasted load

G

Figure 3: The Garver system in preexpansion state.

Table 2: Installed elements in the deterministic approach.

Year Added elements

t = 1
65MW WF at bus 5

60MW hydro unit at bus 6
20MW WF at bus 6

50MW transmission line between buses 2 and 6

t = 2 —

t = 3 30MW gas unit at bus 5

t = 4
50MW gas unit at bus 2
50MW gas unit at bus 4
90MW gas unit at bus 5

t = 5
60MW gas unit at bus 1
60MW gas unit at bus 2
60MW gas unit at bus 4
60MW gas unit at bus 5
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(v) At this stage, the TOUDR is added to the previous
stage

(vi) The model is altered to an interval- and scenario-
based by means of the method given in Section 3.3

(vii) The model is solved using MOMILP to obtain the
robust region for load and WF installation at the
same time

(viii) Step (vii) is repeated for different values of ϒ

To better expose the procedure of the solution method,
the flowchart is depicted in Figure 2.

5. Numerical Simulations

In this part, various numerical results are provided through
the CPLEX solver in the GAMS optimization package on
6-bus Garver [28] and 24-bus IEEE test systems [29]. The
simulations have a threefold purpose: (i) to validate the pro-
posed MILP-based GEP-TEP deterministic model; (ii) to
investigate the effects of short-term uncertainties including
WFs’ generation and daily loads using the scenario-based
stochastic approach along with considering the TOUDR in
the dynamic GEP-TEP model; (iii) the analysis of increasing
investment cost on the long-term uncertainties of WF instal-
lation capacity and load demand by applying a multiobjec-
tive robust GEP-TEP model. The information of candidate
generation units and transmission lines are given in
Table 1. The resulting optimization problem has been run

on an Intel® CoreTM i7, 12.00GB RAM personal computer
and solved over 5-year horizon.

5.1. Garver Test System. The used Garver’s 6-bus system is
the most well-known test power system for planning studies
[28]. In this power system, the existing conventional units
include a 90MW gas unit at bus 1, a 60MW steam unit at
bus 2, and a 120MW steam unit at bus 3. The preexpansion
model of this network is illustrated in Figure 3. It is assumed
that there are no water resources required for installation of
the hydro unit in 2-5 buses, the minimum total installed WF
at the end of the fifth year must be more than 50MW, it is
not possible to install the gas turbine unit in bus 6 due to
pollution restrictions, and the load shedding cannot be more

G

G

B3

40 MW

240 MW

90 MW 60 MW

80 MW

B1B5

120 MW

240 MW

110 MW

B4
160 MW

60 MW50 MW 110 MW

B2

G
G G

G

80 MW

60 MW
20 MW

B6

G 180 MW65 MW G

Existing line

Existing generator

Forecasted load

Constructed conventional generator

Constructed WF

Constructed line

G

G

Figure 4: The Garver system in the deterministic approach.

Table 3: Installed elements in the stochastic scenario-based
problem.

Year Added elements

t = 1

15MW WF at bus 4
40MW gas unit at bus 5
35MW WF at bus 5

70MW hydro unit at bus 6
50MW transmission line between buses 4 and 6

t = 2 —

t = 3 60MW gas unit at bus 5

t = 4 60MW gas unit at bus 4
100MW steam unit at bus 5

t = 5
60MW gas unit at bus 1
60MW gas unit at bus 2
90MW gas unit at bus 5

8 International Journal of Energy Research



G

G

B3

40 MW
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240 MW
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G
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80 MW
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G 200 MW35 MW G
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Existing generator
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Constructed conventional generator
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Figure 5: The Garver system in the stochastic scenario-based problem considering short-term uncertainties.
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Constructed line
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Figure 6: The Garver system in the stochastic scenario-based problem considering short-term uncertainties and TOUDR.
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than 40MW in each year. In this part, the outcomes are
given in four various circumstances, containing the single-
objective GEP-TEP problem via the deterministic method,
the scenario-based model to deal with short-term uncer-
tainties, the scenario-based approach to cope with short-
term uncertainties, and the TOUDR at the same time, and
the multiobjective interval-based GEP-TEP is solved via
LP-metric to robust long- and short-term uncertainties con-
sidering the TOUDR.

5.1.1. Deterministic Results. In this section, the simulations
are provided via the peak amount of electrical load and
WFs. The total cost of planning is 6.66E6. The added ele-
ments in this case study are shown in Table 2. As observed
in Table 2, (i) bus 6 is connected to bus 2 by a 50MW trans-
mission line at the first year of the planning to prevent the
islanding of bus 6; (ii) due to the impossibility of installing
the gas unit and the existence of water resources in bus 6,
a 60MW hydro unit and 20MW WF have been installed
in this bus; (iii) a total of 85MW of WFs have been installed
by the fifth year to different buses according to the defined
constraints (minimum installed WFs). Figure 4 also illus-
trates the Garver network in this case study.

5.1.2. GEP-TEP with Short-Term Uncertainties. Here, the
results of stochastic GEP-TEP with short-term uncertainties
including daily load and WFs’ generation are obtained. The
added element in considered horizon years is shown in
Table 3. Since considering daily load scenarios instead of
peak load has a large impact on the required power network,
the total cost is reduced by 10.5%, which is equal to 5.96E6.
On the other hand, considering scenarios for the generation

of WFs can reduce their production compared to peak gen-
eration. Therefore, the amount of installed WFs has been
reduced to 50MW, which is forced by constrain (12). The
Garver network in this case study is depicted in Figure 5.
As seen, bus 6 is connected to bus 4 via the 50MW transmis-
sion line.

5.1.3. GEP-TEP with Short-Term Uncertainties and TOUDR.
Here, the effects of short-term uncertainties and the
TOUDR program to the GEP-TEP model are examined.
As shown in Figure 6, a noticeable change has been made
to the added elements to the considered network, which
has greatly reduced the total cost. There is a noteworthy pos-
itive correlation between using the TOUDR and the total
cost, which is equal to 4.62E6. The total cost compared to

0 5 10 15 20 25 30 35 40 45 50
Scenario (w)

500

1000

1500

D
em

an
d 

(M
W

)

Demand before TOUDR
Demand after TOUDR

0 5 10 15 20 25 30 35 40 45 50
Scenario (w)

0.2

0.4

0.6

0.8

klw

Figure 7: Load demand before and after TOUDR in different scenarios.

Table 4: Installed elements in the stochastic scenario-based
problem considering TOUDR.

Year Added elements

t = 1

40MW gas unit at bus 5
50MW WF at bus 5

60MW hydro unit at bus 6
180MW transmission line between buses 2 and 3
50MW transmission line between buses 2 and 6

t = 2 —

t = 3 30MW gas unit at bus 5

t = 4 60MW gas unit at bus 4
50MW gas unit at bus 5

t = 5 60MW gas unit at bus 1
60MW gas unit at bus 5

10 International Journal of Energy Research



the scenario-based approach without the TOUDR and deter-
ministic approach has decreased by 22.5% and 30.6%,
respectively. The electrical demand in different scenarios
before and after using the TOUDR is illustrated in
Figure 7. It is obvious that when the load increases by the
scenario coefficient (klw), its value decreases by the TOUDR
coefficient drrplr . Also, when the load increases by the sce-

nario coefficient (klw), its value decreases by the TOUDR
coefficient drrplr . What is interesting is that the total load
in all scenarios has been increased after using the TOUDR
from 5 1140E + 04 to 5 2535E + 04. The elements added to
the considered network are shown in Table 4. One of the
most important changes compared to the previous case is
the installation of a 180MW transmission line between bus
2 and bus 3, the biggest reason being the transfer of excess
power from bus 3 to bus 2.

5.1.4. Multiobjective GEP-TEP with Long- and Short-Term
Uncertainties. Here, the issue is inspected as a multiobjective
GEP-TEP model taking into account short-term uncer-
tainties via scenario-based modeling and long-term uncer-
tainties using robust optimization. In this case study, it is
assumed ±30% interval width for long-term uncertainties
including load demand and WFs’ installation. λl and λwg

are the probability degrees for uncertain intervals of long-
term uncertainties. As mentioned in Section 4, if the λ is
near to 1, the uncertain parameter will be near to the lower
bound, which is optimistic for the annual peak amount of
electrical load and pessimistic for the annual peak amount
of WFs’ installation. This situation is opposite for λ near to
0. As a result, the model should minimize λl and maximize
λwg in a multiobjective robust pessimistic problem.
Figure 8 depicts the different values of λl and λwg at U =
0 25 before and after using the TOUDR. It is assumed that

the weighting factor of ϒ starts from 0.75 and reaches 1 with
the step up of 0.05 because load demand has more effect on
the network. As can be seen from Figure 8, the graph is in a
better position after applying the TOUDR. It is due to the
fact that λwg has a smaller value when considering the
TOUDR while λl has a larger value when considering the
TOUDR.

5.2. IEEE 24-Bus Test System. Here, the model is investigated
on a large test system considering the long- and short-term
uncertainties as well as the TOUDR. It is assumed that the
minimum installed WF capacity at the end of the fifth year
must be more than 200MW, and the other information is
based on the IEEE 24-bus test system given in [12]. The
results of different case studies are given in Table 5. As
observed, the total cost in the deterministic approach is
2.12E9 considering 205MWWF installation. By considering
the set of scenarios for the short-term uncertainties includ-
ing daily load and WF generation, the total cost is decreased
to 1.94E9. It is reduced by 8.5% compared to the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Robust region before TOUDR
Robust region after TOUDR

�
wg

�l

Figure 8: Robust region for λl and λwg before and after TOUDR.

Table 5: The results of IEEE 24-bus.

Type of planning Obtained results

Deterministic approach
205MW WF

Total cost = 2 12 E + 9

Scenario-based stochastic
220MW WFs

Total cost = 1 94 E + 9

Considering TOUDR
Load before = 4 0495E + 5
Load after = 4 0496 E + 5

Robust stochastic

U = 0 25
ϒ = 0 8
λl = 0 523
λwg = 0 702
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deterministic approach. Moreover, the installed WFs are
equal to 220MW in the fifth year of the horizon. The total
cost has been reduced by about 31.5% and is equal to
1.33E9∃ after applying for the TOUDR program. In the
multiobjective model taking into account both long- and
short-term uncertainties, the probability degree for the
annual peak amount of electrical load and WF installation
is λl = 0 523 and λwg = 0 702, respectively.

To show the effectiveness of the proposed model, a
small and a large test network is used for simulation. In
both cases, the results of simulations show that consider-
ing the TOUDR program leads to a considerable reduction
in the total cost and increasing the flexibility of power sys-
tem in the presence of WFs. Moreover, the robust GEP–
TEP problem allows implementing an interval approach
on long-term uncertainties to provide high protection risk
against long-term decisions, while it is implemented via
scenarios for short-term uncertainties since they do not
need high-risk protection. The simulation results show
that the GEP–TEP problem highly depends on both long-
and short-term uncertainties.

6. Conclusion

In this study, a stochastic multiobjective robust method is
recommended for the GEP-TEP problem with WFs in a
power system considering the TOUDR program. The
MINLP original model in this study is converted to the
MILP model using linearization approaches to attain a glob-
ally optimal solution with low calculation time and error.
Then, the MOMILP model is solved using the LP-metric
method. Long-term uncertainties including annual peak
load and WFs’ installation capacity as well as short-term
uncertainties containing daily load demand and WFs’ gener-
ations are incorporated in the GEP-TEP problem. The long-
term uncertainties are modeled via the interval-based
approach while the short-term uncertainties are addressed
by the scenario-based approach. To provide more flexibility
for the GEP-TEP problem, the TOUDR is also used. The
recommended model is simulated on Garver 6-bus and IEEE
24-bus test systems. Lastly, it is concluded that the suggested
model can provide robust, reliable, and flexible power sys-
tem planning.

Indexes (Sets)

f : Set for fuel sources
I, j: Set for buses
m: Set for conventional generation units
t: Set for the years of the planning horizon
tc: Set for available transmission line capacity
type: Set for available reactance transmission capacity
w: Set for scenarios
y: Set for available capacities for the conventional

generation
s: Interval-based inequalities
n: Interval-based equalities
plr: Peak load rate
π: Number of objective functions.

Superscripts

can: Candidate element
ini: Preexpansion element
max: Maximum amount
min: Minimum amount
flow: Power flow between buses
trans: Transmission capacity between buses in

preexpansion condition
transmission: Power flow capacity between buses in

preexpansion condition
plan: Planned amount
cg: Conventional generator
wg: Wind generator
l: Load
tl: Transmission line
shed: Load shedding
fuel1: Fuel source
fuel2: Fuel transportation
LP, UP: Lower bound/upper bound for interval

model.

Parameters

B: Susceptance transmission lines
d: Discount rate
D: Distance
k: Coefficient associated with the worst realization
En: Energy generated by generators
FS: Fuel source capacity
FTL: Fuel transportation route capacity
GE: Allowable gaseous emission
HS: Duration of the peak load
Load: Forecasted peak load
MHO: Maximum hours of operation for generation unit
Pr: Price
α: Operation cost multiplier
β: Weighting parameter for each scenario
γ: Multiplier for gaseous emission
ɳ : Contribution factor for generation technology m
ψ: Fuel consumption multiplier for generation

technology m
θ: Voltage angle in bus i in the preexpansion condition.

Variables

ELNS: Estimated energy not served
FT: Fuel transported between fuel sources and

generating units
P: Power
U : Parameter which bounds the total cost in the robust

model
ug: Binary decision variable for new conventional

generation units
uw: Binary decision variable for new WF units
ut: Binary decision variable for new transmission lines
ud: Binary decision variable for demand response
ΔB: Changes in susceptance matrix compared to

preexpansion condition
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ΔP: Changes in power capacity of the newly installed
elements

Δθ: Changes in voltage angles compared to
preexpansion condition

drr: Demand response rate
z: Objective function
λ: Probability degree
ϒ : Weighting parameter.
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The data used to support the findings of this study are
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