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Forest ecosystem dynamics are driven by a complex array of simultaneous cause-and-effect relationships. Understanding this
complex web requires specialized analytical techniques such as Structural Equation Modeling (SEM). The SEM framework and
implementation steps are outlined in this study, and we then demonstrate the technique by application to overstory-understory
relationships in mature Douglas-fir forests in the northwestern USA. A SEM model was formulated with (1) a path model
representing the effects of successively higher layers of vegetation on late-seral herbs through processes such as light attenuation
and (2) a measurement model accounting for measurement errors. The fitted SEM model suggested a direct negative effect of light
attenuation on late-seral herbs cover but a direct positive effect of northern aspect. Moreover, many processes have indirect effects
mediated through midstory vegetation. SEM is recommended as a forest management tool for designing silvicultural treatments
and systems for attaining complex arrays of management objectives.

1. Introduction

Ecosystem processes involve complex interactions of many
cause-and-effect relationships [1]. With sufficient under-
standing of these processes and relationships, forest manage-
ment activities can be designed to produce specific outcomes
and desired results, within the limits of natural ecosystem
dynamics. The relationship between forest structure and
function assumes particular importance because silvicultural
knowledge exists to produce a variety of structural outcomes
in many forest types [2]. Structural diversity is widely
accepted as an important driver of biodiversity despite
the fact that many mechanisms linking the two are still
poorly understood. Classical silvicultural systems such as
shelterwood with reserves [3] and innovations like variable-
retention harvesting [4] have been proposed as part of a
strategy to meet diverse forest management objectives in
late-seral Douglas-fir (Pseudotsuga menziesii (Mirb.)) forests

on public lands in the Pacific Northwest USA. The het-
erogeneous structures retained in the proposed systems
have been hypothesized to maintain taxa and ecological
processes characteristic of late-seral forests in the short-
term and accelerate their recovery in the long-term [5].
The success of these systems depends on complex responses
to prescribed management activities, on our understanding
of the cause-and-effect pathways of these responses, and
on our ability to utilize this understanding to design
efficient systems for meeting defined objectives. However,
for silvicultural strategies that retain late-seral or old-growth
attributes, routine statistical methods may not be sufficient
for understanding the mechanisms linking stand structure
to biodiversity and for testing the interactions of various
taxa and ecological processes [6, 7]. In the context of
silvicultural management of biodiversity, it is crucial that
research on ecosystem responses employ statistical methods
that imply causal mechanisms among structural components
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and processes that operate simultaneously through complex
and often indirect pathways.

Manipulative experiments based on the principle of ran-
domization are the historical foundation for inferring causal-
ity [8, 9]. Analysis of Variance (ANOVA) models ascribe
treatment effects to orthogonal factors in these designed
experiments [10]. The effects represent the net influence
of factors on a response variable, but do not distinguish
between the direct and indirect pathways that link cause and
effect. ANOVA has the potential for making causal inference,
but lacks the capability to uncover much of the information
about underlying processes or response mechanisms [10].

Most data from forest ecosystems are observational
and multivariate. Data reduction by categorization (classi-
fication) or by creation of synthetic continuous variables
(ordination) is very efficient for identifying general patterns
in the data from an exploratory and descriptive perspec-
tive [11]. Their capability for understanding functional
links is limited because they cannot explicitly incorporate
complex interrelationships between variables based on a
priori knowledge [12]. However, the methods are useful for
discovering underlying trends and for supplementing the
process of model building and hypothesis formulation.
Lastly, multiple regression can test whether an estimated
coefficient is significantly different from zero in a statistical
sense, but cannot draw causal conclusions from the test [13].
Additionally, regression models ignore the possibility that
a predictor may indirectly influence the response through
other predictors [13]. In short, multiple regression allows us
to predict but not to explain [13].

Structural Equation Modeling (SEM) is an alternative
method for testing our understanding of complex ecological
processes. SEM is a collection of procedures that tests
hypothesized relationships among observed variables [14,
15]. Complex interactions are first translated into a network
of directional paths linking variables and are then evaluated
against multivariate data [16]. These paths postulate direct
and indirect effects among ecosystems components, as well
as spurious associations between variables that may be
attributable to common causes. A direct effect describes
direct regulation of a response variable (effect) by a causal
variable, while an indirect effect implies that the regulation
is mediated through other variables. Hence, SEM is often
related to causal modeling [17]. It is philosophically a
confirmatory data analysis, but its application extends to
testing alternative a priori models or to model building [18],
and can therefore be regarded as blending confirmatory and
exploratory analyses [19]. The key to successful SEM rests
on the competence of a researcher to posit initial cause-and-
effect models drawing from accumulated knowledge, prior
experience, and published results.

Comprehensive assessments by Shipley [13], Pugesek
et al. [20], and Grace [12] have brought SEM into the
context of natural systems. Laughlin and Abella [21] and
Laughlin et al. [22] applied SEM to an observational study
of abiotic and biotic factors influencing plant community
composition and species richness in a ponderosa pine (Pinus
ponderosa P. and C. Lawson) forest ecosystem. Youngblood
et al. [23] studied the effects of experimental thinning and

prescribed burning treatments on mortality of ponderosa
pine with ANOVA and SEM. They found that SEM was
able to represent and detect cascading effects of several fire-
related factors on mortality, a process that the ANOVA model
could not represent. These studies have demonstrated the
flexibility of SEM for accommodating a variety of study
designs. With increasing recognition of the benefits possible
from embedding existing knowledge in data analysis and of
the limitation of common statistical methods for large-scale
ecological experiments [24], SEM may offer a promising
alternative for investigating causal relationships.

SEM has been under development for decades in human
science [25], but its application in the field of natural
science has not been as widespread. SEM applications in
natural science have provided only a brief account of the
methodology (e.g., [26, 27]). In one exception, Mitchell
[28] illustrated path analysis, one component of SEM,
using data from a hummingbird pollination study, with
few remarks on other important properties and capabilities.
Grace [14] summarized general aspects of applying SEM
in observational ecology studies with two examples. On
an advanced level, Grace and Bollen [29] provided details
about the SEM framework with emphasis on a specific issue
related to composite variables. Grace et al. [25] extended
the basic SEM framework to Structural Equation Meta-
Models (SEMMs) to represent multiple orders of latent
and composite variables. Lastly, Shipley [9] generalized
SEM to accommodate multilevel data. To the best of our
knowledge a succinct summary of SEM components and
properties is lacking in the silvicultural literature. This type
of summary could benefit scientists who wish to apply SEM
to silvicultural research but are insufficiently familiar with
the basic concepts. The goal of this paper was to cover
major aspects of SEM that are essential for an introductory
understanding of the methodology. Three specific objectives
were to (1) systematically present the technical framework of
SEM in a silvicultural context, (2) illustrate the application
of SEM to understanding the mechanisms of overstory-
understory relationships in mature Douglas-fir forests in the
Pacific Northwest region of the United States, and (3) discuss
the advantages of SEM in the context of this specific example.
Topics were presented in a manner that facilitated easy access
of the information to readers with different specific interests
in the technique.

2. Structural Equation Modeling (SEM)

The two central components of SEM are the path model and
the measurement model. The path model or path analysis
quantifies specific cause-and-effect relationships between
observed variables [30, 31]. The measurement model quan-
tifies linkages between (1) hypothetical constructs that might
be known but unobservable components of forest ecosys-
tems and (2) observed variables that represent a specific
hypothetical construct in the form of a linear combination.
LISREL (LInear Structural RELations) was developed as a
unifying and flexible mathematical framework to specify
these linkages [32]. Hayduk [33] and Kelloway [34] described
the framework in detail. The following summary is primarily
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drawn from Grace [12], Kline [19], and Schumacker and
Lomax [15], and the presented mathematical framework is
a summary of the LISREL system.

2.1. Path Model. Specification of a path model involves
hypothesized cause-and-effect relationships between ob-
served variables. These relationships are usually based on
theoretical considerations or evidence from prior studies.
However, certain conditions must be met for a variable to
be designated as cause versus effect. Kenny [17] proposed
three conditions: time precedence, functional relationship,
and nonspuriousness. First, for variable A to cause variable
B, A has to precede B in time, so time precedence implies
an asymmetric relationship between the two. Second, A
and B should be functionally related because there is no
causal relationship if they are independent. Third, if the
relationship between A and B is spurious due to a common
cause, it will disappear once the common cause is identified
and represented in the model. Pearl [35] reviewed recent
advances in causal inference, and stressed the paradigmatic
shift needed to move from traditional statistical analysis to
causal analysis.

Consider a hypothetical model for representing the
response of small mammal abundance at the forest floor to
stand structural characteristics (Figure 1). In this scenario,
overstory tree density and coarse woody debris are exogenous
observed variables whereas understory tree cover, herbaceous
cover, and abundance of small mammal species are endoge-
nous variables. An exogenous variable is always considered
only a cause; the causes of the exogenous variable itself
are generally unknown or of little interest; therefore, it is
not represented in the model. An endogenous variable is
an effect, but it may also be a cause to other endogenous
variables. A path model may look similar to multiple
regression [13], where an exogenous variable is analogous
to a predictor variable and an endogenous variable is the
response; however, the difference is that the endogenous
variable can be both a predictor and a response in a system
of equations. An important assumption is that exogenous
variables are measured without error. Any measurement
errors, including those attributable to data entry, field
recording, or other causes [33], could lead to bias in
estimated path coefficients [16]. On the other hand, each
endogenous variable is assumed to have error. The error term
reflects all unmeasured causes of variation in the associated
endogenous variable as well as true measurement error [19].

A unidirectional arrow is a path that represents a direct
effect of the causal variable on a response variable, whereas
a bidirectional arrow represents an unanalyzed association.
Unanalyzed associations are customarily specified between
exogenous variables because no hypothesis is included to
explain why they covary. In general not all causal processes
acting on a system are specified because the objective
of the model has limited scope, so the model represents
a simplification to address the specific objective [22]. A
basic assumption underlying the path model is that a path
represents a linear relationship between variables. Nonlinear
relationship must be accommodated by transformations or
higher-order terms.

Abundance

Understory
cover

Herbaceous
cover

Tree
density

Coarse 

wood debris

Figure 1: A hypothetical path model for abundance of a small
mammal species in mature forests. Single arrowheads linking two
variables depict direct effects and double arrowheads linking two
variables depict unanalyzed associations. Arrows pointing towards
the understory cover, herbaceous cover, and abundance represent
errors associated with the endogenous variables.

Once the model is fitted to data, the path coefficient
(direct effect) of each path is estimated and interpreted
similarly to a regression coefficient. An indirect effect of
any causal variable is estimated as the product of the chain
of direct effects, and a total effect is the sum of all direct
and indirect effects. In the example, overstory tree density
is hypothesized to have two indirect effects on abundance,
mediated by understory trees and herb cover. Thus, the latter
indirect effect is the product of two path coefficients, one
representing the effect of tree density on herb cover and the
other the effect of herb cover on small mammal abundance.
The total effect on abundance is then the sum of the two
indirect effects.

Direct and indirect effects should be interpreted with
caution [37]. As with multiple regression, an effect is
interpreted as the change induced by fixing other variables
in a model and changing only the subject variable. A direct
effect would occur if all other variables in a model remained
constant [13]. In estimating an indirect effect, all other
variables in the model are controlled except for the mediating
variables in the path representing the indirect effect of
interest [13]. In other words, direct and indirect effects are
interpreted as if they are orthogonal, but in reality variables
from systems as complex as managed or unmanaged forests
are multicollinear and require the same precautions as
interpreting multiple regression coefficients under differing
levels of multicollinearity.

Path coefficients can be expressed as standardized or
unstandardized coefficients. Unstandardized coefficients are
more intuitive because they represent the change in the
response variable per unit change in the causal variables; that
is, both response and causal variables remain on a scale con-
sistent with original units of measurements. Furthermore,
unstandardized results are important because significance
tests on the coefficients are based on standard errors of the
unstandardized solutions [12]. Standardized coefficients are
typically computed either by first standardizing all variables
(subtracting their mean and dividing by their standard
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deviation) and then computing the path coefficients, or
by the ratios of the standard deviations of the variables.
These coefficients are therefore expressed in units of standard
deviations for the corresponding variables. Standardized
coefficients allow direct comparison of the magnitude of
effects of two causal variables measured on different scales
[12].

2.2. Measurement Model. A common method for evaluating
a measurement model is confirmatory factor analysis (CFA).
CFA is a process of specifying the number and types of
observed variables associated with one or more hypothetical
constructs and analyzing how well the observed variables
measure the constructs. A hypothetical construct is a concep-
tual variable which cannot be directly measured. Conversely,
an observed variable can be measured and is used to infer
the construct. Two ways of representing constructs are with
latent and composite variables. A latent variable is a cause of
its corresponding observed variables, whereas a composite
variable is a collective effect of the variables [29]. For brevity,
only latent variables are further discussed. Grace and Bollen
[29] provided more details about the theory and application
of composite variables.

Choice of the observed variables for a measurement
model must consider the validity and reliability of the
observed variables. Validity refers to the accuracy of an
observed variable for representing the effect of a latent
variable. Because a latent variable can be multifaceted, the
observed variables selected should measure these different
facets [38]. Reliability refers to the consistency in measure-
ment of an observed variable or the amount of random
measurement error. The idea is similar to estimating the
precision of a measuring device by repeatedly measuring the
same observation under similar conditions.

Consider a hypothetical measurement model for species
diversity (Figure 2). Conventionally, a circle represents a
latent variable and a rectangle represents an observed vari-
able. Following Krebs [39], the model postulates that species
diversity is a multifaceted concept with three observed
variables measuring its different facets. The total number
of species (observed and unobserved), which could be esti-
mated from a Jackknife estimator [39, 40], measures the
total species richness. Shannon diversity index measures the
diversity and the evenness of a community. The Simpson
evenness index measures only the evenness of a community,
which is hypothesized to be measuring a different facet
of diversity than the Shannon diversity index. The single
arrowheads pointing from the latent variable to the observed
variables are factor loadings. They represent the direct effects
and are interpreted similarly to regression coefficients. The
arrowheads to left of the observed variables depict the
random measurement errors.

A general recommendation is to have three or more
observed variables per latent variable to adequately account
for measurement error and to meet the requirement for
model identification, which ensures model convergence and
proper solutions [19]. However, it may not always be possible
to achieve the ideal of three or more observed variables;

Total number of

species

Species

diversity

Shannon

index

Simpson

evenness

Figure 2: A hypothetical measurement model for species diversity.
The circle depicts a latent variable and the rectangles depict ob-
served variables. Single arrowheads from the latent variable to the
observed variables represent direct effects and arrows on the left of
observed variables represent measurement errors.

in this case, one or two observed variables per latent
variable are still feasible with some constraints on model
specification (see [19]). Observed variables should be both
valid and reliable with respect to measurement of the latent
variables. Hayduk [33] commented that observed variables
with greater than 40% measurement error were prone to
estimation problems. Bollen [16] provided further details on
the use of latent variables.

2.3. Structural Regression Model. A structural regression (SR)
model is a path model with latent variables, thus combining
principles of path and measurement models. The goal is to
take measurement errors of observed variables into account
when evaluating a path model. This is the most general kind
of core model that is widely applied in SEM [19]. A fully
latent SR model has only latent variables in the path model
whereas a partially latent SR model is a mix of observed
and latent variables. Similar to path and measurement
models, an important phase of analysis in an SR model is
model identification. Model identification is a property that
determines whether the model allows for unique parameter
estimates. The two basic conditions for identification are
(1) model degrees of freedom equal to or greater than zero
(dfM ≥ 0) and (2) a known scale for every latent variable.

The total degrees of freedom for an SR model is v(v +
1)/2, where v is the number of observed variables. This
total corresponds to the number of variances and unique
covariances in a variance-covariance matrix for v variables.
The model degrees of freedom, dfM , is the total degrees
of freedom minus the number of estimated parameters. A
just-identified model (dfM = 0) will have unique parameter
estimates, but an overidentified model (dfM > 0) is desir-
able for model testing and assessment. An underidentified
model (dfM < 0) will not have unique solutions for all
parameters. Empirical underidentification occurs when the
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effective degrees of freedom are reduced due to two or
more observed variables that have a very high correlation
(e.g., correlation ≥ 0.90), in turn leading to problems with
parameter estimation [17, 19]. Kline [19] proposed two basic
ways to deal with extreme collinearity: removing one of the
variables or combining redundant ones into a composite
variable. Scale is a property of each latent variable. Because
a latent variable is not measurable, it must take on the scale
or units of measure from one of its observed variables. A way
to assign scale is by imposing a unit loading identification
(ULI) constraint by fixing a factor loading of one observed
variable at a value of 1.0.

An SR model that meets these conditions on scale and
degrees of freedom does not guarantee identification. Bollen
[16] suggested a two-step rule for checking identification of
an SR model. The first step is viewing an SR model as a
CFA model. The resulting CFA model is identified if it meets
the following sufficient requirements and assumptions: (1) at
least two observed variables per latent variable, (2) inde-
pendence between measurement errors and latent variables,
and (3) independence between measurement errors. The
second step is then to check for recursiveness of the path
model part of the SR model, ignoring any observed variables
used to measure latent variables. A path model is identified
if it meets the following requirements for recursiveness:
(1) errors associated with endogenous latent variables are
uncorrelated, and (2) all causal effects are unidirectional. If
both the CFA model and path model are identified by these
respective sets of requirements, then the whole SR model is
identified, and model fitting can proceed.

The two-step rule from Bollen [16] can be relaxed, and
some SR models that fail the rule can still be identified. One
example is correlated measurement errors in a CFA model.
Another common example is a nonrecursive path model, for
example, a model with feedback loops or correlated errors,
which requires special rules for identification. A special
case is an SR model that has one observed variable per
latent variable and therefore requires a priori assignment of
measurement errors.

2.4. Model Estimation. The LISREL framework can be sum-
marized into three matrix equations, two for the measure-
ment model component and one for the path model compo-
nent [12]. For the measurement model component,

x = Λxξ + δ, (1)

y = Λyη + ε, (2)

where x is a p × 1 vector of observed exogenous variables,
and it is a linear function of a j×1 vector of exogenous latent
variables ξ and a p × 1 vector of measurement error δ. Λx is
a p× j matrix of factor loadings relating x to ξ. Similarly, y is
a q × 1 vector of observed endogenous variables, η is a k × 1
vector of endogenous latent variables, ε is a q × 1 vector of
measurement error for the endogenous variables, and Λy is a
q × k matrix of factor loadings relating y to η. Associated
with (1) and (2), respectively, are two variance-covariance
matrices, Θδ and Θε. The matrix Θδ is a p × p matrix of

variances and covariances among measurement errors δ, and
Θε is a q × q matrix of variances and covariances among
measurement errors ε.

For flexibility, LISREL describes the path model compo-
nent as relationships among latent variables,

η = Bη + Γξ + ζ , (3)

where B is a k × k matrix of path coefficients describing the
relationships among endogenous latent variables, Γ is a k× j
matrix of path coefficients describing the linear effects of
exogenous variables on endogenous variables, and ζ is a k×1
vector of errors of endogenous variables. Associated with (3)
are two variance-covariance matrices: Φ is a j × j variance-
covariance matrix of latent exogenous variables, and Ψ is a
k × k matrix of covariances among errors of endogenous
variables. With only these three equations, LISREL is a
flexible mathematical framework that can accommodate any
specification of a SEM model.

SEM has been typically implemented through covariance
structure modeling where the variance-covariance matrix
is the basic statistic for modeling. Model fitting is based
on a fitting function that minimizes the difference between
the model-implied variance-covariance matrix Σ and the
observed variance-covariance matrix S,

min f (Σ, S), (4)

where S is estimated from observed data, Σ is predicted from
the causal and noncausal associations specified in the model,
and f (Σ, S) is a generic function of the difference between
Σ and S based on an estimation method that follows. As
Shipley [13] concisely stated, causation implies correlation;
that is, if there is a causal relationship between two variables,
there must exist a systematic relationship between them.
Hence, by specifying a set of theoretical causal paths,
one can reconstruct the model-implied variance-covariance
matrix Σ from total effects and unanalyzed associations.
Hayduk [33] outlined a step-by-step formulation under the
LISREL mathematical framework, specifying the following
mathematical equation for Σ:

Σ =
⎡
⎣ΛyA(ΓΦΓ′ + Ψ)A′Λ′y + Θε ΛyAΓΦΛ′x

ΛxΦΓ′A′Λ′y ΛxΦΛ′x + Θδ

⎤
⎦, (5)

where A = (I− B)−1. Note that in (5) the derivation of
Σ does not involve the observed and latent exogenous and
endogenous variables (i.e., x, y, ξ, and η).

A common method in SEM for estimating parameters
in Σ is maximum likelihood (ML). In ML estimation, the
algorithm iteratively searches for a set of parameter values
that minimizes the deviations between elements of S and Σ
[12]. This minimization is accomplished by deriving a fitting
function f (Σ, S) (4) based on the logarithm of a likelihood
ratio, where the ratio is the likelihood of a given fitted model
to the likelihood of a perfectly fitting model. The maximum
likelihood procedure requires the endogenous variables to
follow a multivariate normal (MVN) distribution, and S to
follow a Wishart distribution. Hayduk [33] described the
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steps in the derivation and expressed the fitting function FML

as

FML = log|Σ| + tr
(

SΣ−1
)
− log|S| − tr

(
SS−1), (6)

where tr() refers to the trace of a matrix and Σ and S are
defined as above. Proper application of (6) also requires that
observations are independently and identically distributed
and that matrices Σ and S are positive definite [33]. After
minimizing (6) through an iterative process of parameter
estimation, the final results are the estimated variance-
covariance matrices and path coefficients for the specified
model.

2.5. Model Assessment. Kline [19] and Schumacker and
Lomax [15] provided a comprehensive listing of indices and
criteria to assess model fit, but four basic fit statistics are
summarized here. The goal of model assessment is to test
the causal implications of a model [13]. The first is the
overall model chi-square test based on a test statistic that is a
function of the mentioned fitting function FML (6) as follows:

χ2
M = (n− 1)FML, (7)

where n is sample size and χ2
M follows a chi-square distri-

bution with degree of freedom dfM as defined above. Sub-
sequent-ly, a P value is estimated and evaluated against a
significance level.

The overall model chi-square test is only applicable for
an overidentified model, that is, when dfM > 0. A just-
identified model (dfM = 0), for example, a path model
representation of a multiple regression, does not have the
required degrees of freedom for model testing [13]. The null
(causal) hypothesis associated with the test is that there is
no difference between model estimates and the data, and
the alternative hypothesis is otherwise. Therefore, failure to
reject the null hypothesis is the ultimate objective of the
modeling process. Although it may seem to be contrary to
the intent of common hypothesis testing in ANOVA, this
approach is consistent with the accept-support context where
the null hypothesis represents a researcher’s belief [41].
Nonetheless, as with common hypothesis testing, failure to
reject the fitted model does not prove the specified causal
relationships in the model. One should be particularly aware
of existing equivalent models, that is, models that have
different hypothesized causal relationships but fit the data
equally well.

The second fit statistic to consider is the Root Mean
Square Error of Approximation (RMSEA), which is parsi-
mony-adjusted index that accounts for model complexity.
The index approximates a noncentral chi-square distribution
with the estimated noncentrality parameter as

δ̂M = max
(
χ2
M − dfM , 0

)
, (8)

where χ2
M is computed from (7) and dfM is defined above.

The magnitude of δ̂M reflects the degree of misspecification
of the fitted model. The RMSEA is then defined as

RMSEA =
√√√√ δ̂M

dfM(n− 1)
. (9)

Thus, RMSEA measures the degree of misspecification
per model degree of freedom, adjusted for sample size.
RMSEA also reflects the view that the fitted model is an
approximation of reality, so that RMSEA measures the error
of approximation [42]. Browne and Cudeck [43] suggested
that RMSEA ≤ 0.05 indicates a close approximation or
fit, a value between 0.05 and 0.08 indicates a reasonable
approximation, and a value ≥ 0.1 suggests a poor fit.

The third index is the standardized root mean square
residual (SRMR), which is relatively easy to compute. Both
S and Σ are transformed into correlation matrices, and the
residual matrix is the difference between the two. Hence the
mean square of the elements in the residual matrix is the
SRMR. In general, SRMR <0.10 is considered a good fit of
S as an approximation to Σ.

Lastly, the Jöreskog-Sörbom Goodness of Fit Index (GFI)
is a measure of relative amount of variances and covariances
jointly accounted for by the model, and it is defined as [44]

GFI = 1−
tr
(
Σ−1S− I

)2

tr
(
Σ−1S

)2 , (10)

where I is identity matrix. GFI ranged from 0 to 1.0 with 1.0
indicating the best fit.

In general, statistical tests for the overall model fit and
P values of parameter estimates are less important in SEM
than in univariate regression models. One reason is that all
parameters are simultaneously estimated in SEM, so the
significance of a parameter estimate should be viewed in
the context of the whole model. Second, the confirmatory
aspect of the model is weakened if model modification is
based on the significance of estimates rather than the theory
behind the model structure. Finally, SEM is still a large-
sample technique, and hypothesis testing is generally affected
by sample size, especially the chi-square test and to a lesser
extent RMSEA, SRMR and GFI.

3. Overstory-Understory Relationships

An appropriate topic for SEM application is modeling the
relationship between overstory structure and understory
plants. The range of implications includes forage production
[45], conservation of functional groups such as late-seral
herbaceous species under variable-retention harvesting [46],
and controls on vertical structure under mature forest con-
ditions [47]. Overstory tree cover [48], species composition
[49], and tree density [50], in addition to shrub cover
[51] and soil litter [52], are among the variables found
strongly associated with richness and abundance of the
understory community. These variables serve as surrogates
for ecological factors such as light attenuation, throughfall
precipitation, and soil water and nutrient availability. Many
researchers have underscored the complex interactions and
multivariate nature of these factors [53]. A SEM approach
to the overstory-understory relationship could apply existing
knowledge to the process of proposingfunctional links and
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could thereby test and expand our understanding of rela-
tionships. Toward this end, the following example illustrates
the application of SEM in quantifying ecological mechanisms
influencing the abundance of late-seral herb species in
mature Douglas-fir forests of the Pacific Northwest.

3.1. Hypotheses and Processes. Application of SEM requires
a set of well-defined hypotheses generated from theoretical
considerations, previous knowledge, and personal obser-
vation. In this study, the processes of interest are light
attenuation through the overstory canopy, competition for
belowground resources, effects of forest floor litter, and
topographic effects.

Hypothesis 1. Light interception by the overstory tree canopy
directly affects late-seral herb cover, with an indirect effect
through its influence on midstory shrub and tree cover.

Overstory effects on understory vegetation are most
commonly assumed to be mediated by shading. Light levels
under the canopy can be determined by the structure and
distribution of overstory trees that absorb incident light
[54]. Overstory canopy cover in this analysis is applied as
a measurable surrogate for the amount of light intercepted
by overstory trees. Likewise, understory plants occupying a
given vertical layer have been shown to influence plants of
even lower stature, for example, by controlling germination,
growth, or survival of tree seedlings and thereby functioning
as ecological filters [55, 56]. This filtering effect of understory
vegetation can be at least partly attributed to shading effects
at the forest floor [57]. In this analysis, understory shrub
and tree cover served as a proxy for light attenuation by this
middle layer of forest vegetation.

Hypothesis 2. Belowground competition from overstory
trees, as represented by overstory stem density, directly affects
late-seral herb cover, with an indirect effect through its influ-
ence on midstory shrub and tree cover.

Root trenching experiments at the forest floor have
demonstrated positive responses of diversity, abundance, and
biomass of the shrub and herb community, most likely due to
increased availability of soil water and nutrients after elimi-
nating roots from overstory trees [58, 59]. Overstory stem
density was chosen to represent belowground competition as
it has been found to positively correlate with belowground
biomass (e.g., [60]). Overstory stem density is probably
correlated to some degree with overstory canopy cover.
Conditional on a given level of overstory canopy cover, it was
hypothesized that overstory stem density would serve as a
surrogate for belowground resource competition. Overstory
competition for belowground resources was assumed to have
a direct effect on late-seral herbs and an indirect effect
through midstory shrubs and trees.

Hypothesis 3. Cover of coarse and fine woody litter directly
affects late-seral herb cover, with the former having an indi-
rect effect through its influence on midstory tree and shrub
cover.

These model components represented the mechanical
interference of forest floor litter on understory plant estab-
lishment [61]. Forest floor litter can directly impede the
growth and germination of shrubs and herbs by reducing
light and temperature and preventing root contact with
mineral soil [62]. Two different processes of coarse and fine
woody litter accumulation were considered. Coarse woody
litter is produced by tree mortality in response to a number
of interrelated factors such as stand density, site quality, age
class, and disease intensity [63]. Overstory stem density and
stand age were hypothesized as the main driving factors for
tree mortality in mature Douglas-fir ecosystems. Overstory
and midstory canopy cover contribute to fine woody litter,
and the litter accumulation was assumed proportional to rate
of crown recession of these two tree layers. Because higher
stand density generally hastens crown recession [64], over-
story stem density and average diameter were proposed as
the main factors influencing fine woody litter accumulation.
Lastly, we assumed that there was a myriad of unknown
factors contributing to both coarse and fine woody litter
production.

Hypothesis 4. Topographic aspect directly affects late-seral
herb cover, with an indirect effect through fine woody litter
and midstory shrub and tree cover.

Topographic aspect affects the amount of incident solar
radiation, which strongly influences the microclimatic con-
ditions such as air and soil temperature [65]. In the northern
atmosphere, southwest aspects are often the most severe
sites for vegetation establishment and growth [66]. Sariyildiz
et al. [67] found that, in the northern hemisphere, fine
litter deposited in stands on northern aspects had a higher
decomposition rate than litter deposited on southern aspects,
likely due to drier and hotter microclimatic conditions at
the latter. Hence, the difference in decomposition rate due
to aspect might influence late-seral herb cover.

Additional factors could be proposed that might influ-
ence late-seral herb cover. In their reviews, Barbier et al. [49]
and Wagner et al. [68] suggested that overstory tree species,
soil water availability, and phytotoxic compounds could be
expected to affect the forest herb community. Their effects
specifically on late-seral herb species are not quite clear,
however, and would require observable surrogates that were
not available in this study.

3.2. Data Collection. The data for modeling overstory-
understory relationships came from the Demonstration of
Ecosystem Management Options (DEMO) study [69], a
large-scale operational research experiment implemented in
western Oregon and Washington, USA. The DEMO study
looked at the effects of variable-retention harvesting on
various aspects of biodiversity, microclimate, and human
perceptions. The analysis presented here was based on
preharvest data collected in 1994/1995 from 36 mature
Douglas-fir stands ranging in age from 65 to 170 years (based
on stand examination records from the USDA-Forest Service
and Washington Department of Natural Resources). Maguire
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et al. [2] provided details on the experimental and treatment
designs and initial stand structures.

A permanent 8 × 8 or 7 × 9 grid of 40 m spacing
was installed in each 13-ha stand. Overstory and understory
vegetation were observed on approximately half the grid
points of a permanent grid, that is, 32–37 sample points
depending on the stand. Thus, the total number of sample
points was 1181 for all 36 stands. Detailed sampling protocols
were described by Halpern et al. [46]. Percent cover of
herbaceous species (typically <1 m tall at maturity) was
recorded for each of 24 microplots (0.2 × 0.5 m) clustered
at each sample point. Percent cover of coarse and fine
woody litter cover was also recorded for the same microplots.
Percent cover of tall shrub species (typically >1 m tall at
maturity) and of understory coniferous and hardwood trees
(<5.0 cm dbh) was measured by the planar intercept method
on four 6 m long transects radiating from each sample point.
At the 0 m and 6 m marks of each transect, a Moosehorn
densiometer was used to estimate percent overstory tree
cover. Overstory trees were sampled with a set of nested
circular plots: 0.01 ha plot for trees with dbh≥ 5 and <15 cm
and 0.04 ha plot for trees with dbh ≥ 15 cm [2]. At each
sample point, aspect was recorded as azimuth in the downhill
direction.

In the DEMO study, 48 herb species were classified
as late-seral herb species, that is, species that reached
maximum abundance in old-growth forest conditions and
that were sensitive to canopy removal or disturbance [46].
The nine observed variables for modeling late-seral herb
cover with SEM were (1) mean percent late-seral herb cover
(LSHERB, %), (2) mean percent tall shrub and understory
coniferous and hardwood tree cover (UNDER, %), (3)
mean percent coarse woody litter cover (CLITTER, %), (4)
mean percent fine woody litter cover (FLITTER, %), (5)
mean percent overstory tree cover (TREE, %), (6) tree stem
density expressed as number of trees per hectare (TPH), (7)
quadratic mean diameter at breast height (dbh) of overstory
trees (QMD, cm), (8) cosine-transformed aspect (ASPECT),
and (9) stand age (AGE, years).

The values of all variables except AGE were estimated at
the sample point level and were used for fitting the models
described below. LSHERB, CLITTER, and FLITTER were the
average of 24 microplots, and UNDER and TREE were the
average of four transects at each sample point. As recom-
mended by Beers et al. [66], aspect was cosine-transformed
with a predetermined phase shift of 45◦ resulting in a variable
that would range from one at a northeast aspect and negative
one at a southwest aspect [70].

3.3. Structural Equation Modeling. The four hypotheses
described above were translated into an SR model depicted
in Figure 3. The SR model failed the two-step rules for model
identification by Bollen [16] due to one observed variable per
latent variable and the correlated errors of the fine and coarse
litter. The errors of endogenous latent variables reflected
omitted causes [19]. Hence, the correlated errors between
the latent variables fine and coarse litter, depicted as the
bidirectional arrow (Figure 3), reflected the assumption in
Hypothesis 3 that a myriad of unknown factors contributing

Table 1: Variance of observed variables and measurement error as
average percent variance of the variable, with corresponding lower
(0.025 quantile) and upper (0.975 quantile) limitsa.

Observed
variable

Variance
Measurement

error (%)
Lower

limit (%)
Upper

limit (%)

LSHERB 307.68 8.3 5.7 19.3

UNDER 1034.79 8.3 5.7 17.7

FLITTER 82.15 8.3 5.7 12.7

CLITTER 52.74 8.3 5.7 12.7

TREE 265.50 10.7 8.3 23.3

ln(TPH) × 10 64.67 4.0 2.7 7.3

ASPECT × 10 49.34 4.0 3.0 7.7

QMD 376.21 4.0 2.7 7.3

AGE 1680.37 10.0 5.0 15.0
a
The average percent measurement errors were obtained from three expert

opinion surveys: Maguire et al. [36].

to both coarse and fine woody litter production. Hayduk
[33] suggested that the solution for the former identification
problem was to assign a priori measurement errors and the
ULI constraint. Measurement error expressed as the percent
of variance of each observed variable was estimated as the
average of three expert opinions (Table 1). The amount of
variance attributed to measurement error was the product
of this percentage and the observed variance and was then
entered into the SR model (Figure 3). Subsequently, the ULI
constraint assigned a value of 1.0 for each factor loading
(Figure 3). Although latent variables seemed identical to
observed variables in the SR model (Figure 3), particularly
in cases having the same labels (e.g., aspect), they were
conceptually different because latent variables were treated
as true measurements after accounting for measurement
errors. The SR model had a bow-free pattern; that is, errors
of fine and coarse woody litter were correlated but there
was no direct effect (unidirectional arrow) between the two
latent variables [19]. In practice, a path model with bow-free
pattern is considered recursive and thus is identified [19].
Consequently, the whole SR model was identified.

Exploratory data analysis showed nonlinear bivariate
relationships, ill-scaled observed variance-covariance matrix,
and nonnormality in the data (see [71]). The bivariate
relationship between LSHERB and TPH was nonlinear; thus,
TPH was transformed by the natural logarithm to satisfy
the linearity assumption. An ill-scaled observed variance-
covariance matrix, that is, extremely large difference between
the largest and smallest variances, may cause a problem
in the iterative model estimation process [19]. Hence,
ASPECT and ln(TPH) were each multiplied by 10 to improve
the properties of the observed variance-covariance matrix
(Figure 3). The correlation matrix and standard deviations
of the nine observed variables with the transformed TPH
and ASPECT are presented in Table 2. The correlation
between ln(TPH)× 10 and QMD was relatively high but was
below the extreme value suggested by Kline [19] (−0.804,
Table 2). Hence, we assumed that this level of correla-
tion would not severely affect parameter estimation. Most



International Journal of Forestry Research 9

LSHERBUnderstory
cover

UNDER

Coarse

litter

CLITTER

Fine litter

FLITTER

Tree

density

Overstory

cover

TREE

Aspect
Tree
size

QMD

Stand

age

AGE

28.32 1.9715.05

6.85

4.4

168.04

78.22

25.64

86.23

1
11

1

1

1 1

1

1

log (TPH) ×10

Late-seral
herb cover

ASPECT ×10

Figure 3: An SR model for the overstory-understory relationship in mature Douglas-fir forests. The exogenous latent variables (and
associated observed variables) are (1) aspect (ASPECT× 10), (2) overstory cover (TREE), (3) tree size (QMD), (4) stand age (AGE), and (5)
stand density (ln(TPH) × 10). The endogenous latent variables (and associated observed variables) are (1) fine litter (FLITTER), (2) coarse
litter (CLITTER), (3) understory cover (UNDER), and (4) late-seral herb cover (LSHERB). All factor loadings are fixed at a value of 1.0.
Measurement errors are fixed with a priori values as depicted by the numerical values with arrows pointing towards the observed variables.
Arrows pointing towards the endogenous latent variables depict errors of the variables. Single arrowheads linking two latent variables depict
direct effects and the double arrowheads depict correlation between errors of fine litter and coarse litter latent variables.

Table 2: Correlation matrix and standard deviation (SD) of the nine observed variables.

LSHERB UNDER FLITTER CLITTER TREE ln(TPH) × 10 ASPECT × 10 QMD AGE

LSHERB 1.000

UNDER 0.494 1.000

FLITTER 0.167 0.232 1.000

CLITTER −0.036 −0.097 −0.688 1.000

TREE −0.324 −0.366 0.123 −0.043 1.000

ln(TPH) × 10 −0.396 −0.379 −0.110 0.116 0.496 1.000

ASPECT × 10 0.280 0.344 0.124 −0.053 −0.030 −0.038 1.000

QMD 0.343 0.272 0.127 −0.120 −0.172 −0.804 −0.028 1.000

AGE 0.395 0.098 0.044 0.064 −0.099 −0.380 −0.037 0.507 1.000

SD 17.541 32.168 9.064 7.262 16.294 8.042 7.024 19.396 40.992
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Table 3: Estimated direct effects on the endogenous latent variables
in the overstory-understory SR model, along with corresponding
standard errors and P values (see Figure 4).

Path Model
Direct
effect

Standard
error

P valueb

Late-seral herb cover (LSHERB) =

Overstory cover (TREE) −0.191 0.075 0.011

Tree density (ln(TPH) × 10) −0.083 0.168 0.620

Stand age (AGE) 0.156 0.044 0.000

Aspect (ASPECT × 10) 0.423 0.162 0.009

Fine litter (FLITTER) 0.273 0.181 0.132

Coarse litter (CLITTER) 0.205 0.219 0.351

Understory cover (UNDER) 0.176 0.047 0.000

Fine litter (FLITTER) =

Overstory cover (TREE) 0.171 0.032 0.000

Tree size (QMD) −0.102 0.038 0.007

Tree density (ln(TPH) × 10) −0.400 0.127 0.002

Aspect (ASPECT × 10) 0.000 0.040 0.999

Understory cover (UNDER) 0.072 0.012 0.000

Coarse litter (CLITTER) =

Tree density (ln(TPH) × 10) 0.169 0.055 0.002

Stand age (AGE) 0.030 0.011 0.007

Understory cover (UNDER) =

Overstory cover (TREE) −0.508 0.181 0.005

Tree density (ln(TPH) × 10) −0.989 0.391 0.012

Aspect (ASPECT × 10) 1.543 0.419 0.000

Coarse litter (CLITTER) −0.284 0.281 0.313
b
Statistical tests were based on a t-distribution with 1180 degrees of free-

dom, with adjustments for the nested sampling structure on standard errors.

observed variables were not univariate normally distributed
due to moderate or extreme skewness and/or kurtosis.
SEM is sensitive to violation of the multivariate normality
assumption, particularly kurtosis. Therefore, following the
recommendations of Jöreskog et al. [72], both observed
and asymptotic variance-covariance matrices were fitted by
Robust Maximum Likelihood (RML) to obtain standard
error estimates that accounted for the nonnormality in the
data.

Because sample points were nested within each stand as
mentioned, observations within the stand were not indepen-
dent. If the nesting structure of the data was ignored, the
parameter estimates would be unbiased but the associated
standard errors might be underestimated [10]. Following
methods discussed by Asparouhov and Muthén [73] and
described in LISREL documentation [74], standard errors
were adjusted and the model chi-square statistic (7) was
scaled to reflect the nesting structure of the data. This final
formulation of the SR model (Figure 3) was fitted with
LISREL 8.8 [75].

The model converged to an admissible solution, but
the resulting fit was poor; the scaled-χ2

M was 33.75 with
dfM = 9 and P value < 0.001, and the RMSEA was 0.049

Table 4: Estimated combined indirect effects (i.e., all possible
indirect paths) on the endogenous latent variables in the overstory-
understory SR model, along with corresponding standard errors
and P values.

Path model
Indirect

effect
Standard

error
P valuec

Late-seral herb cover (LSHERB) =

Overstory cover (TREE) −0.053 0.057 0.353

Tree size (QMD) −0.028 0.023 0.235

Tree density (ln(TPH) × 10) −0.277 0.091 0.003

Stand age (AGE) 0.005 0.006 0.478

Aspect (ASPECT × 10) 0.302 0.126 0.017

Coarse litter (CLITTER) −0.056 0.053 0.295

Understory cover (UNDER) 0.020 0.014 0.165

Fine litter (FLITTER) =

Overstory cover (TREE) −0.036 0.016 0.022

Tree density (ln(TPH) × 10) −0.074 0.028 0.007

Stand age (AGE) −0.001 0.001 0.327

Aspect (ASPECT × 10) 0.111 0.037 0.003

Coarse litter (CLITTER) −0.020 0.020 0.296

Understory cover (UNDER) =

Tree density (ln(TPH) × 10) −0.048 0.047 0.308

Stand age (AGE) −0.009 0.009 0.338
c
Statistical tests were based on a t-distribution with 1180 degree of freedom,

with adjustments for the effects of the nested sampling structure on standard
errors.

with 95% confidence interval between 0.032 and 0.067.
Sets of modification indices were provided by LISREL with
suggested paths and unanalyzed associations to improve
model fit. One suggested path, Stand Age → Late-Seral
Herb Cover, was plausible because stand structure and
microclimatic conditions gradually become more favorable
to the development of late-seral herb community through
the course of stand development. By including the additional
path, the final model converged with indices indicating
relatively good overall model fit; that is, the scaled-χ2

M was
6.30 with dfM = 8 and a P value = 0.61 (sample size = 1181),
and the RMSEA was < 0.001 with 95% confidence interval
between 0.0 and 0.029.

3.4. Results. Estimated unstandardized path coefficients
depicted the effects among variables in the SR model
(Figure 4). To facilitate comparison between relative mag-
nitudes of effects, the width of each arrow in the diagram
corresponds to the value of the respective standardized
solution; that is, wider arrows indicated larger standardized
coefficients and thus stronger relative effects.

Overstory cover affected late-seral herb cover both
directly and indirectly, but the indirect effect through Under-
story cover was weaker. The indirect effect was estimated
as the product of the direct effects of overstory cover on
understory cover and understory cover on late-seral herb
cover or approximately−0.09. In contrast, the direct effect of
overstory cover on late-seral herb cover was−0.19 (Figure 4).



International Journal of Forestry Research 11

Understory
cover

Coarse
litter

Fine litter

Tree

density

Overstory

cover
Aspect

Tree

size

Stand
age

0.18

0.16

0.
03

0.27

0.21

−0.0
8

−0.19

0.42

1.
54

0.07

−0.4

−0.2
8

0.17

0.17

−0
.9

9

−4
2.

28

−
0.1

R2 = 0.12

R2 = 0.04

R2 = 0.34

R2 = 0.48

0

Late-seral
herb cover

−
0.51

Figure 4: The fitted SR model with unstandardized parameter estimates. The observed variables and the error arrows of endogenous latent
variables are omitted to simplify the diagram. Estimated unstandardized path coefficients (direct effects) are placed alongside each path.
The squared multiple correlations (R2) are included for each endogenous latent variable. The thickness of a single arrowhead corresponds
to the strength of its estimates (based on its standardized estimate). The dashed single arrowheads depict non-significant paths. The double
arrowheads depict the error covariance between the errors of fine litter and coarse litter latent variables.

In other words, a 1% increase in overstory cover directly
reduced late-seral herb cover by 0.19% (P value = 0.011,
Table 3) and indirectly by 0.09% (−0.09 = −0.51 × 0.18,
Figure 4). Hence, the total effect of overstory cover, which
included the direct effect and all possible indirect effects,
was significantly negative (−0.24, P value < 0.001, Table 5).
All possible indirect effects included non-significant indirect
paths such as through fine litter.

Tree density effects on late-seral herb cover were also pri-
marily indirect and mediated by understory cover (Figure 4).
This was supported by an insignificant direct effect (−0.08,
P value = 0.62, Table 3). The combined indirect effect, which
included all possible indirect paths, suggested that a twofold
increase in tree density reduced late-seral herb cover by
1.92% (−1.92 = −0.277 × 10 × ln(2); P value = 0.003;
Table 4). Of all the indirect effects, the path Tree Density →
Understory Cover → Late-Seral Herb Cover contributed
the most to the combined indirect effect, amounting to a
reduction of 1.24% cover for a doubling of tree density
(−1.24 = −0.99 × 0.18 × 10× ln(2); Figure 4).

Coarse litter and fine litter had insignificant direct, in-
direct, and total effects on late-seral herb cover (all P
values ≥ 0.13, Tables 3, 4, and 5). As hypothesized, both
tree density and stand age were significant predictors for
coarse litter (P values = 0.002 and 0.007, resp., Table 3), and
both contributed positively to its accumulation. Similarly for
fine cover, all effects from overstory cover, understory cover,
tree density and tree size were significant (all P values ≤
0.007, Table 3) The direct effects of both overstory cover and

understory cover were positive on fine litter accumulation,
but the effects of the other two were negative. However,
the fitted model could only explain a small portion of the
observed variation in coarse litter and fine litter (R2 = 0.04
and 0.12, resp., Figure 4). Finally, the errors of coarse litter
and fine litter were negatively correlated with large error
covariance of −42.28 (Figure 4) and an error correlation of
−0.707.

Aspect had positive direct and indirect effects on late-
seral herb cover (P values = 0.009 and 0.017, resp., Tables 3
and 4), with a total effect amounting to 0.73 (P value < 0.001,
Table 5). As aspect shifted from southwest towards northeast,
the late-seral herb cover increased. The significant indirect
effects were dominated by the path through understory
cover. In contrast, the path Aspect → Fine Litter → Late-
Seral Herb Cover had an estimated indirect effect of 0.0
(Figure 4). As expected, stand age had a strong direct effect
on late-seral herb cover, with the late-seral herb cover
increasing by 0.16% for every one-year increase in Stand Age
(P value < 0.001, Table 3).

There were many other pathways and cascading indirect
effects that one could explore in the SR model (Figure 4), but
we presented only those most pertinent to the formulated
hypotheses. With all the predicted direct and indirect effects,
the fitted model explained approximately half of the observed
variance in late-seral herb cover (R2 = 0.48, Figure 4).

3.5. Interpretation. The results supported the first hypoth-
esis that greater light attenuation negatively affected late-
seral herb cover. The significance of both direct and indirect
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Table 5: Estimated total effects (i.e., direct path and all possible
indirect paths) on the endogenous latent variables in the overstory-
understory SR model, along with corresponding standard errors
and P values.

Path model
Total
effect

Standard
error

P valued

Late-seral herb cover (LSHERB) =

Overstory cover (TREE) −0.244 0.069 0.000

Tree size (QMD) −0.028 0.023 0.235

Tree density (ln(TPH) × 10) −0.361 0.216 0.095

Stand age (AGE) 0.160 0.043 0.000

Aspect (ASPECT × 10) 0.725 0.187 0.000

Fine litter (FLITTER) 0.273 0.181 0.132

Coarse litter (CLITTER) 0.149 0.216 0.490

Understory cover (UNDER) 0.196 0.046 0.000

Fine litter (FLITTER) =

Overstory cover (TREE) 0.135 0.031 0.000

Tree size (QMD) −0.102 0.038 0.007

Tree density (ln(TPH) × 10) −0.474 0.120 0.000

Stand age (AGE) −0.001 0.001 0.327

Aspect (ASPECT × 10) 0.111 0.053 0.038

Coarse litter (CLITTER) −0.020 0.020 0.296

Understory cover (UNDER) 0.072 0.012 0.000

Coarse litter (CLITTER) =

Tree density (ln(TPH) × 10) 0.170 0.055 0.002

Stand age (AGE) 0.030 0.011 0.007

Understory cover (UNDER) =

Overstory cover (TREE) −0.508 0.181 0.005

Tree density (ln(TPH) × 10) −1.037 0.400 0.010

Stand age (AGE) −0.009 0.009 0.337

Aspect (ASPECT × 10) 1.543 0.418 0.000

Coarse litter (CLITTER) −0.284 0.281 0.313
d
Statistical tests were based on a t-distribution with 1180 degree of freedom

as the effects of the nesting structure on standard errors have been adjusted.

effects supported the common perception that light was the
most limiting parameter for ground vegetation coverage and
abundance [68]. The majority of sample points in the DEMO
study had dense overstory canopy cover ranging from 65%
to 100%. Late-seral herbs were unlikely to thrive directly
under an extremely dense overstory canopy because of
limiting light availability [76]. The model also concurrently
accounted for a cascading effect of overstory canopy density
on small tree and shrub cover and the latter on late-seral
herb cover. The low shade cast by midstory shrubs and trees
[77] probably eliminated more light demanding species and
favored the relatively shade-tolerant late-seral species, but
increasing overstory canopy was unlikely to benefit both. In
short, late-seral herbs occupying the forest floor responded
to the cumulative effects from successively higher layers of
vegetation.

The second hypothesis on belowground resource com-
petition was supported by the results that decreasing tree
density had a positive net effect on late-seral herb cover.

Lindh and Muir [78] found that thinning dense 20-year-old
Douglas-fir stands had a positive impact on the frequency
of late-seral herbs 20 years later. On the other hand, Ares
et al. [79] found that richness of early seral herbs and
shrubs increased but late-seral herb response was minor
six years after thinning in 40- to 60-year-old Douglas-fir
stand. However, their results might not readily discriminate
between release from belowground resource competition
and effects from increasing light availability to forest floor.
The SEM model in fact suggested that the indirect effect
through understory shrub and tree cover was the dominant
effect. Possible differences in the general depth of root
systems between layers of forest vegetation might partially
explain the observed response. Smith and Huston [80]
suggested that shade-tolerant plants would invest resources
into aboveground development at the expense of a limited
root system. Hence, late-seral herbs might have smaller and
shallower root system than understory trees and shrubs (see
[81]). In areas with lower overstory stem density, understory
shrubs and small trees may be able to exploit the deeper
belowground resources such as water otherwise used by
overstory trees (see [68]), thereby minimizing the effects of
belowground competition on late-seral herbs that would be
utilizing resources closer to the surface. Lastly, the bivariate
relationship was observed to be nonlinear, which suggested
that late-seral herbs were more responsive to release from
belowground resource competition in a highly dense forest
stand, perhaps due to immediate availability of belowground
resources from a decrease in density. Nevertheless, the
effect of root competition from successively higher layers
of vegetation on late-seral herbs is poorly known because
most work has focused on the composite response of all
understory species (e.g., [82]).

Contrary to the common perception that forest floor
litter might negatively affect late-seral herbs by physi-
cally obstructing growth and establishment [62], the third
hypothesis was not supported by the fitted model. Although
the suggested influence of overstory and understory crown
dynamics on rates of litterfall was supported, rates of
decomposition differed between the two litter types. Hence,
the net and cumulative effects on late-seral herbs could
be more complex than depicted by the model. It was also
apparent that a myriad of unknown processes controlled
litter accumulation as indicated by the low R2 and large
negative correlation between errors of coarse and fine litter.
Future research could measure other dimensions of forest
floor litter accumulation such as litter depth and thereby
improve our understanding of mechanisms that have been
proposed in the literature.

The fitted model indicated that conditions in Douglas-
fir stands on northeast aspects were more favorable to late-
seral herb establishment and maintenance than those on
southwest aspects. This was supported by Lindh [83], who
found that presence of old-growth associated herbs was
positively associated with north-facing aspect in second-
growth Douglas-fir stand. The benefit of northeast aspects to
late-seral herb species can probably be attributed to the lower
solar angle and greater light attenuation for a given overstory
canopy, resulting in more mesic conditions at the forest floor.
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Given sufficient time, natural stand dynamics gradually
led to stand conditions that were favorable for late-seral herb
community. Many aspects of the biotic and abiotic environ-
ment change throughout the course of stand development,
including changes in the chemical and structural properties
of the soil [49]. In some forest types, age might be the
strongest integrator of the composite effects on understory
community structure [84]. In the fitted models, average age
of overstory trees emerged as a strong predictor of late-seral
herb cover, but this variable alone offered limited insight into
mechanisms associated with increasing age.

4. Discussion

The overstory-understory model illustrated an application
of SEM to understanding the implications of vertical forest
structure on late-seral herb species in a forest ecosystem. The
overstory-understory relationships involved cascading effects
of higher layers of forest vegetation on successively lower
layers. The interrelationships could be complex and difficult
to manipulate and test experimentally. Development of the
SEM drew on published univariate models, exploratory
analyses, theory and expert knowledge to establish a set of
working hypotheses on the interactions of different layers
of forest vegetation. The hypotheses were translated into
a mathematical model, and the latter was fitted to a large
dataset from mature Douglas-fir forests. The process was
confirmatory at this stage of development. However, the
initial structure was altered based on modification indices
and a new tentative structure was imposed to improve
the model fit. Although supported by additional theory,
causal inference on the overstory-understory relationship
was theoretically weakened by changes to the a priori
model structure. Nonetheless, the blend of confirmatory
and exploratory SEM analyses provided insights into the
complexity imposed by cascading effects of different layers
of forest vegetation.

The overstory-understory model was fitted by maxi-
mum likelihood. Because maximum likelihood was a full-
information method, all processes and interactions repre-
sented in the model were considered simultaneously during
model estimation [19]. This aspect of SEM was particularly
important as the mechanisms for understory vegetation
responses to overstory characteristics were interactive and
rarely dominated by one specific ecological factor [68].
As a result, light attenuation, belowground resource com-
petition, microclimatic effects associated with aspect, and
stand development over time were identified simultaneously
as important drivers of the observed patterns. Physical
obstruction from coarse and fine woody litter, however,
had a relatively small influence on late-seral herbs in the
presence of other apparently more dominating processes.
The power of SEM derived from the fact that processes and
components operating in these complex forest ecosystems
were simultaneously accounted for in a way that tentatively
identified causal mechanisms and multiple pathways that
contributed to the responses of interest.

Given that there was only one indicator per latent vari-
able, the overstory-understory SR model might alternatively

be specified as a path model. This would simplify the
estimation process but would assume that observed variables
were measured without error. A sensitivity analysis on the
effects of measurement errors on estimated path coefficients
was implemented for the overstory-understory SR model
and suggested that, when measurement errors were large,
some path coefficients increased in strength and absolute
value while others decreased in both [71]. Field observation
was often subjected to certain degree of measurement
error that included both observer and instrument error.
Fiala et al. [85] found that the Moosehorn densiometer
generally provided more conservative estimates of canopy
cover compared to other measurement methods. Given the
implied error associated with estimating canopy cover, an SR
model that accounted for measurement error would be more
appropriate than a path model under the circumstances.

The final overstory-understory SR model could be
revised by removing predicted paths that are statistically
insignificant. Unlike multiple regression, however, model
parsimony was not the ultimate goal of SEM. Empirical
respecification of a model by dropping paths that were not
significant increased the chance of overfitting a model to
a specific dataset; for example, the statistically insignificant
path might be due to random variation or unique attributes
of the analyzed dataset [19]. As mentioned above, a path was
evaluated simultaneously in the context of other paths; thus,
its significance was meaningful only in the presence of other
paths represented in the model. Empirical respecification was
therefore not recommended, and a researcher should not feel
compelled to drop insignificant paths from a model until
replication of the results with other datasets or sufficient
accumulation of evidence from related research indicated
otherwise [19, 86].

Although the final overstory-understory model fitted
the DEMO data reasonably well, the results did not prove
the causal relationships hypothesized in the model. Causal
inference can be supported by replicating the model with
independent datasets, considering equivalent models before
model fitting [19], or by very specific manipulative experi-
ments. Finally, it was important to note that ecosystem effects
and responses were explained in terms of mechanisms that
we did not measure directly; for example, light attenuation
was represented by overstory canopy cover rather than a
direct measure of light intensity at the forest floor. To the
extent that more direct mechanisms and ultimate variables
are becoming more directly observable, for example, the light
filtering effects quantified spatially and temporally in terms
of PAR (photosynthetically active radiation) irradiance [68],
the dominating processes and mechanisms can be inferred
with greater confidence.

5. Conclusions

The aim of this paper was to provide a conceptual framework
for applying SEM to understand mechanisms influencing
one component of forest structure. The primary motivation
was the assumption that a successful SEM should facilitate
forest management by providing insight into causal mech-
anisms and thereby assisting in the design of silviculture
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treatments and systems that best met specified manage-
ment objectives. The larger goal was to establish a basic
understanding of principles, limitations, and assumptions
of SEM and to promote potential applications. Data from
natural systems typically create analytical challenges, such
as nonnormality in endogenous variables, nonlinear rela-
tionships, multicollinearity, ill-scaled variance-covariance
matrices, and nested study designs. SEM continues to
evolve and address special issues such as modeling binary,
ordinal and categorical data [87, 88], and accommodating
interactions and curvilinear relationships between latent
variables [89, 90]. Recent years have seen the development of
different model estimation procedures (see, [15]), including
a Bayesian approach to SEM [91]. The latter has been
an attractive alternative for modeling hierarchical SEMs.
With these advancements, SEM will become an important
and complementary analytical tool in understanding the
processes that drive the dynamics of complex natural
ecosystems.
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