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Moist tropical forests have a signi�cant role in provisioning and regulating ecosystem services. However, these forests are under
threat of deforestation and forest degradation. In Ethiopia, the moist evergreen Afromontane forests have the potential for carbon
storage and support a high diversity of plant species. However, it is under severe threat of deforestation and degradation.�is
investigation was conducted to obtain adequate information on the carbon stock potential of the moist Afromontane forest of
southwestern Ethiopia. A comparison of carbon stock was conducted between disturbed and undisturbed forests. A systematic
sampling design was applied for recording woody species and soil data. A total of 100main plots of 400m2 were laid to record trees
and shrubs with a diameter at breast height (DBH)≥ 5 cm. �e soil data were collected from 1m2 subplots established at the four
corners and the center of each main plot. �e DBH and height were measured to calculate the aboveground carbon of trees and
shrubs with DBH ≥ 5 cm. A total of 68 tree and shrub species belonging to 59 genera and 33 families were recorded. �e mean
carbon stock density was 203.80± 12.38 t·ha–1 (aboveground carbon stock) and 40.76± 2.47 t·ha–1 (belowground carbon stock).
�e highest proportion of aboveground carbon (t·ha–1) (42.34%) was contributed by a few tree individuals with DBH > 70 cm.�e
soil organic carbon stock (SOCS) (t·ha–1) for the depth of 0–30 cm is ranging from 58.97 to 198.33 across plots; the mean is
117.16± 3.15. �e carbon stored in the moist Afromontane forest indicates its huge potential for climate change mitigation.
�erefore, for the enhancement of forest biodiversity and carbon sequestration e�ective conservation measure and sound
management approach is essential.

1. Introduction

�e global atmospheric concentration of carbon dioxide
(CO2) has increased signi�cantly due to human activities
since the start of the industrial era [1]. �e prominent
sources of increase in CO2 concentration are fossil fuel use
[2–4] and global land-use change [5, 6]. �e prominent
sources of methane (CH4) and nitrous oxide (N2O), which
have a signi�cant e�ect on atmospheric concentration, are
agricultural activities [7–9]. A study indicated the cumu-
lative anthropogenic emission of 2,040 Pg CO2 between 1750
and 2011, predominantly from fossil fuel and land-use
change [10]. Di�erent investigations describe an extreme

threat to our planet after 1970 associated with carbon di-
oxide emission [1], and it has been accumulating at an
increasing rate and is estimated to exceed 400 ppm [11, 12].

�e terrestrial biosphere can release and/or absorb
GHGs such as CO2 and has considerable importance in
regulating the atmospheric composition and climate change
[13]. Compared with other terrestrial parts, a huge portion of
the carbon is stored in forest ecosystems [14, 15]. �e ter-
restrial vegetation alone is estimated to store approximately
450–650 gigatons of carbon [16]; the global forest ecosystem
total carbon is also estimated at 638 gigatons [17], which is
more than the amount of carbon content in the entire at-
mosphere [18]. Currently, an investigation on the storage
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and emission of CO2 in a forest ecosystem is a topic of
considerable importance. Predominantly, the tropical forest
ecosystem is known for the highest carbon pool in its
biomass compared with other biomes of the world [19–24].
Generally, the tropical biome is the most productive and
accounts for over 60% of global terrestrial photosynthesis
and one-third of global net primary productivity [25–27].

Currently, associated with deforestation and forest
degradation the increase in atmospheric CO2 is the prom-
inent environmental challenge.'e conversion of forest land
to agriculture, infrastructure development, and settlements
are the major drivers aggravating the situations linked to
human population growth [28, 29]. However, a great dis-
crepancy was observed among study reports concerning the
quantity of CO2 sink and emission from global forests.
Currently, a report from Intergovernmental Panel on Cli-
mate Change is one of very high confidence in science [30].
Forests produce around 17 percent of global emissions
[1, 31], which is the largest source of greenhouse emissions
[32]. 'erefore, the conservation and management of forest
resources to solve this problem necessitate accurate and
continuously updated data. In addition, understanding the
current situation of the forest resource helps resource
managers to give attention and optimize resource allocation
either on the driver side through prevention or on the
impact side through mitigation.

In Africa, about 70% of GHG emission is caused by
deforestation [33]. Conversely, global forests play a dynamic
role in response to the increasing concentration of carbon
dioxide. REDD+ was devised under the United Nations
Framework Convention on Climate Change (UNFCCC) to
combat CO2 emissions [28, 34]. It is the central issue in the
global climate negotiation and is very important for par-
ticipating countries to benefit from the carbon credit. 'e
forestry-based mitigation strategy reducing emission from
deforestation and forest degradation, forest conservation,
sustainable forest management, and enhancement (REDD+)
requires a precise and verifiable estimate of carbon stock that
helps to evaluate whether forestry-based policies to mitigate
the emission of CO2 have achieved the target [35, 36].
Ethiopia’s Climate Resilient Green Economy (CRGE)
strategy underpinned the importance of adaptation and
mitigation [37]. More than 87% of CO2 emission in Ethiopia
is from the agricultural and forestry sectors, while the total
contribution of the other sectors is less than 15% [38]. 'e
forestry sector alone accounts for the total emission of about
37% CO2 in Ethiopia [39].

'e Afromontane regions are subregions of Afrotropical
realms that constitute plant species found in mountains of
Africa and the southern Arabian Peninsula [40, 41]. 'e
Afromontane regions of Africa are discontinuous, separated
from each other by low-lying areas, and this region mostly
follow the East African Rift from the Red Sea to Zimbabwe
[42, 43]. 'e moist Afromontane vegetation is characterized
by one or more closed strata of evergreen trees, which may
reach a height of 30 to 40m [44]. 'ese forests occur in the
southwestern part of Ethiopia Highlands between 1500 and
2600 elevation range [45] and on the southeastern plateau,
on the southern portion of the Bale Mountains at an

altitudinal range of between 1,450 and 2,700 masl [44, 46].
However, this vegetation is under threat of deforestation and
degradation in Ethiopia, regardless of its great significance
for biodiversity conservation and the source of multiple
ecosystem services [47].

Previous conservation approaches rely on strict pro-
tection of resources, and human utilization has not been
considered [48, 49]. However, the current biosphere reserve
approach of natural resource management is preferable to
the pristine concept of resource protection previously
mentioned. 'e biosphere reserve approach was intended to
encourage the sustainable development and conservation of
biodiversity [50–52]. Yayu Forest-Coffee Biosphere Reserve
was established to ensure its sustainability and for the im-
provement of local community livelihood [53]. Vegetation
of the biosphere reserve was designated as Afromontane
rainforest, which is home to the endemic Coffea arabica
L. population. 'is vegetation is a component of the Eastern
Afromontane Biodiversity Hotspot, which has global sig-
nificance [54].

'e vegetation of the core zone (undisturbed forest) in
the biosphere reserve is strictly protected for the conser-
vation of biological diversity, investigation, and monitoring
of ecological processes. 'e buffer zone (disturbed forest) is
identified area surrounding the undisturbed forest (UF),
used for activities compatible with sound ecological prac-
tices [53]. 'e transitional zone of the biosphere contains
settlement areas, farms, and other human activities. A
comparative analysis of carbon stock potential in major
pools of UF and disturbed forest (DF) was not yet conducted
in the biosphere reserve.'erefore, this study was conducted
to (i) determine aboveground and soil carbon stocks, (ii)
understand the relationship between carbon stocks with
topographic factors and stand structures, and (iii) obtain
sufficient information about the carbon stock potential of
undisturbed and disturbed forests in Yayu Forest-Coffee
Biosphere Reserve.

2. Materials and Methods

2.1. Location of Study Site. 'e study was conducted in Yayu
Forest-Coffee Biosphere Reserve located in Illubabor Zone,
southwestern Ethiopia.'e biosphere reserve covers latitude
ranging from 8°15′0″ to 8°35′0″ N and longitude ranging
from 35°30′0″ to 36°0′0″ E of zone 36 (Figure 1). 'e total
area covered by the undisturbed forests (UFs) is 27, 733
hectares and disturbed forests (DFs) is 21,552 hectares, and
the transitional zone is 117,730 hectares of the total 167,021
hectares of the biosphere reserve [53]. 'e UF is located at
the lower elevation areas near river banks. However, the DF
is found on the higher elevation of the biosphere in prox-
imity to human settlements.

2.2. Description of the Study Area. 'e topography of Yayu
Forest-Coffee Biosphere Reserve is characterized by undu-
lating terrain, and detailed information on topography and
soil type can be found in [55, 56]. 'e geological formation
of the moist Afromontane forest areas consists of intensively
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folded and faulted Precambrian bedrock, overlain by me-
sozoic marine and tertiary basalt types [57, 58]. 'e mean
annual temperature is about 20.4°C, ranging from a mean
maximum of 27.2°C to a mean minimum of 13.7°C. 'e
mean annual rainfall is 1803mmyear−1 with high variation
from year to year (1257 to 2514mm·year−1). 'e moist
Afromontane forest is characterized by multiple strata of
evergreen trees that reach a height of 30 to 40m. Charac-
teristic species in the canopy include Olea capensis subsp.
welwitschii and subsp. hochstetteri, Albizia schimperiana,
Millettia ferruginea, and Celtis africana. Sub-canopy species
include Croton macrostachyus, Cordia africana, Dracena
steudneri, and Sapium ellipticum [44, 46].

A systematic sampling design was adopted to collect the
environmental and vegetation data within 52 plots of UF and
48 plots of DF. A total of 16 parallel transect lines that are
500m apart were laid across the undisturbed and disturbed
forests considering mainly elevation gradients. Along the
transect lines, plots were established at every 300m, A total
of 100 plots of 20m× 20m were established for docu-
mentation of tree and shrub species [59, 60] with DBH
≥5 cm. Within the main plots, four subplots of 1m× 1m
were laid at the corner and one in the middle for soil
sampling [61].

2.2.1. Field Measurements. Trees and shrubs with a diameter
at breast height (DBH)≥ 5 cm were recorded within the
main plots of 400m2. 'e soil samples were collected from

subplots of 1m2 within main plots. 'e DBH at 1.3m was
measured using caliper for small- and medium-sized trees/
shrubs, and diameter tape was used for large diameter trees.
'e tree height was measured using a clinometer and visual
estimation. 'e geographical coordinates of plots and alti-
tudes were measured using Garmin eTrex 10 GPS receiver.
'e aspect was measured using compass, and clinometer was
used tomeasure the slope.'e voucher specimens for woody
species encountered were collected and brought to the
National Herbarium, Addis Ababa University, for taxo-
nomic identification. 'e identification was done using the
Flora of Ethiopia and Eritrea and by comparing the speci-
mens with the authentic specimens in the National Her-
barium [62–66].

Measurement of Aboveground Biomass (AGB). 'e di-
ameter (DBH) and total height of individual trees and shrubs
with DBH ≥5 cm were measured in every 400m2 plot. 'e
wood density values were taken from global wood density
database [67]. Trees on the border with >50% of their basal
area falling within the plot were included and excluded when
<50% of their basal area falls outside the plot [68]. Trees
overhanging into plots were excluded, but those with trunks
inside the plot and branches outside were included [61].

Measurement of Belowground Biomass (BGB). 'e
measurement of belowground biomass is more difficult
and time-consuming than AGB measurement. 'erefore,
the standard method for estimation of BGB is 20% of
AGB, which is determined as the root-to-shoot ratio value of
1 : 5 [68].
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Figure 1: Map of the study area.
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Soil Data Collection. Soil samples were collected from the
top 30 cm depth as prescribed by [69] guideline for forest
soil. 'e composite soil samples were collected from sub-
plots (1m2) at the four corners and the middle of the main
plot for the determination of soil organic carbon (SOC).
Sampling from a single soil depth mostly generates a bias in
soil carbon stock estimation [70]. Two soil samples were
collected from a single pit of 0–15 cm and 15–30 cm in depth
near the center of all subplots. 'is sampling approach was
used to best represent forest types in terms of slope, aspect,
vegetation, density, and cover [71]. A total of 200 composite
soil samples (2 depth ×100 plots) were collected from the
study area. A total of 200 bulk soil samples (2 depths × 100
plots) were also collected on the center of the main plots
using a core sampler of 250 cm3 to determine bulk density.
'e samples from each of the two depths were composited
separately, labeled, placed in plastic bags, and transported to
the laboratory analysis.

2.3. Laboratory Analysis. 'e soil samples were analyzed in
the soil fertility laboratory of the Water Works Design and
Supervision Enterprise (WWDSE) in Addis Ababa, Ethiopia.
About 100 g of the collected soil samples from each depth
was used for the determination of soil organic carbon (SOC).
'ey were air-dried and passed through a 2mm sieve for
SOC analysis. SOC concentrations were determined based
on the method/procedure developed by [72]. Each bulk soil
sample was oven-dried at a temperature of 105°C for 24
hours to achieve a constant weight. 'e soil sample was
analyzed for organic matter following the standard proce-
dure outlined in [73].

2.4. Estimation of Carbon Stock. Computation of tree bio-
mass was the primary step for the estimation of carbon stock,
which was employed using the standard conversion factors.
'e carbon stock of major pools AGCS, BGCS, and SOCS
was computed as follows in the subheadings.

2.4.1. Estimation of Aboveground Carbon (AGC). 'e
aboveground carbon stock of trees and shrubs was estimated
using an appropriate biomass equation developed by [74].
'e global wood density database was used as a source of the
wood density values for the species [67].

AGB(kg) � 0.0559 × ρD
2
H , (1)

where AGB � predicted aboveground total biomass (kg),
D� diameter at breast height (cm), H� total height (m), and
ρ�wood density (g cm–3) from global wood density
database.

2.4.2. Estimation of Belowground Carbon (BGC). 'e
equation developed by [68] was used.

BGB(kg) � AGB × 0.2, (2)

where BGB� belowground biomass, AGB� aboveground
total biomass, and 0.2� conversion factor (or 20% of AGB).

'e aboveground carbon for each plot was calculated by
summing up the aboveground carbon for all tree and shrub
species.'e carbon was determined considering 47% carbon
content in biomass of tropical region [69]. 'e conversion
factor of 3.67 (44/12) was used to estimate CO2 equivalent
[75].

2.4.3. Estimation of Soil Organic Carbon. 'equantity of soil
carbon per hectare was computed as recommended by
[69, 75].

SOCS � BD × d × %SOC, (3)

where SOCS= soil carbon stock per unit area (t·ha–1),
BD= bulk density (g·cm–3), d= total depth at which soil
sample was taken (30 cm), and %SOC= soil organic carbon
concentration.

Bulk density was computed using the following
equation:

BD �
Mav,dry

V
, (4)

where BD� bulk density of soil sample (g·cm–3), Mav, dry-
� average air-dry weight of soil sample per plot (g), and
V� volume of soil sample in the core sampler (cm3) [75].

2.4.4. Total Carbon Stock Density. 'e total carbon stock
density was calculated by summing the carbon stock den-
sities of major carbon pools. 'e carbon stock estimate was
produced by extrapolating data at plot level to a full area of
hectare. Extrapolation was occurred by calculating the
proportion of a hectare (10,000m2) that was occupied by a
given plot using expansion factors [75].

'e total carbon stock density of a study area is cal-
culated as follows:

Cdensity � CAGB + CBGB + SOC, (5)

where Cdensity � carbon stock density for all major
pools (t·Cha-1); C AGB � carbon in aboveground tree bio-
mass (t·Cha-1); C BGB � carbon in belowground biomass
(t·Cha-1); and SOC� soil organic carbon (t·Cha-1).

2.5. Data Analysis. 'e collected data were summarized in
the excel spreadsheet. Statistical packages in R software
version 3.6.1 were used for carbon data analysis. 'e nor-
mality of the data was checked using the Shapiro–Wilk
normality test before conducting statistical analysis; log
transformation was employed when data distribution was
found not normal.'e Shapiro–Wilk test statistic W is small
for non-normal samples. 'e test rejects the hypothesis of
normality when the P value is less than 0.05.

3. Results

3.1. Carbon Stock Estimation of Major Pools

3.1.1. Aboveground and Belowground Carbon Stocks. 'e
result revealed that mean belowground carbon stock (BGCS)
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was estimated at 40.76± 2.47 t·ha–1, whereas the above-
ground carbon stock (AGCS) was 203.80± 12.38 t·ha–1
(Table 1).

3.1.2. Variation of Aboveground Carbon Stock across Tree
Size Classes. 'e result showed that the proportion of AGCS
(t ha–1) increased across successive DBH and height classes.
Particularly, individuals with stem diameter in the higher
DBH class (DBH >70 cm) contributed the highest propor-
tion of AGCS (t ha–1) (42.34%). On the other hand, upper
story trees within height class >30m contributed the highest
proportion AGCS (t ha–1) (71.43%). Individuals with height
>20m have contributed 93.09% AGCS (t ha–1) of the forest.
'e result verifies that an enormous amount of AGCS
(t ha–1) was stored in large trees (Figure 2).

3.1.3. Aboveground Carbon Stock Difference among Tree
Species. A total of 68 trees and shrub species with
DBH≥ 5 cm were recorded at the study site. 'e result
revealed that only a few tree species of large size (DBH and
H) contributed a significant amount of AGCS to moist
Afromontane forest. Seven dominant tree species including
Sapium ellipticum, Cordia africana, Morus mesozygia,
Albizia grandibracteata, Ficus lutea, Trichilia dregeana, and
Maytenus undata contributed 51.11% t ha–1 of AGCS. 'e
ten dominant tree species Ficus vasta, Ehretia cymosa, and
Celtis africana including the seven species mentioned above
have contributed about 64.37% t ha–1 of AGCS. A total of 22
tree species with higher DBH sizes contributed 93.20% t ha–1
to the total AGCS of the forest. However, the smallest pro-
portion of AGCS was contributed by the majority of less
dominant species. Tree populations with the higher density
(stem ha–1) and higher mean value of DBH and Hwere found
to contribute a significant amount of carbon stock storage.

3.2. Distribution of Soil Organic Carbon. Analysis for the 100
plots described that value of the bulk density for topsoil
(0–15 cm) is 0.62–1.38 g·cm–3 and for subsoil (15–30 cm) is
0.61–1.44 g·cm–3. 'e range and mean value of soil organic
carbon concentration (SOC (%)) are 1.79–9.09 and
4.49± 0.149 for topsoil depth of 0–15 cm and 1.14–7.78 and
3.50± 0.149 for subsoil depth of 15–30. A comparison of the
SOC (%) means value between the topsoil and subsoil
revealed significant differences (at F = 22.21, P � 0.001). 'e
result also showed that, the soil organic carbon stock (SOCS)
of topsoil (range = 8.3–120.84, mean = 61.50± 1.91 t ha-1);
and for the subsoil (15–30cm) the SOCS (range =
20.79–140.73, 55.68± 2.41 t ha-1). 'e higher mean SOCS (t
ha–1) was recorded for the topsoil; however, the mean
difference does not show a statistical significance (at F = 3.58,
P � 0.06). On the other hand, the SOCS (t ha–1) for the
depth of 0–30 cm ranged from 58.97 to 198.33, with a mean
of 117.16± 3.15 across the plots in the studied forest.

3.3. Variation of Aboveground and Soil Organic Carbon Stock
withTopographicFactors. 'emean of SOCS (t ha–1) did not
show significant variation within different elevation, aspect,

and slope classes. However, a significant difference in mean
AGCS (t ha–1) was observed only between lower slopes and
intermediate and lower and steep slope classes. Similarly, the
significant variation of AGCS t h−1 was recorded between the
higher elevation class and other classes (at P< 0.05)
(Table 2).

3.4. Variation of Soil Organic Carbon Concentration with
Topographic Factors. 'emean SOC (%) of 30 cm depth was
plotted against topographic gradients (Figure 3). 'e vari-
ation of SOC (%) against elevation gradient exhibited
quadratic pattern (R2 � 0.0437, P> 0.05). 'e SOC (%)
showed optimum quantity in the middle elevation ranges
and decreased for higher elevations. 'e SOC (%) has a
direct relationship with aboveground biomass productivity,
which is potentially influenced by elevation. 'erefore,
decreasing SOC (%) with increasing elevation is possibly
related to the effect of elevation on biomass productivity. In
addition, biomass productivity is directly related to soil
organic matter, which is a potential source of soil organic
carbon. On the other hand, SOC (%) was found to be
negatively correlated against the slope gradient, however
statistically not significant (R2 � 0.0128, P> 0.05).

3.4.1. Variation of Soil Organic Carbon Concentration in
Response to Stand Structure. 'e result showed that SOC
(%) was correlated with stand structural attributes (plot
species richness, mean canopy cover, and the number of
stems per plot). However, the responses of SOC (%) against
these stand structural parameters do not show statistical
significance (Figure 4). 'e soil organic carbon concentra-
tion was positively correlated with plot species richness (SR)
(R2 � 0.0057, P> 0.05). SOC (%) was negatively correlated
with mean canopy cover percent (CC%) (R2 � 0.0005,
P> 0.05) and number of individuals per plots (R2 � 0.0143,
P> 0.05). However, either of the relationships with stand
structure did not show statistical significance. 'e observed
values along the regression lines show great dispersion,
which is an indication of variability of data.

Table 1: Descriptive summary of AGCS, BGCS, and carbon di-
oxide equivalent of the study forest.

Measured variables Minimum Maximum
Mean

Statistics Std.
error

DBH (cm) 5 189 19.37 0.40
H (m) 2 44 16.58 0.24
AGCS (t ha-1) 11.14 775.40 203.80 12.38
AG CO2 equivalent
(t ha-1) 40.87 2845.72 747.95 45.42

BGCS (t ha-1) 2.227 155.08 40.76 2.47
BG CO2 equivalent
(t ha-1) 8.17 569.14 149.59 9.08

Total carbon stock
(t ha-1) 13.36 930.48 244.56 14.85

Total CO2e (t ha-1) 49.04 3414.87 897.54 54.51
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3.5. Comparison of Carbon Stock between Undisturbed and
Disturbed Forests

3.5.1. Difference in Soil Organic and Aboveground Carbon
Stock of Forest Types. 'e mean SOCS (t·ha–1) between UF
and DF does not show statistically a significant difference (at p
> 0.05). 'e soil bulk density (g·cm–3), SOC (%), and SOCS
(t ha–1) comparative analysis between the soil depths (0–15 cm
and 15–30 cm) and between forest types are presented in
Table 3.'e difference inmean AGCS (t ha–1) between UF and
DF does not show significance (P> 0.05). 'e higher mean
DBH value of the DF is related to the predominance of only
higher DBH individuals in this forest (Table 3).

3.5.2. Comparison Aboveground Carbon Stock of the Large
Diameter and Height Tree Species in UF and DF. 'e large
diameter and height tree species contribute a significant
amount of AGCS (t ha-1) to both undisturbed and disturbed
forests. However, the comparison of AGCS (t ha-1) for
similar tree species across the forest types showed higher
value for many tree species of the undisturbed forest as
presented in Table 4.

4. Discussion

4.1. Carbon Stock of Afromontane Rainforest

4.1.1. Aboveground Carbon Stock. 'e aboveground carbon
stock (AGCS) of the Afromontane rainforest showed high
variation across the plots.'e amount of AGCS ranged from
11.14 t·ha–1 to 775.40 t·ha–1, with an estimated mean value of
203.80± 12.38 t·ha–1. 'e mean AGCS (t ha–1) from our
study is higher than the mean from different Afromontane
forests [76]. However, the mean AGCS (t ha–1) reported in
our study is lower than that from other moist evergreen
Afromontane forests [77, 78]. However, the AGCS value of
our study report is within the range when compared with
reports from some tropical rainforests (49.1–476.1Mg·ha–1)
[79]. On the other hand, the AGCS value from our study is
higher when compared with (60.09 to 121.43 t·ha–1) [80].
'e highest proportion of AGCS was contributed by a few
tree species and individuals, which are dominant in the
higher DBH classes (42.34%) and emergent canopy layers
(71.43%). Studies have also confirmed the storage of a
significant amount of AGCS in the large-size classes (DBH
and H) of tropical rainforests [81–83]. However, a study
described the unimodal pattern of aboveground carbon
stock across increasing diameter classes [84]. Overall, upper
canopy individuals of tropical forests have a significant
contribution to aboveground carbon storage. Previous
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Figure 2: Variation of AGCS across DBH class (a) and height classes (b).

Table 2: Comparative analysis of mean carbon stock between
elevation, slope, and aspect classes.

Topographic factors SOCS (t·ha–1) AGCS (t·ha–1)
Slope (%)
Steep (> 20) (N� 34) 117.96± 6.88 211.71± 18.98b
Intermediate (10–20) (N� 42) 118.75± 5.06 219.79± 22.99b
Flat (<10) (N� 24) 118.68± 8.34 167.92± 16.67a

Elevation (m)
Higher (1483–1615) (N� 19) 114.48± 8.68 161.18± 17.96a
Middle (1406–1480) (N� 52) 115.42± 4.47 210.81± 20.5b
Lower (1242–1392) (N� 29) 128.69± 8.41 221.29± 20.56b

Aspect
N (N� 33) 113.46± 5.49 212.01± 16.95
NE (N� 10) 132.86± 11.99 213.01± 51.32
NW (N� 7) 146.89± 15.17 249.76± 43.64
S (N� 25) 118.12± 7.07 185.23± 22.60
SE (N� 6) 89.84± 4.94 195.23± 52.90
SW (N� 18) 117.23± 6.23 192.66± 39.43
W (N� 1) 112.86± 0.00 202.94± 0.00

N is the number of plots. N: north, NE: northeast, NW: northwest, S: south,
SE: southeast, SW: southwest, W: west. Different letters in vertical refer to
significant difference at P< 0.05.
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researches also confirmed the effect of functional dominance
on carbon storage of a forest stand; the functional traits
(wood density, specific leaf area, andmaximum plant height)
have a noticeable effect on optimum carbon storage [79, 85].
A few tree species contributed a significant amount of AGCS
to a forest stand. In our study, 51.11%, 64.37%, and 93.20% of
AGCS (t ha–1) were contributed by a population of 7, 10, and
22 tree species, respectively. 'e structural attributes and
functional dominance of tree species are important in
biomass productivity and carbon storage. 'e stocking of
tree population, DBH, and height are the important pa-
rameters that determine biomass productivity and carbon
storage of a species [86, 87].

4.1.2. Soil Organic Carbon Stock. 'e soil bulk density (SBD)
and soil organic carbon concentration (SOC (%)) between
the topsoil and subsoil of the studied moist Afromontane
forest have shown a significant difference. SBD was found to
increase with increasing soil depth, while SOC (%) decreases
with increasing soil depth [88–90]. In addition, several
studies have confirmed the inverse relationship between
SBD and SOC (%) along with soil depth in moist Afro-
montane forests [78] and tropical rainforests [91, 92]. 'e
mean SOCS is 117.16± 3.15 t·ha–1 for the depth of 0–30 cm,
which is higher than the study report with 105± 18.73 t·ha–1
[93]. 'e mean SOCS value of our study is lower than moist
Afromontane forest of 128 t·ha–1 [94] with
162.62± 3.20 t·ha–1 [78]. Studies verified the effect of tree
species, altitude, and land-use difference in variation SOCS
across tropical forests [93, 95].

4.1.3. Variation of Carbon Stocks with Site Factors. 'e
canopy cover percent has shown a positive linear rela-
tionship with the aboveground carbon storage of the moist
Afromontane forest. Large tree crown correlates with the
basal area of large DBH trees. A study verified the great
significance of large tree crown areas in explaining the

aboveground biomass, which is directly related to the carbon
storage [96]. In addition, plot species richness (PSR) has
shown a positive linear relationship with aboveground
carbon storage in our study. Species richness is the simplest
measure of species diversity; a study has also verified the
significant effect of species diversity on aboveground carbon
storage through functional diversity and functional domi-
nance of species [79]. A positive relationship was demon-
strated between AGCS and SOCS, which is consistent with
the previous study’s report [80, 97].

In addition, AGCS was found negatively correlated with
elevation gradients, whereas the slope was positively cor-
related. In the studied moist Afromontane forest, the higher
elevation areas were exposed to selective removal associated
with Coffea arabica L. management in the understory. A
study verified a significant effect of disturbance on stand
structural attributes and on reduction in AGCS in primary
forest conversion [98]. 'ere is a great discrepancy among
studies concerning relationships between AGCS and topo-
graphic factors (elevation and slope); a decreasing trend was
observed for AGCS along with increasing elevation gradients
[99–101]. However, studies in tropical forests have shown a
positive relationship of AGCS with slope and elevation
gradients [102]. On the other hand, a unimodal pattern was
exhibited for the relationship between AGCS and elevation
gradients in natural habitats [103].

'e SOC (%) of our study exhibited a unimodal pattern
of distribution along increasing elevation gradients. 'e
optimum value of SOC (%) was observed in the middle
elevation ranges, possibly related to the effect of elevation on
biomass productivity and plant community composition
[93, 95]. 'e SOC (%) in the higher elevation gradients was
highly exposed to human disturbance due to Coffea arabica
L. production under natural forest. 'e adverse effect of
anthropogenic disturbance on soil carbon stock of a tropical
forest was described [104]. Inconsistent results were re-
ported concerning the relationship between SOC (%) and
elevation gradients in different studies. 'e SOC was found
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Figure 3: Response of mean SOC (%) against elevation and slope; x� the independent variable on the x-axis; y� the response variable on the
y-axis; the dot and lines represent observed and fitted values of plots, respectively.
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Figure 4: Response of mean SOC (%) against stand structural attributes (CC%� canopy cover percent, number of individuals per plot,
SR� plot species richness, x� the independent variable on x-axis, y� the response variable on the y-axis); the dot and line represent observed
and fitted values of plots, respectively.

Table 3: Variation of SOCS between AGCS in undisturbed and disturbed forests (key: SOCS� soil organic carbon stock;
AGCS� aboveground carbon stock; AGCO2e� aboveground carbon dioxide equivalent; BD� bulk density, SOC (%)� soil organic carbon
concentration; DBH� diameter at breast height,H� total height). Different letters in the column of variables show a significant difference at
a 5% significance level.

Variables Soil depth (cm)
Undisturbed forest Disturbed forest

Min-Max Mean± SE Min-Max Mean± SE

BD (g·cm–3) 0–15 0.62–1.38 0.95± 0.021a 0.67–1.22 0.91± 0.018a
15–30 0.61–1.39 1.131± 0.026b 0.73–1.442 1.02± 0.022b

SOC (%) 0–15 1.79–7.51 4.139± 0.184a 1.82–9.09 4.88± 0.229a
15–30 1.14–7.78 3.355± 0.195b 1.166–7.678 3.66± 0.227b

SOCS (t·ha–1) 0–15 28.3–98.51 57.96± 2.49 32.89–120.84 65.34± 2.86a
15–30 22.01–140.73 56.75± 3.64 20.79–122.59 54.52± 3.14b

DBH (cm) 5–189 17.84± 0.48a 5–153 21.65± 0.69b
H (m) 2.7–48 16.78± 0.30 2–45 16.54± 0.38
AGCS (t·ha-1) 11.14–775.40 215.92± 17.83 23.53–617.73 190.67± 17.07
AGCO2e (t·ha-1) 40.87–2845.72 792.44± 65.44 86.36–2267.07 699.75± 62.66
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to decrease with increasing elevation gradients in a tropical
forest [91]; a positive correlation was exhibited between SOC
and elevation gradient [88, 105]. On contrary, the indirect
influence of plant community composition on SOC (%) was
also predicted [79]. A linear relationship was observed be-
tween SOC (%) and slope gradients; SOC (%) has shown a
decreasing pattern along increasing slope gradients for our
study. 'e soil on a steep slope is highly exposed to nutrient
losses, leading to lower SOC (%). Studies in tropical forests
have also confirmed a negative correlation between SOC (%)
and slope gradients [101, 106].

'e SOC (%) has revealed a weak positive correlation
with plot species richness, a weak negative correlation with
mean CC%, and a weak negative correlation with stem
abundance. 'e observed values of SOC (%) have shown
great variance in either of the relationships. 'e relationship
between SOC (%) and stand structural attributes is indirect.
Multiple environmental variables influence the biomass
productivity of a forest stand that directly affects soil organic
matter accumulation. Investigation on tropical forests has
revealed the increase in carbon storage with increasing
taxonomic diversity and functional dominance [79, 87].

Table 4: Comparison of aboveground carbon stock between large diameter tree species in UF and DF.

Scientific name Forest types Density
(stem ha−1) DBH (cm) Height (m) Mean AGCS

(t ha–1)
AGCS
(t ha−1)

AGCO2e
(ton ha−1)

Cordia africana UF 14.36 44.08± 5.62 26.57± 2.02 2.899± 0.69 87.42 308.57
DF 18.75 36.74± 4.09 24.80± 1.53 1.764± 0.42 61.75 226.64

Morus mesozygia UF 28.71 23.68± 2.46 25.28± 1.88 1.429± 0.36 81.50 299.09
DF 15.1 27.78± 5.13 21.46± 2.56 2.269± 0.82 63.54 233.19

Ficus vasta UF 1.49 130.67± 37.75 38.00± 6.43 21.18± 11.2a 63.55 233.24
DF 3.65 61.60± 13.27 22.20± 3.15 4.135± 5.09b 20.67 75.87

Celtis africana UF 43.07 17.35± 1.69 17.24± 1.09 0.654± 0.13 56.21 206.3
DF 43.75 16.17± 1.43 15.94± 1.61 0.313± 0.48 12.84 47.11

Ficus lutea UF 21.78 25.75± 4.41 16.75± 1.82 1.331± 0.45 55.91 205.18
DF 13.02 40.95± 8.21 20.21± 2.09 2.459± 0.95 56.57 207.6

Elaeodendron buchananii UF 43.56 16.75± 1.28 22.40± 1.37 0.722± 0.17 51.81 190.14
Mimusops kummel DF 18.75 26.40± 2.49 23.26± 1.73 1.37± 0.33 50.77 186.32

Diospyros abyssinica UF 51.49 15.58± 1.28 20.31± 2.13 0.458± 0.10 46.75 171.58
DF 7.32 16.18± 2.81 16.12± 2.45 0.515± 0.20 13.40 49.18

Sapium ellipticum UF 10.89 39.10± 5.03 25.24± 2.09 2.196± 0.75 46.12 169.26
DF 17.71 51.17± 4.36 26.12± 1.85 3.508± 0.69 115.78 424.9

Maytenus undata UF 30.2 20.20± 1.84 19.25± 1.39 0.743± 0.15 43.86 160.98
DF 19.27 24.71± 3.78 19.21± 1.98 1.560± 0.54 54.60 200.4

Albizia grandibracteata UF 19.8 27.14± 2.88 25.25± 1.84 1.035± 0.24 40.35 148.09
DF 53.13 24.18± 1.51 21.84± 0.98 0.717± 0.11 72.42 265.78

Trilepisium madagascariense UF 16.34 27.42± 3.04 26.78± 2.29 1.155± 0.28 36.96 135.66
DF 7.29 30.29± 6.52 25.75± 4.38 1.577± 0.72 20.51 75.42

Ficus carica UF 10.89 30.86± 3.96 24.00± 1.97 1.727± 0.66 36.27 133.12
DF 5.73 27.04± 3.74 19.3± 2.65 0.901± 0.32 9.01 33.06

Trichilia dregeana UF 27.23 19.55± 2.48 19.54± 1.34 0.655± 0.23 35.36 129.77
DF 14.06 39.17± 5.54 29.02± 3.01 2.712± 0.72 70.51 258.76

Olea welwitschii UF 18.32 15.01± 3.60 16.00± 09 0.918± 0.79 33.04 121.25
DF 4.17 27.3± 0.14 18.84± 4.36 1.847± 0.24 12.93 47.45

Ficus sur UF 8.42 31.38± 6.11 24.19± 3.48 1.459± 0.63 23.34 85.66
DF 3.65 38.92± 13.27 18.33± 3.15 1.623± 1.15 9.74 35.73

Millettia ferruginea UF 26.73 17.35± 1.47 16.81± 1.13 0.439± 0.11 23.28 85.42
DF 17.71 14.72± 1.96 15.58± 1.23 0.376± 0.15 12.39 45.49

Antiaris toxicaria UF 15.35 19.93± 2.94 20.25± 2.25 0.637± 0.25 19.12 70.18
DF 9.38 23.17± 3.38 22.15± 2.21 0.591± 21 9.45 34.69

Ehretia cymosa UF 43.23 20.44± 8.56 9.58± 0.41 0.098± 0.01 68.19 256.29
DF 42.71 20.44± 0.62 9.59± 0.41 0.059± 0.01 68.2 250.29

Albizia gummifera UF 3.13 43.6± 17.28 20.8± 4.79 3.138± 3.14 15.69 57.59
DF 11.98 21.82± 3.30 18.59± 1.69 0.673± 0.27 14.8 54.33

Cassipourea malosana UF 13.54 11.8± 1.47 16.52± 2.14 0.211± 0.08 5.07 18.61
DF 4.69 23.98± 9.42 23.63± 6.09 1.894± 1.47 15.15 55.62

Ekebergia capensis UF 6.25 18.55± 6.21 16.34± 3.49 0.842± 0.58 9.26 33.99
DF 2.08 41.38± 13.79 29.75± 8.74 3.317± 1.87 12.55 46.05
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Studies verified the significant effect of stand structural
attributes on SOC (%) in Afromontane forests [107, 108].

4.2. Comparison of Carbon Stocks between Undisturbed and
DisturbedForests. Comparing the mean of SOCS (t ha–1) for
topsoil (0–15 cm) was found different between the UF and
DF of moist Afromontane forests; the mean was found
higher for DF. 'e comparative result of our study was
found consistent with the finding in [22], which reports the
accumulation of higher SOCS in secondary forests. 'e
mean difference in SOCS (t ha–1) is significant between
topsoil and subsoil of DF, but insignificant between depth
classes of UF. A study revealed the significant effect of forest
disturbance on the emission of CO2 from forest soil [104].
Less SOCS was reported in DF due to the higher mineral-
ization rate of carbon in soil [98, 109, 110]. Contrary, to our
finding, a study in tropical forests reports an accumulation
of higher SOCS in the primary forest compared with the
secondary forest [111], suggesting the role of forest pro-
tection in conserving soil organic carbon. Studies report the
decline of SOCS along with the soil depth; however, the
trend is not consistent [22, 112].

'e higher mean of AGCS was recorded for UF
(215.92± 17.83 t·ha–1) compared with the DF
(190.67± 17.07 t·ha–1) of moist Afromontane forests. 'e
DBH and height of trees and shrubs are the best explanatory
variables for the estimation of aboveground carbon storage.
'e mean difference in DBH is significantly higher for in-
dividuals of DF, compared with UF. However, lower AGCS
was reported for DF, associated with selective removal of
large DBH and emergent canopy individuals to promote
coffee production. Studies have also described the influence
of human disturbance on the AGCS storage of forests
[113, 114].Compared with DF, the quantity of AGCS (t ha–1)
stored in dominant and codominant tree species is higher for
UF. Sorting in descending order, the dominant species
contributing significant AGCS (t ha–1) are different between
the forest categories. 'e variation of carbon stock storage
among dominant species is influenced by DBH and height
growth and the abundance of individual species
[96, 102, 115]. Previous studies have also confirmed the role
of functional dominance (maximum DBH, height, specific
leaf area) of species in affecting the aboveground carbon
storage of a forest [79, 87]. A study has also verified the
influence of stem density on the carbon stock of tropical
forests [116].

5. Conclusions

A considerable amount of carbon stock was found in
aboveground biomass, belowground biomass, and soil pools
of the studied moist Afromontane forest. 'e highest
amount of AGCS was stored in tree species with higher
stocking, large DBH, and higher height. However, a few tree
species contributed a substantial amount of AGCS to the
studied forest. 'e distribution of the SOCS showed vari-
ation vertically and horizontally in the forest site. 'e re-
lationship was revealed between AGCS and SOCS with

topographic factors. 'e forest structural attributes have
explained the variation of AGCS and SOCS. 'e difference
in AGCS between UF and DF is not significant. 'e amount
of AGCS and SOCS depends on the intensity of anthro-
pogenic disturbance. 'e AGCS was positively correlated
with species richness or diversity of the forest stand. It
verifies the role of species richness or diversity in promoting
carbon storage through functional diversity and dominance.
To enhance the carbon sequestration potential of DF,
conservation efforts should focus on balancing the structural
attributes of the forest and coffee plant population.
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