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Mapping mangroves using satellite imagery has been done for decades. It helps reduce obstacles in inaccessible places caused by
the mangroves’ intricate root system, thick mud, and loss of position signals. Tere is an urgent need to produce a mangrove map
that automatically and accurately covers the mangroves with the density index of the canopy as visually represented in satellite
imagery. Te research was conducted through an analytical desk study of the mangrove features from space. Te study aims to
develop a simple formula for automatically tracing, capturing, andmappingmangroves and determining the canopy density index
from open access of satellite data to eliminate manual digitization work, make it easy to use, and save cost and time. Te goal is to
monitor, assess, and manage the condition of mangroves for anyone interested in mangroves, including the central government,
local authorities, and local communities. As a result, the authors proposed an algorithm: (ρNIR − ρRed)/
(ρRed+ ρSWIR1)∗ (ρNIR − ρSWIR1)/(ρSWIR1 − 0.65∗ ρRed). Experimental results in many mangrove forests using Landsat 5 TM,
Landsat 7 ETM, Landsat 8 OLI, and Sentinel 2 imageries show satisfactory performance.Temaps capture the spatial extent of the
mangroves automatically and match the satellite imagery visually. Te index correlates signifcantly with the Normalized
Diference Water Index (NDWI), with R2 reaching 0.99.Te research will apply the formula of the Musi Delta mangrove complex
in South Sumatra, Indonesia. Te advantage of the algorithm is that it works well, is easy to use, produces mangrove maps faster,
informs the index, and efciently monitors the change in mangrove conditions from time to time.

1. Introduction

Mangroves are woody plants that grow inland and at the
marine boundary (coastal), especially in tropical and sub-
tropical areas [1, 2]. Mangrove ecosystems are characterized
by high environmental dynamics, e.g., temperature, sedi-
mentation, and tidal currents [3]. Mangroves are highly
benefcial to coastal ecosystems and shallow waters due to
their contribution to the coastal zone, productivity, and
biologically essential ecosystems [4]. Te environment has
specifc characteristics that are generally infuenced by
freshwater from the land via rivers and saltwater from the
sea [5, 6]. Temangrove ecosystem provides services such as
nursery areas for many marine fsheries and nutrient cycling
[7], habitat for wildlife species, the landing site for thousands

of migratory birds [3], and biodiversity [8]. In the context of
climate change, mangroves play an important role in carbon
sequestration as they can sequester carbon in the atmosphere
through photosynthetic processes, and most of them are also
stored in the soil [9–14].

Mangroves are vulnerable to anthropogenic and natural
disturbances. Te Food and Agriculture Organization of
the United Nations (FAO) [15] reports that 20% of the
world’s mangroves have been lost to deforestation since the
1980s. Anthropogenic factors that play a signifcant role
include urban expansion [16–21], functional change to
aquaculture and shrimp farming [22], illegal exploitation
for fuelwood and construction materials [23], or damage
from natural factors such as storms, hurricanes, and tsu-
namis [24, 25].
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Te world’s attention is now focused on climate change,
where the physical manifestations of threats are often re-
ferred to as hazards or climate hazards [26] and rising sea
levels signifcantly impact coastal environments. Most
mangroves do not keep pace with sea level rise because
sediments are not as high and a limited area is available for
landward migration [27]. In tropical countries where
mangrove forests thrive, Sierra-Correa and Kintz [28] em-
phasized that the long-term threat of sea level rise requires
coastal planning to avoid much more signifcant losses.

Te Indonesian Minister of Environment and Forestry’s
opening speech at the International Conference on Sus-
tainableMangrove Ecosystems in BAli on April 18, 2017 [29]
states that Indonesia has a mangrove ecosystem area of 3.5
million hectares. Te government manages 2.2 million
hectares, and communities manage the remaining 1.3 mil-
lion hectares, located in 257 districts/cities, most of which
are degraded.

For decades, remote sensing via satellite imagery has
been widely used to monitor the condition of mangroves. Its
ability to cover broader areas and its temporally make it ideal
from time to time [30–32], and more than 1300 scientifc
remote sensing papers on mangroves have been published
on various topics [33]. Mapping mangroves with multi-
spectral, medium-resolution images is the most popular data
source. Landsat 8, launched on February 11, 2013, has 11
bands, with the spatial resolution of the panchromatic band
being 15m. Sentinel-2A was launched on June 23, 2015, and
Sentinel-2B was launched onMarch 7, 2017. Both provide 13
multispectral bands with a spatial resolution of 10m for
vegetation detection. Compared to previous Landsat satel-
lites, the beam resolution was increased to 16 bits, and the
signal-to-noise ratio was signifcantly improved. Tese ad-
vances improved Landsat 8’s ability to discriminate vege-
tation [34].Tese satellite images are easy to collect and open
to access, and free software is now available to support image
processing. However, the problem is that the results of
mangrove research using remote sensing have stagnated at
only the journal level for academics and researchers. It is
difcult for interested practitioners and local communities
to apply the results.

Tis research aims to develop a simple formula to au-
tomatically trace, capture, and map mangroves and inform
the index based on satellite imagery. Te goal is to monitor,
assess, and manage the mangrove condition, and this can be
performed by anyone interested in mangroves, including the
central government, local government, and local commu-
nities. With the requirements of the next 10–15 years, the
mapping of mangroves will cover a larger area. Google Earth
Engine (GEE) is a platform that provides multitemporal
satellite image data archives. Te platform provides appli-
cations for various user-created formulas, allowing the
possibility of using an algorithm to access mangroves
[35, 36]. Collecting satellite imagery through the GEE helps
users remove clouds, is free from mosaic processes, and is
not limited in its spatial coverage.

Technically, AMMI creates an efective and efcient
mangrove map that eliminates traditional work such as
manual digitization or other classical classifcation methods.

Scientifcally, automatic mangrove mapping can cover a
much broader area more quickly.Terefore, this method will
provide information not only on the presence and spatial
extent of mangroves but also inform the relationship of
mangroves to coastal geomorphology [37] and their eco-
logical conditions [31], which can eventually be used to
determine and assess the health status of mangroves.

Te case study is near the Musi River Delta in South
Sumatra Province, Indonesia (Figure 1). Te area is ad-
ministratively divided into two parts. Te northwestern part
is a small part of the Sembilang National Park (SNP) under
the central government’s control. Te other southeastern
part is the Air Telang Protected Forest (ATPF) under the
control of the South Sumatra provincial government.

2. Material and Methods

2.1. Material. Te materials used for the study are medium-
resolution optical satellite images that are open access, such
as Landsat 5 TM, Landsat 7 ETM, Landsat 8 OLI, and
Sentinel 2. Te data used are listed in Table 1, and the data
characteristics are shown in Table 2 below.

2.2. Methods

2.2.1. Images Processing. Images processing consists of
several steps: radiometric calibration, which is converted
from the digital number (DN) to a ToA (top of atmospheric)
value, pan-sharpening, i.e., the fusion of band 2–band 7 with
a resolution of 30m× 30m through a panchromatic band 8
with a resolution of 15m× 15m, image stacking, and image
resizing of the images. Te following equation shows the
formula to convert the digital number to the surface
refectance:

ρλ �
MρQcal + Aρ
sin θSUN( 

, (1)

where, ρƛ: real refectance on the earth surface, Mρ: band-
specifc multiplicative rescaling factor, Qcal: Quantized and
calibrated standard product pixel values (DN), Aρ: band-
specifc additive rescaling factor, and θSUN: local sun ele-
vation angle

All the above parameters are stored in the MTL fle of
each image packet. Te real refections as results of the
processing of L and sat and Sentinel images are annotated as
ρBlue, ρGreen, ρRed, ρNIR, ρSWIR1, and ρSWIR2 for Blue, Green,
Red, NIR, SWIR1, and SWIR2, respectively. In Landsat 8
OLI, a panchromatic band increases the spatial resolution to
15m. Te result of the fusion, due to the higher spatial
resolution, makes the image visually clearer [38]. However,
the color pattern still obtained images with a resolution of
30m× 30m [39]. A panchromatic band increases spatial
resolution, and spatial sharpening will be visually helpful in
interpreting the mangrove [34]. Tis work converts the
digital number of images into surface refectance for ra-
diometric correction using DOS1 in the semiautomatic
classifcation plugin (SCP) module in QGIS vers. 3.4
Madeira.
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2.2.2. Spectral Characteristics of Mangroves on Satellite
Images. Leaf structure can be identifed using narrow
bandwidth spectroradiometers in the visible (ρBlue, ρGreen,
and ρRed) and ρNIR of the spectrum. In the visible range
(400–700 nm), leaf structure is low due to the absorption of
photosynthetic pigment (chlorophylls and carotenoids). In

the ρNIR domain (700–1300 nm), where there is no strong
absorption, the magnitude of refectance is governed by the
structural discontinuities encountered in the leaf. Te ρSWIR
region (1300–3000 nm) presents variable values, mainly
linked to the absorption characteristics of water and other
compounds. Tus, the ρRed edge, the wavelength of
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Figure 1: Te case study is located in the Musi River delta, South Sumatra, Indonesia.

Table 1: Multitemporal images from Landsat 5 TM, Landsat 7 ETM, Landsat 8 OLI, and Sentinel 2 were used for the study, along with the
percentage of clouds and shadows in the study area.

No Date of record Bundle of landsat 8 OLI Clouds and shadows cover (%)
1 September 9, 2019 LC08_L1TP_124062_20190909_20190917_01_T1.tar 14.0
No Date of record Bundle of landsat 7 ETM Clouds and shadows cover (%)
1 June 30, 2002 LE07_L1TP_124062_20020630_20170130_01_T1.tar 3.0
2 September 13, 2012 LE07_L1TP_124062_20120913_20161129_01_T1.tar 15.0
3 October 13, 2011 LE07_L1TP_124062_20111013_20161206_01_T1.tar 18.0
No Date of record Bundle of landsat 5 TM Clouds and shadows cover
1 May 17, 1989 LT05_L1TP_124062_19890517_20170203_01_T1.tar 5.0
No Date of record Bundle of sentinel 2 Clouds and shadows cover
1 July 16, 2021 L1C_T48MVC_A031675_20210716T032022 15.0

Table 2: Correlation and equivalence of bands in Landsat 5 TM, Landsat 7 ETM, Landsat 8 OLI, and Sentinel 2 imageries.

Landsat 5 Landsat 7 Landsat 8 OLI
Description

Sentinel 2
Band Band Band Resolution (m) Wavelength (μm) Band Resolution (m) Wavelength
1 1 2 30 0.450–0.515 Blue 2 10 0.443
2 2 3 30 0.525–0.600 Green 3 10 0.490
3 3 4 30 0.630–0.680 Red 4 10 0.560
4 4 5 30 0.845–0.885 Near infraRed (NIR) 8A 20 0.865
5 5 6 30 1.560–1.660 Short wave infraRed 1 (SWIR1) 11 20 1.610
7 7 7 30 2.100–2.300 Short wave infraRed 2 (SWIR2) 12 20 2.190
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maximum slope in the increase of refectance from ρRed to
ρNIR has been a good indicator of the leaf level’s chlorophyll
content and at the canopy level [40, 41].

Kuenzer et al. [31] and [42] found that the spectral
response of mangroves in the wavelength range of
380–750nm (ρBlue − ρRed) is feeble, while it is strong in the
spectrum of 750–2500 nm (ρNIR − ρSWIR2), especially con-
cerning to leaf structure and properties, water content, and
mangrove biochemistry. An illustration of the spectral re-
sponse in mangroves is shown in Figure 2(a). Te visible
refectance is lower than in ρNIR due to chlorophyll ab-
sorption and leaf cell wall scattering. Further explained, the
refectance of ρNIR is principally controlled by the walls of the
spongy mesophyll cells, with healthier leaves tending to have
more substantial refectance in ρNIR as they refect excessive
amounts of incoming energy from the electromagnetic
spectrum. In contrast, stressed leaves will have lower re-
fectance due to cell structure changes.Te leaf water content
is the primary determinant of refectance in the ρSWIR region.

From the reviews above, it is generally accepted as the
basic principles of the optical-remotely sensed to detect
vegetation: chlorophyll-based, sensitive in the ρRed − ρNIR
wavelength range and water content-based in leaves which
are sensitively in the ρNIR − ρSWIR1 wavelength range. Many
formulas have been available in mangrove research, prob-
ably almost a hundred, as revealed by Xue and Su [43] and
Kobayashi et al. [44]. Even though the revealed formulas
cannot automatically delineate mangroves, manual digiti-
zation is still used in mangrove research to separate man-
groves and other features. As is known, the work is very
tedious, tiring, and time-consuming.

Te existing vegetation indices (VIs) can be broadly
grouped into two main streams: (1) the chlorophyll-based
content of the vegetation with all its variants, and (2) the
water/moisture-based content with all its variants.

2.2.3. Te Existing Vegetation Indices as References
(1) Formula Based on Chlorophyll Content. Healthy vege-

tation based on chlorophyll content refects more ρNIR and
ρGreen light than other wavelengths and absorbs more red
and blue light. As an indicator of health, chlorophyll strongly

absorbs visible light, and the cell structure of leaves strongly
refects ρNIR. When the plant is dehydrated, diseased, or
afected by a disease, the sponge layer deteriorates and the
plant absorbs more near-infraRed light instead of refecting
it. Tus, observing how ρNIR changes compared to ρRed
provides an accurate indication of the presence of chloro-
phyll, which correlates with plant health. Stressed man-
groves have greater refectance in visible light, particularly in
the ρRed regions, likely due to a decrease in chlorophyll
content and an increase in carotenoids in the leaves [42].

Tere are formulas, the oldest and simplest of which, the
ratio vegetation index (RVI) using ρRed and ρNIR, was for-
mulated as (ρRed/ρNIR) proposed by Jordan [45]. Te RVI is
widely used for estimating and monitoring green biomass,
especially when there is a dense vegetation cover. Tis index
is sensitive to vegetation and correlates with plant biomass.
However, when vegetation cover is sparse (less than 50%),
the RVI is more sensitive to atmospheric efects, and its
representation of biomass is weak [44].

Temost popular is the normalized diference vegetation
index (NDVI) proposed by Rouse et al. [46], which has been
the most common and widely used in mangrove remote
sensing for more than two decades [41, 47]. NDVI quantifes
vegetation by measuring the diference between ρNIR (which
is strongly refected by vegetation) and ρRed (which is
absorbed by vegetation), formulated as (ρNIR − ρRed)/
(ρNIR+ ρRed). NDVI was initially developed to monitor plant
growth in plantation environments. However, this formula
is adopted and applied in mangrove research. It is estimated
that this formula has been used and applied in hundreds of
mangrove research papers.

Several derivatives of NDVI have also been proposed to
address the limitations, including the perpendicular vege-
tation index (PVI) [48], the soil-adjusted vegetation index
(SAVI) [49], the atmospherically resistant vegetation index
(ARVI) [50], and the global environment monitoring index
(GEMI) [51]. Tese attempted to incorporate intrinsic
corrections for one or more confounding factors. Several
new generation algorithms are proposed for estimating
biogeophysical variables to take advantage of modern sen-
sors’ improved performance and characteristics and elimi-
nate confounding factors. Despite these factors, NDVI
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Figure 2: (a) Spectral characteristics and their infuencing parameters of the mangrove species of Avicennia marina and Rhizophora
conjugate [31]. (b) Te refectances (ρRed, ρNIR, and ρSWIR1) representatives were collected from various land covers in Segara Anakan
mangrove forests in Cilacap, Central Java, Indonesia. (Shrubs are Derris trifoliate and Acanthus illicifolius).
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remains a valuable tool for quantitatively monitoring veg-
etation in terms of photosynthetic capacity at a spatial scale
appropriate for various phenomena.

(2) Formula Based on Water/Moisture Content. Te Infrared
Index (II) was proposed by Hardisky et al. [52] and was
perhaps the frst to propose a moisture-based index using
ρNIR and ρSWIR1, formulated as (ρNIR − ρSWIR1)/
(ρNIR+ ρSWIR1). Te results showed that the decrease of II in
the canopy is correlated with the increasing salinity of soil in
salt forests. Tis plot of water content shows a signifcant
decrease in canopy moisture with increasing soil salinity. In
summary, a combination of NDVI and II can detect mor-
phological and physiological changes associated with
moisture stress. However, using longer wavelengths is a
more direct indicator of water content.

Te normalized diference water index (NDWI) was
proposed by Gao [47] based on research using moderate
resolution imaging spectrometer (MODIS) and airborne
visible infrared imaging spectrometer (AVIRIS) images to
monitor vegetation changing based on the liquid water
content in the canopy.Te NDWI is originally formulated as
(ρ(0.86 μm)− ρ(1.24 μm))/(ρ(0.86 μm)+ ρ(1.24 I μm)). Te
vegetation index has been widely applied to Landsat images,
especially in mangrove research, thus the index, universally,
is formulated as (ρNIR − ρSWIR1)/(ρNIR+ ρSWIR1). Te liquid
water absorption in ρNIR is negligible and presents ab-
sorption at ρSWIR. Vegetation canopy scattering enhances
water absorption. As a result, NDWI is sensitive to changes
in the liquid water content of vegetation canopies. Atmo-
spheric aerosol scattering efects from the ρNIR to ρSWIR1
wavelength region are weak, so NDWI is less sensitive to the
atmospheric efect than NDVI. However, NDWI does not
completely remove the efect of soil background, but by
increasing the vegetation fraction, the NDWI value in-
creases. Tucker [40] frst suggested that the ρSWIR1 wave-
length was the best-suited band for monitoring the water
status at the plant canopy from space.

Normalized diference moisture index (NDMI) [53] is
formulated (ρNIR − ρSWIR1)/(ρNIR+ ρSWIR1). However,
retaining the term moisture, there is no better term, but the
point is related to the wetness that includes the water content
of vegetation, water absorbance in the fresh leaf, and soil
wetness that will afect the sensitivity to soil and plant
moisture. Te diference between ρNIR and ρSWIR1 appears in
the ability of ρSWIR1 wavelengths to absorb water, so that the
index value can be used to estimate water content in the
vegetation [54]. In the green leaves, the ρNIR band has more
refectance than the other bands, and the reduction in ρSWIR1
refectance compared to ρNIR is due to water absorption.
Wetness change is a good indicator and the single most
consistent indicator of forest change, including lighter dis-
turbance/partial cuts, because it captures changes in ρSWIR1.

Mangrove discrimination indices (MDI) [34] intended
to separate mangrove and nonmangrove vegetation using
ρNIR and ρSWIR1 or ρSWIR2 and formulated as (ρNIR − ρSWIR1)/
(ρSWIR1). In his fndings, ρSWIR1 or ρSWIR2 can increase the
diference between mangrove and non-mangrove vegeta-
tion. In the application, when using MDI1 (ρNIR and ρSWIR1)

to separate between mangroves and other vegetation, it is
not yet clear whether it is best to move to MDI2 with the
replacement from ρSWIR1 to ρSWIR2.

All existing vegetation indices (VIs) and the formulas
proposed by previous researchers are presented in Table 3.

2.2.4. Spectral Response of Segara Anakan Mangrove Vege-
tations as a Reference. Something is quite interesting in the
mangrove environment of Segara Anakan, Cilacap, Central
Java, Indonesia (Figure 1), reported by Winarso and Pur-
wanto [55]. In the logged mangrove areas, shrubs such as
Derris trifoliata and Acanthus illicifolius close the felled
mangrove area so that the existing mangrove seedlings and
saplings cannot develop. It is known that these shrubs are
closely related and included in the mangrove association
[56]. Using NDVI analysis, these shrubs show a very high
index and even exceed the true mangrove due to strongly
refecting the ρNIR. Anyone who is not careful will be de-
ceived, as if it is like dense mangroves.

Te authors identifed spectral responses in seven dif-
ferent land cover types surrounding the Segara Anakan
mangroves, i.e., shrubs, Nypa, rice felds, land forest,
mangroves, settlements, and waters. Each consists of ten
plots recorded in the corrected Landsat 8 OLI image. Te
average spectral response of each land cover is shown in
Figure 2(b).

Te spectral response was collected from various features
in Segara Anakan mangrove forests in the Landsat 8 OLI
corrected images to create the automatic formula to separate
mangrove and nonmangrove vegetation and other features.

2.2.5. Index Accuracy Assessment. Te accuracy assessment
of the research results consists of 2 stages: the spatial extent
accuracy and the canopy density index assessments. Te
extent and boundary of mangroves with other vegetation
will be visually clear using the RGB composite image of
ρNIR-ρSWIR1-ρRed. Te problem is how to automatically trace
and capture what visually looks like a mangrove through an
algorithm. In this research, the mangrove map is a map of
mangroves as a mangrove community in the form of a tree
community, from very sparse, which can be recorded in the
image, to dense canopies. It cannot capture shrubs that are
usually a part of the mangrove associated with the ecosystem.
Similarly, the canopy index is a relative index that does not use
the number of trees within a certain area. Classifed as a dense
index/the high index is the high value captured in the pixels as
a spectral response from the execution of an algorithm.

Te accurate assessment of the canopy density index in
the study uses 200 randomly distributed points. It uses
simple statistical methods to determine the linear rela-
tionship between the index created by this algorithm versus
the indexes created by several previous vegetation indices.

3. Results and Discussion

3.1.Developing Formula forMangrove. Based on the features
characteristic of the spectral response as illustrated in Fig-
ure 2, extracted mangrove information can be designed and
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calculated from other green vegetation using all the infor-
mation attached to the satellite images. In the paper, the
boundary of the mangrove vegetation index is examined
using the canopy closure approach. Vegetation, soil, water,
and seasonal and diurnal intertidal interactions are essential
features that contribute to the pixel composition of man-
groves in satellite remotely sensed images [31]. Mangrove
presence becomes sharper in the Landsat image when dis-
played through an RGB (Red-Green-Blue) composite of
ρNIR − ρSWR1 − ρRed, as shown in Figure 3(a). However, the
problem is how to automatically capture spatial extent as

shown in the visual appearance. Te properties of the
vegetation will refect ρNIR strongly, while ρRed plays an
essential role in determining vegetation due to photosyn-
thetic activities and ρSWIR1 sensitivity to evaporation, the
liquid water content in the leaf, and tidal inundation
[31, 47, 55, 57–59]. In dense mangroves, ρSWIR1 will be
slightly higher than ρRed but will change twice as high in in
nonmangroves (Figure 2(b)).

Similarly, in the nonmangrove, ρNIR is high but gradually
decreases in mangroves and is absorbed in the water. Based
on these spectral characteristics, it is possible to separate

Table 3: Summaries of the existing vegetation indices (Vis) and the formulas.

VI’s Formula based on chlorophyll content Reference
RVI (ρRed/ρNIR) [45]
NDVI (ρN–R − ρRed)/(ρNIR+ ρRed) [46]
PVI 2.5∗ (ρN–R − ρRed) [48]
SAVI 1.5∗ (ρN–R − ρRed)/(ρNIR+ ρRed+ 0.5) [49]
ARVI (ρN–R − (2∗ ρRed) + ρBlue)/(ρNIR+ (2∗ ρRed) + ρBlue) [50]
VI’s Formula based on water content Reference
II (ρN–R − ρSWIR1)/(ρNIR+ ρSWIR1) [52]
NDWI (ρN–R − ρSWIR1)/(ρNIR+ ρSWIR1) [47]
NDMI (ρN–R − ρSWIR1)/(ρNIR+ ρSWIR1) [53]
MDI1/MDI2 (ρN–R − ρSWIR1)/(ρSWIR1) and (ρN–R − ρSWIR2)/(ρSWIR2) [34]
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mangroves from other nonmangroves using a combination
of ρNIR, ρSWIR1, and ρRed refectances. Te normalized dif-
ference water index (NDWI) [60] is used to delineate and
sharpen the water features (inland and open waters) and
reduce the spectral refectances of feature elements in the
land. Tis index is applicable in identifying mangroves
because of the liquid water component in the leaf canopy.
Likewise, NDVI [46] can also be used as a basis for

delineating land and eliminating/weakening the spectral of
marine features.

Based on Figure 2, therefore, to create the mangrove
maps, there are two steps. Te frst is delineating the land
boundary by increasing the spectral forest vegetation and
weakening/eliminating the spectral response of other non-
forest areas. Te second is tracing and capturing the
mangroves on the land.
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mangrove; A–B is an intersected line showing the spectral response betweenmangrove and nonmangrove. (b)Temagnitude of the spectral
response in the spectral color.
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3.1.1. Improve the Spectral Response of Vegetation. Te frst
step aims to improve the spectral response of vegetation
(land forests and mangroves) while reducing/weakening the
spectral response of marine objects (water, coral, and mud),
shrubs, settlements, and open land. Although the NDVI
formula can capture land and eliminate water features, it is
less accurate in distinguishing land vegetation. At this step, it
is necessary to preserve vegetation features while ignoring
other features, hence the slight modifcation of the NDVI
formula by replacing the ρNIR in the denominator with
ρSWIR1. Tis will efectively improve the spectral response for
both land and mangrove forests. To trace the land vegetation
using ρRed, ρNIR, and ρSWIR1 in the following equation:

ρNIR − ρRed( 

ρRed + ρSWIR1( 
. (2)

As known, ρNIR is sensitive to all vegetation types, but the
greater part will be absorbed in the water environment.
Likewise, ρRed will show lower refectance in the vegetation
environment due to chlorophyll absorption and higher re-
fectance in the water environment.

Te combination of ρRed and ρNIR, referring to the
spectral response in Figure 3(b), cannot separate mangrove
forests from terrestrial forests because they have the same
spectral value. It would be more efective to use ρSWIR1which
has diferent index ranges and is longer. Figure 3(c) com-
pares the sharpness of separating the forest canopy from
other vegetation, including shrubs, by replacing ρSWIR1 in the
denominator with ρRed in the NDVI formula.

3.1.2. Identifcation and Tracing of Mangroves. Te difer-
ence in ρSWIR1 index between the mangrove and non-
mangrove forest is thought to be a diference in water
content or moisture in the forest canopy. To trace the
mangrove extent is by using ρNIR, ρSWIR1, and ρRed in the
following equation:

ρNIR − ρSWIR1( 

ρSWIR1 − 0.65∗ ρRed( 
. (3)

Te constant of 0.65 in equation (3) reduces the ρRed
refectance to avoid the infnite value in the mangrove edge
bordering the sea. In the outer mangrove, when mangroves

High density

Low density
0 5 10 15 Km

Coastline

Tidal creek

Ponds

Mangrove changes

Mangrove canopy density

SNP : Sembilang National Park
ATPF: Air Telang Protected Forest

Figure 6: Maps of mangrove changes in the research area, 1989–2021. (a) Mangrove map in 1989 using Landsat 5 TM, (b) and (c) mangrove
map in 2002 and 2012 using Landsat 7 ETM, (d) mangrovemap in 2019 using Landsat 8 OLI, and (e) mangrovemap in 2021 using Sentinel 2.

8 International Journal of Forestry Research



border the sea, the index of 1 pixel will be overestimated
because ρSWIR1 is lower than ρRed (Figure 3(d) and zoomed in
Figure 3(e)). the intensity of the ρRed to obtain a more precise
boundary is reduced and an index that is appropriate for the
actual conditions.

Based on the two equations, the automatic mangrove
map and index (AMMI) in this study can be written as
follows:

ρNIR − ρRed( 

ρRed + ρSWIR1( 
∗

ρNIR − ρSWIR1( 

ρSWIR1 − 0.65∗ ρRed( 
. (4)

Te results of AMMI execution using the combination of
ρRed,ρNIR, and ρSWIR1 in radiometrically corrected Landsat 8
OLI, September 9, 2019, trace and capture the spatial extent
and present the relative canopy density of the mangrove in
one band of the grayscale image is shown in Figure 4(a). Te
magnitude of the spectral response in the spectral color is
shown in Figure 4(b). Te fgures show that mangroves will
refect a stronger spectral response, while nonmangrove
features will be weaker.

3.2. Accuracy Assessment. Spatially, the AMMI captures the
mangroves from sparse mangroves, indicated by the low
spectral sensitivity with an index of about 5, to dense
mangroves (>20), as shown in Figure 5(a), and the index
below 5 is classifed as nonmangrove. Te relationship of the
index to the NDVI, using 200 randomly distributed points
(Figure 3(a)), has a correlation value (R2) of 0.62
(Figure 5(b)), and the relationship to NDWI/NDMI shows a
very high correlation value, even reaching 0.99 (Figure 5(c)).

As is well known, NDWI/NDMI were initially created and
applied for the terrestrial forest, but it was also explained that
forest canopy density from satellite imagery is closely related
to the water content in the canopy.

3.3. Monitoring Mangrove Changes Using Multitemporal
Images. To study the evolution of mangroves chronologi-
cally and monitor their condition, the AMMI performs well
in detecting mangrove changes. Various satellite images can
be used, namely Landsat 5 TM 1989 (Figure 6(a)), Landsat 7
ETM 2002 and 2012 (Figures 6(b) and 6(c)), Landsat 8 OLI
2019 (Figure 6(d)), and even Sentinel 2 2021 (Figure 6(e)).
Figure 6(e) shows this was an inset, a small clip from a high-
spatial-resolution Google satellite to evaluate the algorithm’s
performance. Te accuracy of the mangrove extent is
comparable to the high resolution of Google’s satellite 2022
covering the research area. AMMI only showed the spectral
response of mangroves and eliminated other spectral re-
sponses such as shrubs, settlements, dry land, or forest land.

Te spatial accuracy of AMMI in capturing and trapping
the mangrove changes will be clearer, as shown in Figure 7.
Figure 7(a) depicts the initial conditions before the SNP
mangroves were damaged. Changes in mangroves in the
SNP area are generally caused by logging/felling to create
ponds/aquaculture and typically bloom between 1989 and
2002, as illustrated in Figure 7(b). A symmetrical square
felling pattern determined the conversion to ponds. How-
ever, in the following imagery (Figure 7(c)), many of these
ponds have been abandoned and converted back to man-
grove forests, and Figure 4(d) shows mangroves restored to

Landsat 5 TM 1989

(a)

Landsat 7 ETM 2002

(b)

Landsat 7 ETM 2012

(c)

Landsat 8 OLI 2019

(d)

Figure 7: Mangrove condition using the AMMI algorithm 1989–2019; and the red circle shows the dynamics of change. (a) Mangrove
condition in 1989, (b) Mangrove logging marks in 2002, (c) Abandoned logging in 2012, and (d) Mangroves have not completely closed the
former ponds recorded in the 2019 image. Active ponds are currently outside the mangrove.
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their pre-establishment condition. Some active ponds are
found outside the mangrove forest.

Te correlation value between AMMI and NDWI/
NDMI reached 0.99, indicating that the AMMI’s perfor-
mance is comparable to that of the NDWI/NDMI index.
Based on these results, AMMI is a breakthrough in NDWI/
NDMI automatic innovation that automatically traces and
captures mangroves and informs the index.

3.4. Learn about Mangrove Changes from the Mangrove
Production Forests. NDWI/NDMI vegetation indices in the
mangrove research are less commonly used than NDVI.
However, NDWI/NDMI has many advantages, including
quickly identifying minor damage and light disturbances.
According to Otero et al. [61], mangrove age from sprout to
7 years old will correlate with a sharply increasing NDWI/
NDMI index. More than seven years old are no longer
correlated and are frequently reduced. Tis fnding is
valuable because their research was in Matang Mangrove

Forest Reserve (MMFR), Malaysia, one of the mangrove
production forests rarely found in the mangrove forests in
the world. Further research revealed that reducing the
NDWI index at mature to old age in mangroves was caused
by the gaping process of the canopy. Will the index shift in
mangroves from maturity to old age occur when using
another index, such as NDVI. Goessens et al. [62] reported
the status of mangrove forest production in Matang,
Malaysia, located at 4.82N and 100.59 E, providing an ex-
citing research location for studying the evolution of
mangroves.

To avoid breaking the code of ethics and infringing on the
rights of neighboring countries, the authors describe at a
glance a small part of Malaysia’s Matang mangrove forest
using multi-temporal Landsat images, as shown in Figure 8.
Te images show how newmangroves grow and develop after
harvesting. When these young mangroves are 7–10 years old,
they have the highest NDVI values; however, as mangroves
age, their NDVI values decrease, and the highest values shift
to other younger mangroves, and so on. Noda et al. [63]

Landsat 7 ETM 1999 Landsat 7 ETM 2008 Landsat 8 OLI 2014 Landsat 8 OLI 2020

Clear felling
Mature mangrove (<10 years)
Old mangrove (>10 years)

Landsat 5 TM 1989

0 1.5 3 4.5 6 Km

(a)

Moderately high
High

NDVI Indices:
Moderately low
Low

NDVI 1989 NDVI 1999 NDVI 2008 NDVI 2014 NDVI 2020

(b)

Figure 8: (a) It shows the chronology of the harvesting process, replanting, and growth in a production mangrove forest in Matang,
Malaysia, using Landsat 5TM, Landsat 7 ETM, and Landsat 8 OLI time series through ρNIR − ρSWIR1 − ρRed of RGB composite image. (b)
Changes and shifts in NDVI according to the age of mangroves are shown.
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investigated the high NDVI in young vegetation, which has a
bright green color, ρGreen increased after leaf emergence and
decreased after canopy closure during early growth, while ρRed
continued to decline. According to these fndings, the highest
NDVI is not always found in the most densely forested
mangroves, nor is it always found in the oldest and healthiest
mangroves. NDVI levels are typically highest in mature
mangroves aged 7 to 10 years. Furthermore, as seen inNDWI/
NDMI, the NDVI decreases slightly with increasing man-
grove age while remaining in the moderately high range.

Besides detecting damage due to logging, NDMI is also
sensitive to forest disturbances caused by diseases related to
forest health. Reference [64] and vegetation damage due to
drought efects [65]; it is also benefcial to monitor water
status as an early warning against drought [66].

3.5. Application of AMMI in a Broader Area Using the GEE
Facilities. In applying automatic mangrove mapping to a
larger area, the GEE facility was used to reveal the Sundarban
mangrove forest, stretching from eastern India to Bangla-
desh, using surface refectance of Landsat 8, 2021 imagery.
Based on visual interpretation informs, the Sundarbans
mangrove habitat area of 621925 ha is divided into India
(214769 ha) and Bangladesh (407156 ha) (Figure 9(a)).

Analysis using the AMMI algorithm shows that the true
mangrove in Sundarban India is 183296 ha (85% of habitat),
while that in Sundarban Bangladesh is only 189733 ha (47%).
Sundarban Bangladesh mangroves are sparsely distributed
and concentrated only around rivers, with a very low canopy
density and are inhabited mainly by shrubs and open land
(Figure 9(b)).

Te Sundarban mangrove has become an icon of the
world’s largest mangroves. Is there any donor agency that
intends to replant and reforest Sundarban mangroves in
Bangladesh?

4. Conclusion

TeAMMI application in mangrove mapping inMusi Delta,
South Sumatra, Indonesia, based on the spatial distribution
and the index of canopy density using Landsat 5 TM,
Landsat 7 ETM, Landsat 8 OLI, and Sentinel 2 performs well.
Te mangrove extent has been spatially traced and captured,
corresponding to and matching the visual satellite images.
Te canopy density index of AMMI versus NDVI has a
correlation value (R2) of 0.62 in correlation diagrams, and
AMMI versus NDWI/NDMI has a signifcant value with an
R2 of 0.99.

Te paper revealed how to automatically trace and
capture mangroves for future research and eliminate manual
digitizing, which is exhausting and time-consuming and
frequently results in inaccuracy due to misinterpretation.
Operationally, it is simple to use, produces mangrove maps
quickly, and efciently monitors the mangrove condition
from time to time. Te instantaneous application may be
sufcient for monitoring mangrove conditions in protected
mangrove forests by local communities, practitioners, and
conservationists.

Scientifcally, for future research, mapping of mangroves
over a larger area and describing the surrounding physical
environment is the baseline data for the mangrove condi-
tion. Other supporting data, such as tree density and their
age per unit area, biota content statistics, and geo-bio-
chemical data, will determine the mangrove health index.
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