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Precision mapping towards tropical forest cover data is critical to address the global climate crisis, such as land-based carbon
measurement and potential conservation areas identifcation. In the recent decade, accessibility to open public datasets on forestry
is rapidly increased. However, the availability of fner-resolution of forest cover data is still very limited. As a developing country
with numerous rainforests, Indonesia sufered multifaceted threats, particularly deforestation. Tus, precise forest cover data can
be useful to fulfll Indonesia’s nationally determined contribution to climate change. In this study, we mapped the national forest
cover data for Indonesia using a new object-based image classifcation approach based on combined Planet-NICFI and Sentinel-2
optical imageries. Our fndings had relatively high accuracy compared with the other studies, with the F score ranging from 0.67 to
0.99 and can capture the fragmented forest in fne resolution (i.e., ∼5 m). In addition, we found that Planet-NICFI bands had
a higher contribution in predicting forest cover than Sentinel-2 imageries. Utilizing forest cover data for further analyses should be
performed to help the achievement of national and global agenda, e.g., related to the FOLU net sink in 2030 and the Global
Biodiversity Framework.

1. Introduction

For the last few decades, ecosystem service has been the main
issue in international nature conservation and rural develop-
ment [1], and it is still a concern as the exploitation of natural
resources, human-induced land use change, and global
greenhouse gasses continue at a high rate [2]. Forests are not
only afected by human activity but also serve an important role
in mitigating upcoming threats such as landslides, foods, and
loss of biodiversity [3]. Tropical rainforests, in particular, are
known for their richness and contribution to the earth’s land-
based ecosystem. Indonesia is one of the countries that have

relatively massive forests, accounting for 39% of Southeast
Asia’s forest extent [4]. Depending on the altitude and regional
climate, it can range from lowland to mountainous forests.
Each of these forest types contributes signifcantly to the
ecosystem services that humans rely on, such as raw materials,
reservoirs of biodiversity, soil protection, sources of timber,
biomedicines, carbon sequestration, climate, and water regu-
lations [5–7]. Indonesian tropical forests also play a critical role
in the livelihood of local communities and the national
economy [8].

However, deforestation has been one of the main issues of
climate and biodiversity crises. Te negative environmental

Hindawi
International Journal of Forestry Research
Volume 2023, Article ID 7970664, 11 pages
https://doi.org/10.1155/2023/7970664

https://orcid.org/0009-0006-0056-2005
https://orcid.org/0000-0002-2069-6223
mailto:ogy@fwi.or.id
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7970664


consequences of tropical deforestation were far-reaching and
long-lasting [9].Tis rapid deforestation rate has contributed to
biodiversity losses due to habitat degradation and fragmen-
tation, particularly in Indonesia [10]. Te latest studies from
Margono et al. [11] suggest that forest loss in Indonesia has
been recorded as one of the highest rates of primary losses in
the tropics for the period 2002–2012, with annual primary
forest cover loss in 2012 being the highest, totaling 0.84Mha,
more than the ofcial forest loss report of Brazil (0.46Mha).
During the same period in other tropical rainforest countries,
Mexico lost 0.28Mha and Colombia with a primary forest
cover loss of 0.69Mha [8]. Indonesia, as a developing country,
still struggles with infrastructure development which puts the
forest with all the ecosystem services that it provides at risk [12].
Many policies drive investment in Indonesia to support eco-
nomic growth in the form of infrastructure and land-based
permits that will directly threaten forest cover. In Kalimantan
and Sumatra, the amount of foreign investment toward in-
frastructure and extractive industries is fve times greater than
international funding for forest conservation schemes [13].
Barri et al. [14] analyzed that 50% of total deforestation (5.72
million hectares) in 2013–2017 occurred in logging concession,
timber and oil palm plantations, and mining. Other numerous
research studies also reported some factors that contribute to
deforestation in Indonesia, such as road development [15],
agricultural expansion [16], wildfres [17], and illegal logging
and encroachment [18].

Halting deforestation and retaining the intactness of the
forest ecosystem is a prevalent challenge in climate change
mitigation [19], which may be assessed by the reliable as-
sessment of carbon storage based on accurate mapping of
forest types. Furthermore, the spatially explicit mapping of
forest cover is critical for carbon stock estimation [20],
wildfre behavior simulation [21], and wildlife habitat
modeling [22]. In this regard, mapping the precise and
reliable expected forest cover will support monitoring which
can also be used as input in forest management and poli-
cymaking related to sustainable forest management.

With rising satellite availability and image resolutions,
remote sensing data archives are continuously growing,
possibly enabling users to access and analyze enormous
time-series datasets. Remote sensing has become popular as
a valuable tool for monitoring land cover, and it also works
well for forest cover identifcation. Many previous research
studies have shown that remote sensing data can predict
forest and other land cover types with excellent accuracy
[23–27]. In addition, combining two or more sensors can
improve the model’s performance in depicting forest cover
data [28–30].

Te methods for identifying forest cover in Indonesia
rapidly grew from 1995 until the recent years. Regarding
[31], the map of Indonesia’s current land cover and land use
was created using visual interpretation based on medium
resolution imageries (i.e., Landsat). Te accuracy of the
forest cover classes is reported to be high (>90%), based on
feld verifcation and the operators’ local knowledge.
However, visual-interpreting methods were relatively time-
consuming, and the use of numerous interpreters over space
and time compromises the consistency of the output map

product [11]. Margono et al. [24] conducted a study about
forest cover identifcation using a pixel-based method.
Machine learning (ML) algorithms (e.g., random forest,
support vector machine, and regression trees) typically
produce better results than conventional classifers since
they do not require preconceptions regarding the distri-
bution of the input data [32]. Machine learning is a subfeld
of artifcial intelligence concerned with the development and
investigation of systems that can learn from data. In the
machine learning model, there are three approaches: su-
pervised learning, semisupervised learning, and un-
supervised learning. A machine learning system could, for
instance, be trained on images to learn to diferentiate be-
tween forest and nonforest images. After learning, it can
then be used to classify new images into forest and nonforest
object. Te fandom forest algorithm is a classifcation
method that used multiple and random subsets of data and
features to produce multiple decision trees. A random forest
classifer (RF) is a combination of tree predictors such that
each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in
the forest [32].

Currently, the need for forest cover data with very high
spatial resolution is increasing to support monitoring,
reporting, and decision-making [33]. Nevertheless, recently
available data related to the precise forest cover data is very
limited, e.g., global forest change (∼30 meters; [34]), PAL-
SAR forest (25 meters; [35]), and Indonesia’s primary forest
cover (30 meters; [24]). By mapping the presence of forests
in Indonesia, a consistent forest distribution and area can be
obtained, which can then be used as a base map and also as
a reference for management and information in Indonesia.
Tis is because the maps produced use inputs that are
specifc to conditions in Indonesia, so the maps that are the
resulting data are more specifc when compared to globally
processed forest maps. Forest mapping is essential because it
can be used to support preservation programs, such as ef-
forts to protect and preserve biodiversity. In the presence of
fragmented forests, the area and distribution of forests can
sustain biodiversity existence. Fragmented and isolated
forest sections vary greatly in ecology and composition and
may not support the same level of biodiversity or ecosystem
function as forests of the same size but within large forest
systems [36]. Mapping of the forest in Indonesia also plays
an essential role in forest management. Te spatial and
temporal variation in primary forest loss documents the
continuing appropriation of natural forests within Indo-
nesia, including the increasing loss of primary forests in
wetlands and in land uses meant to limit or prohibit clearing,
with implications for accurate greenhouse gas emissions
estimation.

In this research, a random forest classifer (RF) is used to
classify forest cover using an object-based image classif-
cation approach. Te primary objective of this study is to
demonstrate the simplicity of the random forest ensemble
method and its efcacy in image classifcation. Tis study’s
ultimate objective is to achieve the utmost classifcation
accuracy by implementing high-quality image data acquired
by a modern sensor (Sentinel-2 and Planet) and
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a mathematically robust classifer that is a random forest.
Results from this study highlight the importance of spatially
and temporally explicit data in bringing transparency to an
important land use dynamic. Here we present a refned
forest cover dataset at the national level in Indonesia with
a spatial resolution of ∼5meters based on spectral combi-
nations from Sentinel-2A and Planet-NICFI imageries using
the random forest algorithm. Moreover, we also evaluated
our data using reference points to assess model performance
and compared the forest cover data with another forest cover
dataset. In addition, we also explored current forest cover
dynamics in the 2017–2021 period to improve national forest
monitoring in Indonesia.

2. Materials and Methods

2.1. Study Area. Tis study was conducted in Indonesia
(Figure 1), a tropical country that harbors various forest
ecosystems (e.g., dryland forest, swamp forest, and man-
grove forest) with a total area of about 189.1 million ha [11].
Local communities had signifcant connectivity with the
forest ecosystems [37]; therefore, understanding more
precise forest cover data is crucial in Indonesia.

2.2. TrainingData. We used binary information related to
the forest cover (i.e., forest and nonforest) for the re-
sponse variable. We conducted a visual interpretation of
the forest cover information using very high-resolution
satellite images (e.g., Planet-NICFI and ESRI World
Basemap) in 45 selected plots (1 × 1 degree) to capture the
various forest ecosystems that occurred across Indonesia
(Figure 1). In this study, we also compiled the training
data from the feld surveys and secondary sources of the
Ministry of Environment and Forestry (MoEF) in 2017
and 2021. Afterward, we collected 45,119 and 38,886
points for forest and nonforest information, respectively,
by using homogenous purposive random sampling
in [38].

2.3. Data Preprocessing. Sentinel-2 is a high-resolution,
multispectral sensor developed by the European Space
Agency (ESA) to support Copernicus Land Monitoring
research (https://sentinels.copernicus.eu/web/sentinel/
home). In collaboration with Planet, Norway’s In-
ternational Climate and Forests Initiative (NICFI) provides
very high-resolution imagery to support tropical forest
monitoring, cope with global climate change, retain bio-
diversity, and facilitate sustainable development (https://
www.planet.com/nicf/). Tis study used combined optical
sensors of the harmonized Sentinel-2 multispectral in-
strument (MSI) Level-2A (spatial resolution: ∼10 to
20meters, except B1 with 60 meters resolution) and Planet-
NICFI (spatial resolution: 4.77meters) based on surface
refectance data to identify forest cover data in the
study area.

Cloud cover was the most common obstacle in using
optical remotely sensed data to retrieve land cover in-
formation, particularly in the tropical region [39]. We used

the Sentinel-2 quality assurance data of the cloud mask to
eliminate the cloud pixels of the spectral refectance data.We
performed flter median over a yearly time window during
each time frame of analysis (i.e., 2017 and 2021) to obtain the
nearly free cloud images [40].

2.4. Data Covariates. To predict forest cover data, we
used 20 variables retrieved from Sentinel-2 Level A and
Planet-NICFI imageries as the model predictors. Te
covariates consist of refectance and spectral indices from
both sensors. Table 1 shows the details of the predictors used
in this study.

2.5. Forest Cover Prediction. In this study, we performed
a random forest algorithm with the diferent parameteri-
zation of the number of trees (N): N� 50, N� 100, N� 500,
and N� 1000 to produce forest and nonforest categories,
following Condro et al. [40]. All preprocessing and forest
classifcation were performed using the Google Earth En-
gine. Google Earth Engine is a cloud-based geospatial
analysis platform that delivers massive computing capabil-
ities to address a variety of high-impact societal issues in-
cluding deforestation, drought, disaster, disease, food
security, water management, climate monitoring, and en-
vironmental protection [45]. In this study, we used the
Google Earth Engine Platform to generate a good quality of
satellite imageries and perform the machine learning clas-
sifcation to predict the forest cover maps across Indonesia.
Te preprocessing consists of geometric, radiometric, and
spectral corrections. We used refectance of Sentinel top of
atmosphere (TOA) with 2-level data where the data were
already georegistered with a root mean square error (RMSE)
less than 10m resolution which represented the best quality
imagery available for the collected data. Cloud-masking
using Quality Assessment band (BQA) and flter statistics
by pixels (i.e., median) over the period of Sentinel-2 TOA
refectance imageries were performed before further analysis
within Te Google Earth Engine. To identify the national
commodity cover in Indonesia, i.e., oil palm, rubber, cofee,
cacao, and rice paddies, we used machine learning classi-
fcation through the random forest (RF) algorithm. A
random forest classifer provides an ensemble model that
efectively distinguishes spectrally similar agricultural land
and forest cover by generating multiple trees from training
data and its predictors [45–47]. Many studies have in-
vestigated the performance of the RF algorithm to identi-
fying land cover from hyperspectral, multispectral
imageries, and digital elevation model data as well [48–50].
Te number of variables per split has been defned as the root
square of the number of features. Tis cloud computing
platform is very useful for big-data analysis, particularly for
the planetary scale of remotely sensed data [45].

2.6. Model Evaluation. We used the confusion matrix ap-
proach to assess the model performance by comparing the
forest cover model with the testing reference data [51]. Tis
matrix was applied to calculate discrimination metrics, i.e.,
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overall accuracy (OA) and F score [52]. In this study, the
Kappa coefcient was not considered as a reliable metric due
to the fndings from previous studies that showed the faws
of using this metric [53]. We performed k-fold cross-
validation (k� 5) to create data partitioning (i.e., training
and testing) for model evaluation [54]. Finally, we per-
formed the model evaluation within diferent regions (i.e.,
Sumatra, Kalimantan, the Lesser Sunda, Sulawesi, Maluku,
and Papua) to capture the variance of the accuracy.

In addition, we explored the variable importance of
forest cover data based on the fusion spectral features using
a mean decrease in Gini (MDG). Te MDG predicts each
variable contribution to the nodes’ homogeneity [55, 56].
We also evaluated the spectral characteristics of forest cover
areas through two diferent sensors (i.e., Sentinel-2 and
Planet-NICFI).

3. Results

3.1. Model Evaluation. Tis study found that random forest
performs relatively well in estimating forest cover across
Indonesia, with the OA and F score ranging from 0.69 to
0.99 and 0.67 to 0.99, respectively. Te random forest al-
gorithm (N� 1000) outperformed the other parameteriza-
tion, with the F score ranging from 0.89 to 0.99 and OA
ranging from 0.92 to 0.99. Te discrimination metrics ob-
tained from the various parameterizations of the random
forest algorithm are compared in Figure 2.

Our result showed that Planet-NICFI images had higher
contributions (79.7%) to forest cover identifcation than
Sentinel-2 (20.3%). Te highest relative contribution of the
predictors to the model was the red band of Planet-NICFI
(53.8%). Te green band of Planet-NICFI imageries had the

Coastal
Other Countries

Sampling Grid
Land

N

0 315 630 1,260 Kilometers

Figure 1: Map of the study area. Te yellow grids show the sampling plot for forest cover identifcation (1× 1 degree for each rectangle).

Table 1: Predictors used in forest cover identifcation.

Sensor Dataset Number of
bands Source Resolution

Planet-NICFI Spectral refectance of red, green, blue, and near infra-red (RGB-NIR) 4 NICFI ∼5 meters
Planet-NICFI Normalized diference vegetation index (NDVI) 1 Rouse et al. (1960) ∼5 meters
Sentinel-2 Spectral refectance of B1–B9 and B11–B12 11 ESA (10 to 20) meters
Sentinel-2 Enhanced vegetation index (EVI) 1 Huete et al. [42] (10 to 20) meters
Sentinel-2 Soil-adjusted vegetation index (SAVI) 1 Huete [43] (10 to 20) meters
Sentinel-2 Index-based built-up area index (IBI) 1 Xu [44] (10 to 20) meters
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second highest relative contribution of the predictors
(19.2%). Besides, the three fewer contribution variables to
the model were B5, B4, and B3 (i.e., red edge, red, and green)
of Sentinel-2 imageries (<0.002%) (Figure 3).

Our study provided exploratory analysis towards spec-
tral imageries to diferentiate forest and nonforest classif-
cation. Sentinel-2 had a wider range of wavelength in
capturing object refectance (ranging from ∼450 nm to
2200 nm) rather than the Planet-NICFI dataset (ranging
from ∼450 nm to 900 nm). Tis study found lower forest
refectance than nonforest in blue to red channels for both
sensors. On the other hand, we found higher refectance of
forest cover than nonforest in the near infrared to shortwave
infrared bands (Figure 4).

Our study indicated that the forest cover had a rela-
tively high similarity in the spectral distribution with the
nonforest category due to the remaining other vegetation
areas that were classifed as nonforest. Hence, we also
tested some spectral indices from both sensors to char-
acterize the forest cover within the study area. Te results
showed that Planet-NICFI NDVI (df � 2232; tstat � 29.46;
p value <0.05), Sentinel-2 EVI (df � 2278; tstat � 27.22; p

value <0.05), Sentinel-2 IBI (df � 2278; tstat � −58.56; p

value <0.05), and Sentinel-2 SAVI (df � 2278; tstat � 28.70;
p value <0.05) can signifcantly separate forest cover with
nonforest cover.

3.2. Forest Extent and Change over Time. Tis study showed
that Indonesian forests covered 96,419,384.40 ha (∼51% of
the total land area) and 86,773,348.49 ha (∼46% of the total
land area) in 2017 and 2021, respectively (Figure 5). We
found that Papua Province had the highest forest cover areas

in 2017 (∼22.9 ha) and 2021 (∼20.7million ha) compared
with the other provinces. In recent years, most of the eastern
Indonesia provinces still have a relatively high forest cover.
On the other hand, DKI Jakarta was the province with the
least forest, covering only 0.4% of the total area. Te Java
region had the lowest forest cover areas, with a total per-
centage of about 20% of the total area. Te national forest
extents for each province in 2017 and 2021 are shown in
Table 2.

4. Discussion

Te pixel quality of satellite imagery is crucial for land re-
source identifcation, particularly for forest cover prediction
[57]. Cloud coverage is one of the obstacles that are mostly
found in optical satellite imageries, such as Sentinel-2 and
Planet-NICFI [58]. Although Sentinel-2 had a higher
spectral resolution than Planet-NICFI, we found more noise
efects due to cloud cover in it. Te cloud can obscure
important information about the object behind the closed
area [59]. Terefore, our fndings indicate that the model
covariates used to identify forest cover data had a relatively
good quality of pixels.

Tis study found that the OA for our data ranged from
0.69 to 0.99. On the other hand, Margono et al. [24] con-
ducted primary forest cover identifcation in Indonesia from
2000 to 2012, with OA ranging from 0.7 to 0.91. In addition,
[29] integrated three diferent satellite sensors to produce
a land cover dataset using Google Earth Engine with OA
ranging from 0.67 to 0.82. Moreover, [60] identifed forest
cover and produced OA ranging from 0.73 to 0.77 for the
pixel-based method and 0.8 to 0.84 for visual interpretation
method.
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Figure 2: Overall accuracy (OA) and F score for forest cover maps produced using a random forest classifer by the diferent number of trees
(N).
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Te diference in spatial resolution in satellite imagery
also makes the forest cover captured vary. By using
images with very high spatial resolution (≤5 m) the
captured forest cover data becomes more precise as well
as fragmentation information. On the other hand, missed
detection can lead to the false conclusion that a natural
ecosystem is an intake where in fact they have gone with
high level of disturbance, e.g., fragmentation [61]. Forest
degradation and fragmentation can lead to loss of

biodiversity due to the missing connectivity and a re-
duction of water quality [62].

In Figure 6, we choose a case study in Bogor botanical
garden, one of the ex-situ conservation locations in Bogor
city, to compare the analysis that we have done with some
other data that has a lower spatial resolution. Figure 6
depicted that CCI (Figure 6 (B), 300 m spatial resolution)
and PALSAR (Figure 6 (D), 25 m spatial resolution) data
could not capture the fragmented forest areas in the area.
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NICFI and Sentinel-2, respectively.
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Figure 5: Forest cover conditions in Indonesia during the 2017–2021 period.

Table 2: Forest cover and its change in each province of Indonesia for 2017 and 2021.

Province
Area (in thousand hectares)

Forest change 2017–2021 Forest extent (2021) Forest extent (2017)
Aceh 132.93 2,910.63 3,043.55
Bali 12.28 270.75 283.03
Banten 16.34 305.31 321.65
Bengkulu 53.74 774.39 828.13
DI Yogyakarta 1.88 25.16 27.03
DKI Jakarta 0.00 0.29 0.29
Gorontalo 33.49 696.64 730.14
Jambi 213.58 946.97 1,160.55
West Java 56.67 879.81 936.48
Central Java 44.46 602.21 646.67
East Java 33.96 864.74 898.71
West Kalimantan 1,078.09 3,878.73 4,956.82
South Kalimantan 346.33 1,073.98 1,420.32
Central Kalimantan 984.53 7,246.75 8,231.28
East Kalimantan 1,106.35 6,692.91 7,799.26
North Kalimantan 246.18 5,803.00 6,049.19
Bangka Belitung Islands 71.10 224.29 295.39
Riau Islands 0.11 308.22 308.33
Lampung 89.14 330.43 419.56
Maluku 121.34 3,540.94 3,662.27
North Maluku 237.23 2,355.92 2,593.15
West Nusa Tenggara 35.40 837.13 872.52
East Nusa Tenggara 41.06 1,276.83 1,317.90
Papua 2,181.22 20,739.35 22,920.57
West Papua 383.78 8,702.95 9,086.74
Riau 207.35 1,614.62 1,821.97
West Sulawesi 119.75 932.95 1,052.69
South Sulawesi 241.84 1,639.88 1,881.72
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Meanwhile, the global forest change (Figure 6 (C), 30 m
spatial resolution) and the dynamic world (Figure 6 (E), 10 m
spatial resolution) can capture the fragmented forest but not
completely. Te comparison conducted by Boyle et al. [63]
also showed that the Global Forest Change data only correctly
detect 70.8% of forest fragments with an area >30 m while
very high-resolution images (IKONOS, with a spatial reso-
lution of 6 m) can precisely detect 100% forest fragments with
an area of >6 m. In this study, we also found that Planet-
NICFI had more signifcant contribution than Sentinel-2
imageries based on its variable importance in depicting
forest cover in the tropical region. Previous studies also found

that Planet-NICFI data provided better outputs than the other
optical imageries in predicting forest cover [29, 64].

Variable selection is one of the methods for solving
multicollinearity, and it also has the beneft of being simple
to perform and resulting in a sparse model [65]. However,
fndings from Chan [65] show that variable selection drops
variables and reduces information gain, while the multi-
collinearity measures to optimize are subjective. Tis study
conducted machine learning approaches in predicting forest
cover data based on combined optical satellites to improve
model performance. Feng et al. [66] found that deleting
highly correlated variables had no efect on model

Table 2: Continued.

Province
Area (in thousand hectares)

Forest change 2017–2021 Forest extent (2021) Forest extent (2017)
Central Sulawesi 460.88 3,803.48 4,264.36
Southeast Sulawesi 213.35 1,949.57 2,162.92
North Sulawesi 92.35 850.26 942.61
West Sumatra 227.44 1,890.63 2,118.07
South Sumatra 362.89 1,035.81 1,398.69
North Sumatra 199.02 1,767.82 1,966.84
Total 9,646. 4 86,773.35 96,419.38
Te bold values depict the grand totals of forest cover at the national level.
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Figure 6: Comparison between our forest cover data with the other studies (case study: Bogor Botanical Garden, Bogor, West Java,
Indonesia). (A) ESRI Basemap-MaxarWorld imagery; (B) CCI-ESA land cover (300 m); (C) global forest change (30 m); (D) PALSAR forest
(25 m); (E) dynamic world (10 m); and (F) our study (5 m).
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performance due to machine learning’s capacity to control
model complexity by downplaying the signifcance of re-
dundant variables. On the other hand, it has no efect on the
accuracy of predictions.

Apart from the advantages of the data (e.g., precise
spatial resolution), we also found some caveats within our
dataset. Te use of our data is limited in some instances for
several reasons. Due to a large amount of input data, we
aggregated various forest types in the tropical region of
Indonesia, which could not capture forest diversity. Te
dynamics of forest cover changes can be seen more clearly
with a higher temporal resolution. Forest cover data with
a higher temporal resolution is much better for systematic
forest cover change analysis [67]. Unfortunately, the data we
present also has relatively low temporal resolution, i.e.,
annually, which makes the seasonal dynamics of forest cover
impossible to capture. Our data also only captured general
forest cover.

5. Conclusions

Our fndings provide useful information regarding the de-
tailed spatial resolution of the forest cover dataset at the
national level of Indonesia. Random forest algorithm had an
excellent performance in capturing tropical forest cover
based on optical satellite imageries, with an overall agree-
ment between 92% and 99%. Our data can deliver better
precision and detail in depicting forest patches within small-
scale areas than other data. To achieve a better sustainable
forest management, stakeholders need to have a precise
dataset regarding forest resources. Tis information can be
useful for forest monitoring and planning, particularly for
the national agenda related to the forest and other land uses
as net carbon sinks in Indonesia. Further work on precision
forest cover data utilization should be incorporated into
carbon dynamics, conservation management, and spatial
planning. Exploration regarding prediction techniques
should be addressed for future studies (i.e., deep learning
and neuromorphic computing).
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