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Te availability of high-resolution satellite imagery has boosted the modelling of tropical forest attributes based on texture metrics
derived from grey-level co-occurrence matrices (GLCMs). Tis procedure has shown that GLCM metrics are good predictors of
vegetation attributes. Nonetheless, the procedure is also sensitive to the scale of analysis (image resolution and plot size). Tis
study aimed to analyse the efect of spatial scale on the modelling of forest attributes, and to provide some ecological insight into
such efect. Nineteen 32× 32m sampling plots were used to quantify forest structure (basal area: BA; mean height: H; standard
deviation of height, HSD; density, D; and aboveground biomass, AGB). Te 19 plots were subdivided into four 16×16m, one of
which was subdivided into four 8× 8m plots. To match this design, 12 GLCM metrics were calculated from a GeoEye-1 image
(pixel size ≤ 2m) using a 5-, 9-, and 21-pixel window from the R, NIR, NDVI, and EVI bands. For each of the windows, we
modelled the fve structural variables as linear combinations of the 12 metrics through linear models. Te modelling potential
ranged from high (R2 = 0.70) to low (0.11). H was the best-predicted attribute; this occurred at the smallest scale, with increasing
scales producing lower R2 values. Te second best-predicted attribute was HSD, which peaked at the intermediate scale. D and
AGB displayed a similar pattern. BA was the only attribute best predicted at the largest scale. Tus, in predicting tropical forest
attributes from GLCM-derived texture metrics, the spatial scale to be used should refect the spatial scale at which ecological
processes occur. Terefore, understanding how ecological processes express themselves in a remotely sensed image becomes
a critical task.

1. Introduction

Tropical forests are among the world’s most important
ecosystems [1]; they house over half of Earth’s biota [2] and
supply large fows of ecosystem services on which billions of
people rely [3–6]. Accurate estimates of tropical forest at-
tributes at broad geographic scales are crucial to support
conservation strategies, evaluate deforestation and degra-
dation, and particularly, monitor the loss and gain of forest
biomass [4, 5, 7, 8]. Achieving such monitoring capacity in

an economically viable manner requires integrating remote
sensing technologies with feld data into robust and accurate
modelling procedures [9–11].

Over the last two decades, the availability of high- and
very high-resolution satellite imagery, along with the
growing capacity to process and analyse large volumes of
data, has boosted the modelling of forest attributes based on
texture metrics [12, 13], in particular, those derived from
grey-level co-occurrence matrices [14]. GLCMs contain the
probabilities of the co-occurrence of pixel values for pairs of
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pixels in a given direction and distance. Tus, GLCM-
derived metrics provide textural information about the
spatial variation and arrangement of the pixels in an image.

To date, many studies from diferent regions around the
world have shown that such spatial variability is directly
related to the heterogeneity of ecosystems, indicating that
GLCM-derived metrics are promising predictors of diferent
vegetation attributes [15–26].

Also, these studies have led to several important con-
clusions. For one, the relationship between image texture
and forest attributes varies depending on the measured
variable. For example, the best-predicted forest attributes
using image texture include tree density [15, 19, 24],
biomass-related measures (bole volume; [18]), basal area
[21], DBH variation [27], and even diversity measures [25].
In addition, these results vary signifcantly in the goodness-
of-ft obtained by the predictive models (0.2<R2 < 0.98).
Some studies suggest that the variation present in a partic-
ular attribute can help explain the modelling potential using
texture metrics [24, 28], while others suggest that these
variations respond to the type of vegetation and attributes
being studied [29, 30].

In spite of these promising results, there is still a third
major conclusion derived from these studies that calls for
a refection: this procedure appears to be highly sensitive to
the scale of analysis, both in image resolution and feld-plot
size [21, 24, 30–32]. Tis situation hinders the possibility of
building general models based solely on single-scale studies.

From an ecological perspective, although the in-
corporation of scale in the understanding of biological
processes has been recognized as a critical element of
ecology’s conceptual framework [33, 34], it is not until
recently that its efects have been analysed [35]. Scale is likely
to have a signifcant impact because no single process occurs
at all scales; hence, the forest attributes derived from such
processes may be expected to be best described/predicted at
particular scales [36, 37]. Identifying the proper scale of
analysis should be one of the major goals for spatial ecology.

Comprehending scale properly has also been acknowl-
edged as a major challenge since the early years of remote
sensing [38]. For this discipline, the scale represents the
window of perception and establishes the limits within
which a phenomenon must be perceived and quantifed to
understand it [39]. A major goal for any remote sensing
scientist would be to develop and validate models that
identify the scale at which a phenomenon occurs [40].

Attempts to develop such models for GLCM metrics
based on a random sampling procedure have yielded sat-
isfactory results [29, 30, 41]. Other approaches have used
multiscale GLCM metrics to increase the performance of
these textures for particular classifcation tasks [42, 43]. Yet,
how scale afects the relationship between texture and dif-
ferent forest attributes remains an open question for tropical
ecosystems.

In this context, our main objective was to analyse the
efect of using three diferent spatial scales on the modelling
of forest attributes. We hypothesized that particular attri-
butes would be better predicted at particular window sizes
because the underlying processes driving them occur at

diferent spatial scales. Due to the current importance of
generating robust models to predict biomass losses or gains
in tropical forests, the study focused on tree basal area, mean
height, standard deviation of height, density, and above-
ground biomass, as all of them are key variables widely used
in biomass estimation. Finally, we discuss potential eco-
logical explanations on the relations between image metrics
and forest structure established by our results.

2. Materials and Methods

2.1. Study Site. Te study was conducted on the Pacifc
coastal plain of the Isthmus of Tehuantepec, Oaxaca State,
southern Mexico (16° 38′ 37.19′−16° 41′ 14.94′N; 94° 59′
31.94′−95° 2′ 59.59′W; Figure 1). Tis region has been ex-
tensively studied for more than 20 years to understand
successional changes in the forest community [44–46]. Te
regional dominant vegetation type is tropical dry forest,
which has been reported as being highly diverse and het-
erogeneous in both structural and diversity attributes
[47, 48]. Te site has an annual mean temperature of 27.6 °C
and a very pronounced seasonality between the dry (No-
vember-May) and rainy (June-October) seasons, with an
average annual precipitation of 903mm for the 1950−2014
period, according to CLICOM data [49].

2.2. Forest Attributes. In nineteen 32× 32m (1024m2)
sampling plots (Figure 1), selected to cover the slope vari-
ation (between 0° and 30°) where TDF establishes in
a phyllite substrate [50, 51], forest structure was quantifed
between July 2012 and November 2013; these plots added to
1.95 ha in total. In order to test the efect of spatial scale on
the modelling capabilities of image texture, a nested vege-
tation sampling design was used. Terefore, the 32× 32m
sampling plots were subdivided into four 16×16m plots
(256m2), one of which was further subdivided into four
8× 8m plots (64m2). For each 32× 32m sampling plot, two
subplots (both 16×16 and 8× 8m) that shared a single
vertex were selected at random. Within each of these plots,
every individual having a diameter at breast height (DBH;
1.30m)≥ 5 cm was measured for its height and DBH. All
cacti, lianas, and trees that met these criteria were included
in the sampling. Te centre of each plot and its corre-
sponding nested plots were recorded with a GPS (4–6m
accuracy).

For each plot, fve community structural attributes were
calculated: basal area (BA, m2/ha), mean height of all plants
included in the sample (H, m), standard deviation of height
(HSD, m), number of individual plants per unit area, i.e.,
density (D, ind./ha), and aboveground biomass (AGB, Mg/
ha). BA (m2/ha) was calculated as the sum of the areas of all
stems (approximated as circles using the measured DBHs) of
all trees. In seven of the 19 plots, species identity was also
obtained. We consulted the global wood density database
[52, 53] to obtain each species’ wood density; however, only
64 of the 79 identifed species were found in this database.
For the species where there was no available wood density
(i.e., due to a lack of species determination or lack of
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information in the database), an average wood density from
the available information was used to calculate its AGB
(following recommendations of the authors in [54]). For the
rest of the species for which a wood density value was
available, it was used to calculate each individual’s AGB. BA,
D, and AGB were extrapolated to 1 ha to make them
comparable with other studies. AGB was obtained using the
BIOMASS package [55] in R 3.6.3 [56].

2.3. Remote Sensing Analysis

2.3.1. Image. A GeoEye-1 multispectral image (MS), with
a pixel resolution of 1.7m (planimetric accuracy of 3m),
acquired on November 11, 2012, was used for extracting
image statistical and texture metrics. Te image was
orthorectifed using a digital elevation model generated by
the Mexican National Institute of Statistics and Geography
(INEGI) with a 15m spatial resolution, and was atmo-
spherically corrected using the quick atmospheric correction
(QUAC) algorithm [57]. Te near-infrared (NIR) and red
(R) bands, as well as the normalised diference vegetation
index (NDVI) and the enhanced vegetation index (EVI)
were used as predictors due to their proven capabilities of
modelling diferent forest attributes [20, 21, 24,
26, 27, 58, 59]. Te two vegetation indices were calculated as
follows [14]:

NDVI �
(NIR − R)

(NIR + R)
, (1)

EVI �
2.5(NIR − R)

(NIR + 6R + 7.5B + 1)
, (2)

where B stands for the blue refectance band [14, 60]. All the
steps of the image processing were conducted in ENVI
4.7 + IDL.

2.3.2. Image Texture Metrics. Two sets of metrics were
calculated from the image: statistical (frst-order) and tex-
ture (second-order) metrics. Te frst set consisted of
a statistical summary of the pixel values found inside
a particular window: mean, variance, range, and skewness
(Table S1). In turn, texture metrics characterise the spatial
variation and arrangement of the pixels in a particular
window. We followed the grey-level co-occurrence matrices
(GLCMs) approach [61]; to this end, we calculated the
texture metrics using a spatial distance of one pixel (ofset) in
four directions (0°, 45°, 90°, and 135°), transforming the pixel
values into 64 levels of grey. Ten, the texture measurements
in all directions were averaged to obtain a single direction-
independent texture value. Te texture metrics can be
grouped into three types of variables: (1) those describing the
degree of contrast between pixels (homogeneity, contrast,
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Figure 1: Study site in Oaxaca State, southern Mexico, and locations of sampling plots.
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and dissimilarity), (2) those that characterise the regularity
in the pixels within a window (entropy and angular second
moment), and (3) the statistical variables derived from the
GLCM (mean, variance, and correlation).Te twelve metrics
(four statistical and eight texture variables) were calculated
for the R and the NIR bands, as well as for the two vegetation
indices (NDVI and EVI).

We used a moving-window approach to calculate image
texture, with squared window sizes of 5, 9, and 21 pixels.
Window sizes were selected as the nearest odd window size
equivalent to each of the sampling-unit extent. Tus, the 5-
pixel window was the closest to the 8× 8m plots, the 9-pixel
window to the 16×16m plots and, fnally, the 21-pixel
window to the 32× 32m plots. Finally, the central pixel
value of each window was extracted from each of the 48
texture layers (four layers and 12 variables). Te entire
procedure was programmed in the ENVI + IDL
environment.

2.4. Modelling Procedure. For each of the three window
sizes, we modelled the fve structural variables as linear
combinations of the 12 image metrics through linear
(mixed) models [21, 62]. Structural variables were log-
transformed to achieve normality; image metric variables
were standardised to ease model ftting [63]. We considered
all possible linear models involving up to fve parameters,
including quadratic relationships and interactions; given the
limited sample size, we restricted the number of parameters
to fve to prevent model overparameterization. Tis pro-
cedure required the ftting of ∼2×106 models. From these
models, and to avoid collinearity, we excluded those models
whose explanatory variables (image metrics) displayed an
absolute correlation value of > 0.7 [64]. Given the nested
structure of the sampling design, several 8× 8 and 16×16m
plots associated with the 5- and 9-pixel windows, re-
spectively, were nested within a particular 32× 32m plot;
thus, models for these windows required the inclusion of
a random efect associated with the 32× 32m plot to which
the plots pertained.

Model selection was performed through the sample-
corrected Akaike information criterion [65]. We consid-
ered the best-supported model the one with the smallest
AICc. Due to the large number of ftted models and the
limited sample size, we needed to exclude the possibility that
the best-supported model described a random relationship
between image metrics and the modelled forest attribute.We
did this by calculating the diference between the value at the
5% quantile of the AICc distribution of all models con-
sidered and the AICc of the best model, i.e., we calculated
Δq � q0.05 − q0; a Δq> 2 would exclude this possibility.

To make results comparable between forest attributes and
window sizes, we reported the Pearson’s coefcient of de-
termination (R2) as a measure of goodness-of-ft for those
models that did not include the plot random efect, and
Nakagawa’s R2 [66] for those that did include it. Since both R2s
measure the variance explained by the model [66], we will not
distinguish among them throughout the remainder of the text.

Modelling was performed in R [56] using the lME4 [67],
MuMIn [68], and performance [69] packages.

3. Results

A statistical summary of the fve forest structure attributes
quantifed at three scales is presented in Table 1. Note-
worthily, forest attributes varied among plots, but its
magnitude was diferent when using distinct sampling-unit
extents; for instance, while forest height showed minor
variation according to its coefcient of variation, AGB had
a 42% change between the 64 and 1024m2 plots. In addition,
the interplot variation of all forest attributes was higher in
the smallest sampling units, while lower in the largest ones,
but fell within the region’s variation [50, 70]. A similar
pattern was predominantly observed in the variation of
texture metrics calculated at diferent scales (Table S2).

According to their goodness-of-ft (R2; Figure 2), the
modelling potential of image metrics to describe the fve
structural attributes ranged from high (0.70) to low (0.11).
Tereby, mean plant height (H) was the best-modelled at-
tribute in terms of the R2 of its best-supported model. For
this attribute, best fts were obtained at small window sizes,
with increasing sizes producing lower R2 values. All other
structural variables displayed R2 values below 0.5, making
them harder to be described by image metrics.

Variation in plant height, as measured by HSD, was
better predicted at the 9-pixel window, with a lower R2 value
compared with H; tree density (D) displayed a similar
pattern. AGB was the attribute most poorly modelled among
the ones considered; again, the 9-pixel window was the best
spatial scale to model it. Finally, BA was best modelled
through a 21-pixel window, followed by the 9-pixel one.

Te analysis of the recurrence of the image metrics in the
models that best describe the structural attributes is pre-
sented in Figure 3, and the full description of these models
can be found in Table 2. For all attributes, the best models
established relationships that would not have been expected
to occur by chance (Table S3). Concerning the best pre-
dictors of the structural variables, EVI dissimilarity was the
most frequent predictor, occurring in six out of 15 forest
attribute/scale combinations. Tis predictor was followed by
NIR homogeneity (5 combinations) and R means (5)
(Figure 3; Table 2). Among the metrics, the most frequent in
the best-supported models was entropy and the most fre-
quent band was the EVI; notably, NDVI was only present in
two models.

4. Discussion

Scale determines our perception of nature [71]. Tus, it is
important to consider it when we aim at modelling the
relation between a remotely-sensed variable and a feld-
acquired one. Based on our results, in the following sec-
tions, we discuss the efect of changing spatial scale on the
modelling of tropical forest attributes from texture metrics,
a recurrent question in spatial ecology, and provide some
ecological insight into this issue.
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4.1. Te Efect of Changing Scale. Te frst major conclusion
that can be drawn from our results is that tropical forest
attributes cannot be best predicted at a single spatial scale;
rather, diferent scales should be used for diferent attributes.

Tis is relevant because it entails that, when setting a study
that aims at predicting diferent forest attributes from re-
mote sensing, it is necessary to identify the proper scale both
for feld measurements and texture window that best

Table 1: Mean values for the community structure attributes sampled within plots of diferent sizes; coefcients of variation are shown in
parenthesis.

Forest attribute
Plot size (m2)

64 256 1024
H 6.39 (0.19) 6.06 (0.15) 6.01 (0.13)
HSD 2.12 (0.52) 2.18 (0.45) 2.30 (0.39)
D 1689.97 (0.40) 1733.53 (0.31) 1715.67 (0.23)
BA 30.92 (0.60) 31.10 (0.36) 30.92 (0.24)
AGB 114.37 (0.68) 106.82 (0.40) 106.49 (0.26)
H�mean height (m); HSD� standard deviation of height (m); D� density (ind./ha); AGB� aboveground biomass (Mg/ha); and BA� basal area (m2/ha).
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Figure 2: Goodness-of-ft value (R2) of the best-supported models describing each forest attribute as a function of one or more image
metrics using diferent window sizes. Forest attributes: mean height (H), standard deviation of height (HSD), density (D), aboveground
biomass (AGB), and basal area (BA); window sizes: 5, 9, and 21 pixels.
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predicts these attributes [72, 73]. However, there is no
consensus on the proper plot-window size for each variable,
since this variation seems to respond to diferences in the
type of forest being studied, the resolution of the images
used, and the forest attributes being quantifed [29, 30, 74].
For instance, our results showed that mean tree height
prediction peaks at small plot-window sizes, whereas basal
area is best predicted at large plot-window sizes. Tis is in
agreement with Kayitakire et al. [15], who found that a small
window size better predicted tree height in a low-diversity
spruce forest. In contrast, Ozkan and Demirel [30] detected
an inverse pattern between these two variables in mono-
specifc temperate forest stands. Ultimately, information
collected at one scale for a given ecosystem may be totally
inappropriate for addressing questions at another scale or
a diferent ecosystem [75, 76], thus reinforcing the need for
multiscalar sampling designs capable of capturing forest
community variation on its diferent attributes [77]. Tis
conclusion is particularly important considering the urgent
need for accurate estimates of tropical forest attributes at
broad geographic scales to support conservation strategies,
evaluate deforestation and degradation, and monitor the
variations of forest biomass [7, 8].

Forest attributes whose calculation depends on other
measured variables deserve particular attention; for such
attributes, the panorama is evenmore complex, because each
of its constituent variables could peak in its prediction at
a certain scale that difers from the peaking scale of other
attributes. In our case, this situation is illustrated by AGB:
this attribute, which peaks at the medium window size, is
computed from tree height (peaking at the small scale) and
basal area (peaking at the large scale). Tis result is in
agreement with the fndings of Castillo-Santiago et al. [18] in
a tropical rainforest, but contrasts with other studies

performed in a temperate forest where AGB was better
described by texture metrics derived from the smallest
window size [26], and a tropical dry forest where AGB was
best predicted at larger scales using LiDAR data [78]. A
plausible explanation for this apparent contradiction may be
related to the fact that image texture is less prone to
registration-related error compared withmetrics that are not
spatially averaged within a window. Also, this explanation is
strengthened by the fact that the autocorrelation of AGB
sampled in small plots (10×10m) is not signifcant [79, 80].
In addition, the diference in the appropriate scale for
modelling AGB usingmultispectral and LiDAR data can also
be explained by the very diferent remote signals obtained by
each sensor. However, a comparison made between the
modelling potential of LiDAR and multispectral texture
revealed that the modelling potential of stand-volume from
texture and LiDARmetrics did not vary dramatically among
diferent window sizes [30].

Finally, it is worth noting that forest attributes showed
the highest interplot variation in the smallest subplots and
the lowest variation in the largest plots (Table 1).Tis pattern
was exactly the same when calculating the mean standard
deviation for each plot size using Monte Carlo simulations
(data not shown, Rejou-Mechain et al. [55]). Tis was ex-
pected since the smallest plots were expected to be more
sensitive to the data from a single tree, due to its lower
number of observations; thus, it can be interpreted that the
data in the smallest plots had more noise. However, the scale
at which tree height was best predicted was the smallest one,
and certainly, the relationships present in this model were
not obtained by chance (Table S3). Future studies should be
directed toward clarifying the efect of noise on the pre-
dictive potential of similar models, particularly for the
smallest scales.

Table 2: Best-supported models describing each forest attribute as a function of one or more image metrics using diferent multispectral
bands and window sizes.

Forest attribute Model
5-pixel window
AGB 4.482 + 0.622·poly (EVI variances) 1− 3.432·poly (EVI variances) 2
BA 3.22− 0.20·EVI entropyt + 0.22 R meant
D 7.347− 0.70 poly (EVI variances) 1− 1.26 poly (EVI variances) 2
H 1.84− 0.05 R means + 0.08 NIR entropyt
HSD 0.6 + 1.96 poly (EVI entropyt) 1− 1.784·poly (EVI entropyt) 2
9-pixel window
AGB 4.59 + 0.12 EVI contrast
BA 3.37 + 0.12 NDVI entropyt
D 7.41− 0.15 NIR entropyt + 0.08 NDVI data.ranges
H 1.79 + 0.07 EVI meant − 0.05 EVI homogeneityt
HSD 0.71 + 0.09 NIR correlationt − 0.10 EVI homogeneityt
21-pixel window
AGB 4.64 + 0.40 poly (R means) 1 + 0.65 poly (R means) 2
BA 3.40− 0.11 NIR skewnesss − 0.20 NIR contrastt − 0.28 NIR ASMt
D 7.42 + 0.61 poly (NIR homogeneityt) 1− 0.36 poly (NIR homogeneityt) 2
H 1.78− 0.36 poly (NIR homogeneityt) 1 + 0.06 poly (NIR homogeneityt) 2
HSD 0.78 + 0.29 poly (R data.ranges) 1− 0.64 poly (R data.ranges) 2
Forest attributes: basal area (BA), density (D), aboveground biomass (AGB), standard deviation of height (HSD), and mean height (H). Bands: red (R), near-
infrared (NIR), normalised diference vegetation index (NDVI), and enhanced vegetation index (EVI). poly()1 and poly()2 are the frst and second terms,
respectively, of a quadratic orthogonal polynomial as produced by the poly() function in R. Image metric abbreviations are described in Table S1.

6 International Journal of Forestry Research



4.2. Ecological Insights into the Relationship between Scale,
Image Texture, and Forest Attributes. Te reason why par-
ticular forest metrics are best modelled at some window sizes
but not others, and by particular texture metrics, could
depend on the specifc aspect of the vegetation that these
metrics are meant to refect and how they vary across scales.
Te relation between GLCM-derived image texture and
forest attributes has been repeatedly examined for several
ecosystems [15–25]; however, to our knowledge, the eco-
logical interpretation of how this relation comes to exist has
been largely overlooked. Tis may be due to the original use
of texture in a nonecological context [61], and its transfer to
ecology as a tool for prediction rather than as a means of
explanation. Tus, in this section, we explore questions that
may shed light on this profound ecological matter: Why is
a particular scale appropriate for a certain forest attribute?
What is the ecological interpretation of each texture metric?
and How does it translate into a forest attribute?.

Forest attributes refect the ecological processes of in-
dividual growth (H, HSD, and BA), biomass accumulation
(BA, AGB), and spatial structuring of individuals (D). Tus,
the spatial scales at which these processes occur and are
calculated should determine the scale at which forest at-
tributes can be best described/predicted [35, 40]. For in-
stance, mean tree height (H) refects the height of a regular
tree in the plot, thus, it is not surprising that the best scale
that models it is the smallest window. Alternatively, the basal
area is the sum of all tree trunk diameters in a plot and thus,
it was best modelled at the largest scale.

Among the fve measured forest attributes, mean tree
height (H) was the best predicted, and this occurred at the
smallest scale (5-pixel window) by the entropy of the near-
infrared band (NIR entropyt) and the statistical mean of the
red band (R means; Table 2), being the former the most
important, according to its coefcient value. Tree height
varies largely within a plot as indicated by its standard
deviation (HSD; Table 1).Tis variation is known to produce
harsh shadows within an image that translate into a high
contrast. Tis high contrast reduces the probability of
fnding neighbouring pixels with the same tone, which re-
duces entropyt ([61, 81, 82]; see the formula in Table S1). In
turn, Rmeans negatively relates to H, probably because a plot
with large trees will display a high photosynthetic activity,
thus absorbing a signifcant fraction of the red
spectrum [83].

Te second best-predicted forest attribute was HSD,
which describes the variation in height among trees in a plot.
Tis variable peaked at the intermediate scale (9-pixel
window) and was predicted by NIR correlationt and EVI
homogeneityt, the latter being the most important variable.
In sites where trees exhibit similar heights (i.e., HSD is low),
it is common to observe gaps in the canopy, which typically
have low species richness [84]. In such sites, NIR correlationt
will be low because areas with high photosynthetic activity
will be intermingled with bare-soil areas. On the contrary,
such an open canopy decreases EVI homogeneity.

Density also peaked at the intermediate scale and was
best predicted by NIR entropyt and NDVI data.ranges, the
former being the most important According to its formula
(Table S1), a low NIR entropyt means that the probability of
fnding neighbouring pixels with the same tone is low. As
stated above, this is associated with sites with gaps in the
canopy.Tis type of forest is characterised by a large number
of small individuals and a high NDVI data.ranges.

Basal area (BA) was the only attribute best predicted at
the largest scale (21-pixel window) by, in order of higher to
lower importance, NIR ASMt, contrastt, and skewnesss.
Higher BA values correspond to plots with mostly large
trees. Such plots also display high and homogeneous pho-
tosynthetic activity, which corresponds to a low probability
of fnding two neighbouring pixels with the same value (i.e.,
low NIR ASMt), a low contrast in NIR values (i.e., low NIR
contrastt), and a (negative) skewness towards high NIR
values.

Finally, aboveground biomass (AGB), a key variable in
the monitoring of tropical forest carbon stocks [85], peaked
at the intermediate scale (9-pixel window) and was best
predicted by EVI contrast. In the study site, a high EVI
contrast in texture is associated with a well-conserved
community in which large trees dominate [21, 44]. None-
theless, this being a dry forest, these large trees form a dis-
continuous canopy, which translates into a large EVI spatial
variation.

5. Conclusions

In predicting tropical forest attributes from GLCM-
derived texture metrics, no single scale is most useful;
thus, one should identify the proper scale for each at-
tribute if we aim at predicting tropical forest attributes at
broad geographic scales. To achieve this goal, a recom-
mendation for future studies would be to either perform
a pilot study aimed at detecting which scale might be the
best to describe the forest attributes or to follow a nested
plots design such as the one in this study, to test the
modelling potential at diferent scales. Tis would be
particularly required given the enormous diferences
existing in tree size and forest development among re-
gions exposed to diferent environmental conditions. In
this regard, the diferent scales should be clearly identifed
as plot size, pixel resolution, and window size to calculate
image textures.

A further relevant conclusion is that image texture can be
interpreted from an ecological viewpoint. Although ours is
a small piece in a big puzzle, this is a necessary task if we are
to contribute to the understanding of how ecological pro-
cesses express themselves in a remotely sensed image.
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and F. Bongers, “Pathways, mechanisms and predictability of
vegetation change during tropical dry forest succession,”
Perspectives in Plant Ecology, Evolution and Systematics,
vol. 12, no. 4, pp. 267–275, 2010.

[46] L. Poorter, D. M. Rozendaal, F. Bongers et al., “Functional
recovery of secondary tropical forests,” Proceedings of the
National Academy of Sciences, vol. 118, no. 49, Article ID
e2003405118, 2021.

[47] J. A. Gallardo-Cruz, J. A. Meave, E. A. Pérez-Garcı́a, and
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