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Milk products obtained from cow, goat, buffalo, sheep, and camel as well as fermented forms such as cheese, yogurt, kefir, and
butter are in a category of the most nutritious foods due to their high contents of high protein contributing to total daily energy
intake. For certain reasons, high price milk products may be adulterated with low-quality ones or with foreign substances such
as melamine and formalin which are added into them; therefore, a comprehensive review on analytical methods capable of
detecting milk adulteration is needed. The objective of this narrative review is to highlight the use of vibrational spectroscopies
(near infrared, mid infrared, and Raman) combined with multivariate analysis for authentication of milk products. Articles,
conference reports, and abstracts from several databases including Scopus, PubMed, Web of Science, and Google Scholar were
used in this review. By selecting the correct conditions (spectral treatment, normal versus derivative spectra at wavenumbers
region, and chemometrics techniques), vibrational spectroscopy is a rapid and powerful analytical technique for detection of
milk adulteration. This review can give comprehensive information for selecting vibrational spectroscopic methods combined
with chemometrics techniques for screening the adulteration practice of milk products.

1. Introduction

In the last decades, the production and consumption of dairy
products have increased globally. The market growth of the
dairy market is expected to continuously rise up to 2025, with
annual production growth of 2.0% for skim milk powder,
2.1% for whole milk powder, 1.7% for butter, and 1.4% for
cheese. Due to high nutritional values, the dairy products in
the form of either raw milk or lacteous derivatives are highly
susceptible to adulteration practices and frauds [1]. The adul-
teration of dairy products can be done by replacing a compo-
nent with a similar but cheaper alternative, introducing
illegal substances such as addition of melamine, spuriously
extending shelf-lives, declaring incorrect or no processes
during food production, making incorrect claims about the

types of ingredients used and quantitative information of
food components, and providing incorrect information
about geographical source [2]. The adulteration of food
products which involves the addition or substitution of
low-quality ingredients into high-quality ones or the removal
of crucial ingredients of food may be probably as old as food
manufacturing. Indeed, consumers demand the accurate and
correct food labelling to select food products [3].

The selection of food by consumers is typically dictated
either by lifestyle (halal foods free from forbidden compo-
nents such as pork, vegetarians preferring organic foods) or
by health concerns especially due to allergenic reactions such
as consumer’s preference for food products without ingredi-
ents like lactose and gluten. Several adulteration issues on
dairy products have been reported in recent years. The
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presence of adulterants or foreign substances which are dif-
ferent from those declared in labelled products is a serious
matter for all stakeholders including consumers, producers,
and regulatory agencies [4]. Therefore, food authentication
analysis is needed to assure the quality of products.

Food authentication is the process by which the food
products are regularly checked for quality, safety, and the
correctness with their description on labelled products using
standardized methods. Authentication of milk products
involves some analytical methods capable of confirming that
the milk product matches the stated labels which conform
some laws and regulations [5].

Numerous chemical, physical, or biological analytical
methods, including the analysis of ingredients and determi-
nation of geographical origin intended for authentication
analysis in dairy products, are reported by food scientist
[6]. Among these methods, vibrational spectroscopies are
one of the most reported ones. Due to the complex spectra
obtained during the analysis of samples, the chemometrics
analysis is typically used to assist the vibrational spectra to
make them more easily interpretable. This review highlights
the recent updates on the application of vibrational spectros-
copy combined with chemometrics techniques for authenti-
cation of dairy products based on articles published during
2010-2020.

2. Chemometrics

The term “chemometrics” was coined several decades ago by
Bruce Kowalski to describe a new way of analyzing chemical
data, in which elements of both statistical and chemical
thinking are combined [7]. Many definitions of chemo-
metrics are available. According to one of these definitions,
the chemometrics is “a scientific discipline where chemistry
and pharmaceutical science meet statistics and software”
[8]. According to the International Chemometrics Society,
chemometrics is “(i) the chemical discipline that uses mathe-
matical and statistical methods to design or select optimal
measurement procedures and experiments (ii) to provide
maximum chemical information by analyzing chemical data”
[9]. The commonly used methods of chemometrics or multi-
variate analysis are hierarchical and nonhierarchical cluster
analysis, principal component analysis (PCA) for classifica-
tion, multilinear regression (MLR), partial least square
(PLS), and principal component regression (PCR) for multi-
variate regression [9, 10].

2.1. Hierarchical Cluster Analysis (HCA). The hierarchical
cluster analysis is a method to evaluate the distance between
samples and groups in a plot namely dendrogram. In this
method, the different equations can be used to calculate the
distance, such as Euclidean (equation (1)) or Mahalanobis
(equation (2)) or Manhattan (equation (3)) distance [9].

Distance =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X1 − Y1ð Þ2 + X2 − Y2ð Þ2+⋯+ Xn + Ynð Þ2
q

, ð1Þ

where Xn and Yn are the coordinates of sample X and Y in
the nth dimension of row space.

Distance =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xi − Y j

� �TC−1 Xi + Y j

� �

q

, ð2Þ

where Xi and Y j are column vectors for objects i and j,
respectively, and C is the covariance matrix.

Distance = 〠
p

i=1
Xi − Yij j, ð3Þ

where Xi and Yi are vectors.

2.2. Principal Component Analysis (PCA). The principal
component analysis is a feature for reducing the amount
of data when there is a correlation present among group
of samples. PCA is a useful technique if the variables are
correlated. The idea behind PCA is to find principal compo-
nents Z1, Z2,⋯, Zn, which are linear combinations of the
original variables describing each specimen, X1, X2,⋯, Xn,
i.e., latent variables.

Z1 = a11X1 + a12X2 + a13X3+⋯a1nXn, ð4Þ

Z2 = a21X1 + a22X2 + a23X3+⋯a2nXn: ð5Þ
The new variables were chosen following the coeffi-

cients, a11, a12, etc., unlike the original variables. The PCA
is also the decomposition of a data set into principal com-
ponents (PCs). The first principal component (PC1), Z1,
accounts for most of the variation in the data set, and the
second principal component (PC2), Z2, accounts for the
next most considerable variation. The number of useful
PCs is much less than the number of original variables if
significant correlation occurs [10].

2.3. Multiple Linear Regression (MLR).MLR is used to estab-
lish linear relationships between multiple independent vari-
ables and the dependent variables. MLR can be described as
a regression equation for any n components as shown in
equation (6).

A = ε1bc1 + ε2bc2 + ε1bc1 + ε3bc3+⋯+εnbcn: ð6Þ

The equation produced by MLR can be used for quan-
titation [11].

2.4. Principal Component Regression (PCR). PCR is a combi-
nation of PCA and MLR. The basic PCR is to reduce the
number of predictor variables by using their first few princi-
pal components rather than the original variables. The
method works well when there is a considerable degree of
correlation between the predictor variables. PCR is also a use-
ful method when the predictor variables are very highly cor-
related [10].

2.5. Partial Least Square (PLS). PLS regression uses linear
combinations of the predictor variables rather than the
original variables. However, the way in which these linear
combinations are chosen is different. In PLS, variables that
show a high correlation with the response variables are
given extra weight because they will be more effective at
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prediction. In this way, linear combinations of the predictor
variables are chosen that are highly correlated with the
response variables and also explain the variation in the pre-
dictor variables [10].

The application of chemometrics or multivariate data
analysis (MDA) is emerging in the authentication of milk
using FTIR spectroscopy (Irnawati et al., 2021). Several stud-
ies have reported using chemometrics for classification of
milk such as the authentication of raw milk from reconsti-
tuted milk with FTIR spectroscopy combined partial least
square-discriminant analysis (PLS-DA) [12], the detection
of formalin in cow milk using ATR-FTIR spectroscopy com-
bined with PCA and its quantification using PLS [13], and
the detection and quantification of urea in milk using FTIR
spectroscopy combined with multivariate analysis (PCA
and PLS) [14]. Capuano et al. [15] have reported using FTIR
spectra and PLS-DA for classification of milk from cow that
were fed with or without fresh grass. Windarsih et al. [16]
have reported using FTIR spectroscopy combined with che-
mometrics (PLS) for authentication of Bovine Milk Fat
(BMF) from Lard Oil (LO).

Bergamaschi et al. [17] have compared the use of infrared
spectra, fatty acid profiles, flavor fingerprints, and sensory
descriptions for authentication of farming systems to deter-
mine the origin of milk. The results showed that the FTIR
spectra combined with linear discriminant analysis have
been proven to be valuable instruments for obtaining infor-
mation on the farming system in which the milk is produced.
Liu et al. [18] have also reported the use of near-infrared
spectroscopy combined with linear discriminant analysis
for the authentication of organic milk.

2.6. Application of Vibrational Spectroscopy and
Chemometrics for Authentication of Milk. According to
FFDCA (Federal Food, Drug and Cosmetic Act) of Food
and Drug Administration (FDA), milk can be declared as
“adulterated” due to (a) the addition of substances which
are harmful to human health such as melamine, (b) the
addition of cheaper or inferior quality milk into high priced
quality milk, (c) the extraction of any valuable components
from milk, (d) the reduced quality of milk which is below
the required standards, and (e) the addition of any substances
in order to increase bulk or weight such as sucrose and
maltodextrin [19]. Table 1 lists the applications of vibrational
spectroscopy (Raman, near infrared, and mid infrared) com-
bined with chemometrics for milk authentication.

2.7. Addition of Milk from Different Sources. Several vibra-
tional spectroscopic techniques have been reported for the
analysis of milk adulteration from various sources. Near-
infrared (NIR) spectroscopy combined with PLS algorithms
was used for the analysis of goat milk (GM) adulteration with
cow milk (CM). The addition of CM into GM can be a seri-
ous matter because CM can represent a health problem, espe-
cially for allergic consumers regardless of its consumed
amount. PLS-DA using variables from absorbance values
belonging to 10000-4000 cm-1 range was able to discriminate
GM and GM added with CM in amounts as low as 1.0154
g/100 g, with accuracy of discrimination of 100%. For the

quantification of adulterants (CM), the multivariate calibra-
tion of Successive Projections Algorithm for interval selec-
tion in PLS (iSPA-PLS) provided the best results exploiting
13 point-moving mean and baseline offset with coefficient
of correlation (r value) of 0.9996 for the correlation between
actual values and predicted values and RMSECV of 0.8016
g/100 g and RMSEP value of 3.6597 g/100 g with relative
error of prediction of 11.24%. This indicated that by selecting
appropriate spectral treatment, NIR spectra combined with
iSPA-PLS offered rapid and accurate technique for the
authentication of GM from CM [20].

Analysis of CM in GM was also performed using Fou-
rier transform infrared (FTIR) and Raman spectroscopy
combined with chemometrics methods, SIMCA, and partial
least square (PLS) regression. For FTIR measurement, the
spectra were recorded from wavenumber of 4000-650 cm-1

using 64 interferogram and resolution of 4 cm-1. SIMCA as
a chemometrics method could completely separate between
authentic and adulterated GM with CM, except in 5% of
CM concentration. Samples containing high concentration
of CM appeared close to the pure CM and categorized as
adulterated samples. PLS regression was used for predicting
the concentration of CM in GM precisely and accurately,
and the model had a high value of R2 calibration (0.97)
and R2 validation (0.98) and also a low value of SECV
(7.5) and SEP (5.9). On the other hand, for Raman measure-
ment, samples were measured using Raman spectroscopy
equipped with a laser source of 1064 nm. Spectra acquisition
was carried out at the wavenumber of 1850-250 cm-1 using a
resolution of 4 cm-1 and integration time of 2500ms. The
combination of Raman spectroscopy with SIMCA also
demonstrated good classification between pure GM and
adulterated GM with CM. Moreover, PLS regression was
successfully employed for predicting concentration of CM
in GM with R2 calibration of 0.97 and R2 validation of
0.98 with lower SECV and SEP values accounting for 7.3
and 6.9, respectively [21].

Camel milk contains some important nutritional compo-
nents especially protein. Due to its high price compared to
other milks, it is very potential to be adulterated with other
lower price milks. For instance, the price of camel milk is
three times higher than that of cow milk; therefore, it is often
adulterated with cow milk by producers for economic rea-
sons. The authentic and adulterated samples of camel milk
were subjected to FTIR spectrophotometer measurement
using attenuated total reflectance (ATR) technique and
recorded as absorbance. The acquisition of spectra was
performed in the wavenumber of 4000-650 cm-1 with the
number of scans of 98 and resolution of 4 cm-1. Prior to che-
mometrics analysis, the spectra went through pretreatment
techniques, namely, scatter correction (standard normal var-
iate and normalization), and Savitzky-Golay derivatization to
obtain a good chemometrics model. PLS calibration in the
wavenumber of 3000-920 cm-1 was successfully used for the
detection and quantification of cowmilk in camel milk which
obtained R2, and RMSEC in the calibration model was 0.9939
and 0.9322, respectively. The validation model demonstrated
high a R2 value (0.9922) and low value (1.0618) of RMSEP
which confirmed the validity of the PLS model to be used
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for cowmilk quantification in camel milk. The model showed
low relative error (3.8%) and low LOD value of 2.595% and
was proposed to be an adequate method for the authentica-
tion of camel milk from cow milk [22].

Adulteration of raw milk from reconstituted milk has
been investigated using FTIR spectroscopy in combination
with PLS-DA. Milk samples were lyophilized using a freeze
drier to remove the water content. Samples were then mea-
sured using FTIR spectroscopy in the wavenumber of
4000-650 cm-1 with a resolution of 60 and an interval of
0.48 cm-1. The PLS-DA model was created using first deriv-
ative spectra in the wavenumber region of 1800-800 cm-1.
Data used for variables were subjected to autoscaling prior
to building the PLS-DA model. Result demonstrated that
the PLS-DA model successfully classified raw milk and raw
milk adulterated with reconstituted milk. The lowest adul-
terant concentration which still could be predicted by the
PLS-DA model was 10%. The PLS-DA model was validated
using both internal and external validations. The aim of val-
idation is to identify whether the PLS-DA model is overfit-
ting or not. Model overfitting is avoided because it affects

the classification performance and gives bias results. An
internal and external validation test using 11 latent variables
confirmed the validity of the PLS-DA model with the accu-
racy of 98% [12].

Combination of Fourier transformmid infrared spectros-
copy and chemometrics has been employed for the detection
of soybean and rice flour in milk powder. The presence of
adulterants in milk powder was classified with PCA and
quantified by using PLS, SVM (support vector machine),
and ELM (extreme learning machine). The PCAmodel using
the first three PC represented 98.888% of all variables. PCA
could be used for classification of milk powder, milk powder
adulterated with soybean flour, and milk powder adulterated
with rice flour (Figure 1). Each sample was well separated and
located in a specific cluster. Even though there are still over-
laps among flour samples, in general, PCA could be used to
identify the adulteration in milk powder. On the other hand,
quantification of adulterants in milk powder was successfully
performed using PLS, SVM, and ELM. All models demon-
strated a high value of R2 either in calibration or in validation
(>0.9) and low value of RMSEC and RMSEP (<3). This
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Figure 1: PCA score plot for classification of milk powder and adulterated milk powder with soybean flour and rice flour using PC1 vs. PC2
(a), PC1 vs. PC3 (b), and PC2 vs. PC3 (c) [23].
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indicated that PLS, SVM, and ELM model demonstrated
good accuracy and good precision for quantification of soy-
bean flour and rice flour in milk powder [23].

FTIR spectroscopy using ATR technique has been used
for the detection of soy milk in binary mixtures with other
milks such as cow milk and buffalo milk. Milk samples, soy
milk, and adulterated milks with soy milk were prepared
and were dried using a freeze drying method. The FTIR spec-
tra were measured in the wavenumber region of 4000-500
cm-1. PCA was successfully used for classification of cow
milk, buffalo milk, soy milk, and adulterated milks with soy
milk. All adulterated milks with soy milk were perfectly sep-
arated using PCA even for 5% adulterant concentration. The
spectra were subjected to multiple linear regression (MLR)
for the quantitative analysis of soy milk in cow and buffalo
milks. A region of 1472-1241 cm-1 was the best range for pre-
dicting soy milk concentration. The MLR model demon-
strated high R2 values in either the calibration (0.99) or
validation (0.92) models [24].

Attenuated total reflectance-FTIR spectroscopy (ATR-
FTIR) was investigated for adulteration analysis of pure ghee
(PG) and heat clarified milk fat, with pig body fat (PBF). The
combined wavenumber regions of 3030-2785, 1786-1680,
and 1490-919 cm-1 were selected due to their capability for
providing the highest level of classification between authentic
PG and PG adulterated with PBF. PCA using absorbance
values of these wavenumbers could classify both groups
(authentic and adulterated) with the first (PC1) and second
principle components (PC2) contributing to 82 and 18% var-
iances, respectively. In addition, using SIMCA, approxi-
mately 90% of the samples could be classified according to
its respective class. For quantification, PLSR could predict
the levels of PBF in PG with R2 of >0.99 for the correlation
model between actual and predicted values with a detection
level of 1% [25].

3. Analysis of Foreign Ingredients in Milk

Various foreign components which can be safe such as
allowed preservatives and sucrose or unsafe ingredients such
as formalin and sucrose may be added into milk products.
This act is considered adulteration practice, and therefore,
some vibrational spectroscopic techniques have been used
for the detection of this adulteration practice.

3.1. Analysis of Added Sucrose in Milk. Sucrose may be added
into milk illegally in order to improve the total solid contents.
FTIR spectroscopy combined with PLSR for quantification of
sucrose in milk as well as PCA and SIMCA for classification
of genuine cow milk and adulterated cow milk was used.
FTIR spectra of all samples (pure milk and adulterated milk
with sucrose at 0.5–7.5% w/v) were scanned in the spectral
region of 4000–400 cm−1. The PLSR model using FTIR nor-
mal spectra at wavenumbers of 1070–980 cm-1 was used
exhibiting the best prediction with R2 of 0.996 and 0.993, in
the calibration and validation models, respectively. RMSEC
and RMSEP values obtained were of 0.15% w/v and 0.20%,
respectively. The limit of detection (LOD) value of sucrose
was 0.5%. In addition, PCA has been successfully used for

the discrimination of pure cow milk and adulterated cow
milk, and SIMCA was capable of classifying both groups
(authentic and adulterated) with a classification efficiency
of 100% [26].

Raman spectroscopy in combination with PLS and PLS-
DA was used for the analysis of sucrose added in full cream
milk. All samples were measured using Raman spectrometer
in a backscattered configuration with a 25mW 785nm laser.
The obtained spectra were preprocessed prior to chemo-
metrics analysis. Spectra were baseline corrected using 3-
point baseline correction mode, and then, derivatization
using second derivative Savitzky-Golay method was per-
formed for smoothing. The LOD value obtained from Raman
measurement was 7.205mg/L whereas the LOQ (limit of
quantitation) value was 21.834mg/L. PLS has been success-
fully applied for sucrose quantification in full cream milk
with minimum LOD threshold < 0:8%. The obtained R2

internal cross validation was 0.99, and the RMSECV value
was 611. PLS-DA exhibited good classification ability to dif-
ferentiate between pure full cream milk and full cream milk
adulterated with sucrose. All samples containing sucrose
were correctly classified as adulterated samples [27].

3.2. Analysis of Formalin. Formalin may be added into milk
products illegally for increasing the shelf life of milk. The
combination of raw FTIR spectra combined with chemo-
metrics has been applied as rapid tools for the analysis of for-
malin in cowmilk. Spectra of pure and adulterated milk (0.5–
5% v/v) were scanned at 4000−400 cm-1 using accessory of
attenuated total reflectance (ATR). Two multivariate calibra-
tions of PLSR and PCR were compared using absorbance
values at wavenumbers of 1080−950 cm-1, and the result
showed that PLSR resulted in a better model. The PLSR
model provided R2 of 0.977 for the correlation between actual
values and calculated values in calibration models, with low
RMSEC value (0.253% v/v) and low relative error (0.08). In
addition, the validation model gave a R2 (prediction) value
of 0.985, with RMSEP of 0.203% v/v, and relative percentage
difference of 8.7. This method has LOD value of 0.5% of for-
malin. This indicated that the developed model had very
good accuracy and precision. The chemometrics of PCA
could differentiate pure samples from adulterated samples,
while SIMCA could classify milk with and without formalin
with accuracy efficiency of 100% [13].

The presence of formalin in cow milk was also analyzed
using near-infrared (NIR) spectroscopy combined with che-
mometrics. Combination of NIR and chemometrics provided
a good method for the detection and quantification of forma-
lin in cow milk samples. The concentration of formalin used
was in the range of 1-17%. The acquisition of NIR spectra
was carried out in the wavelength of 2500-700 nm with reso-
lution of 2 cm-1, and the spectra were recorded in absorbance
mode. PLS-DA successfully differentiated between pure cow
milk and cow milk added with formalin with high R2 value
(0.969) and low RMSE value (0.086) which indicated good
accuracy and precision of the model. The concentration of
formalin in cow milk could be predicted perfectly using
PLS regression resulting high R2 value (0.93%). PLS regres-
sion could detect and quantify formalin in the concentration
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level of less than 2%. Therefore, this method was sensitive
enough for quantification analysis. Evaluation of PLS calibra-
tion using either internal or external validation confirmed the
validity of the PLS regression model. Internal calibration
using leave-one-out cross-validation technique resulted low
RMSECV (1.38) whereas external calibration presented
RMSEP of 1.50 indicating high validity [28].

Saha and Thangavel [29] applied Fourier transform near
infrared (FT-NIR) in combination with multivariate analy-
sis for the analysis of formalin in cow milk. The formalin
concentration spiked in milk was in the range of 0-20%.
Spectra acquisition was performed in the wavenumber of
12000-4000 cm-1 using resolution of 8 cm-1. The NIR spec-
tra were subjected to preprocessing step prior to multivari-
ate analysis in order to obtain a good chemometrics
model. PLS calibration models were created in several wave-
number regions to obtain the optimum one. The PLS model
built in the region of 6102-4246.7 cm-1 using 6 PLS factors
and vector normalization processing method was chosen
as the PLS calibration model for the quantification of for-
malin in cow milk samples because it demonstrated the
highest R2 (0.9952) value and the lowest RMSEC (0.409)
value among developed models. Moreover, a validation test
using external validation also showed high R2 value (0.9954)
and low value of RMSEP (0.427). It suggested that FT-NIR
spectroscopy in combination with multivariate analysis has
a strong potential to be used for the authentication of milk
from formalin adulteration.

3.3. Analysis of Melamine. The protein contents in milk are
used as metric quality and main parameter during milk pro-
duction. The official and standard methods for protein con-
tents in milk are Kjeldahl methods by determining nitrogen
contents according to Association of Official Analytical
Chemists’ [30]. Addition of foreign compounds rich in nitro-
gen could increase the levels of proteins. Melamine has been
reported to be illegally added into dairy products to increase
the protein contents. FTIR spectroscopy combined with par-
tial least square regression (PLSR) has been used for the
quantification of melamine in milk (liquid and powder)
using an accessory of single bound-attenuated total reflec-
tance (SB-ATR). PLS models were established for developing
the correlation between actual values of melamine and FTIR
spectral absorbances at wavenumbers of 840–726 cm-1 with
R2 of >0.99 as well as RMSEC and RMSEP of 0.370% and
1.51%, respectively. The method was linear at a calibration
range of 0.0625-25% with LOD and LOQ of 0.00025% and
0.0015%, respectively. The proposed FTIR spectroscopy is
rapid using an assay time of 1–2min with little or without
any sample preparation [31].

Near infrared (FT-NIR) and mid infrared (FT-MIR)
were also used for the determination of melamine (2,4,6-
triamino-1,3,5-triazine) in infant formula samples, powder
samples, and liquid milk samples. Some spectral processing
techniques such as mean centering, mean scattering correc-
tion, and spectral derivatization were tried and optimized
to get the best prediction models. FT-NIR spectra were
scanned at 1110–2500 nm corresponding to 9000 and 4500
cm-1, while FT-MIR spectra were scanned at 4000 and 500

cm-1. Using nonlinear methods, the correlation between
actual values of melamine and FT-NIR/FT-MIR predicted
methods revealed the valid results in which a LOD value of
0:76 ± 0:11ppm could be reached using the correct prepro-
cessing technique [27].

The presence of melamine in milk powder has also been
detected using near-infrared hyperspectral imaging by evalu-
ating the penetration depth. Different thicknesses of milk
powder (1-5mm) were prepared and placed above the mela-
mine layer for evaluating hyperspectral light penetration.
Two types of milk powder were used, namely, nonfat milk
and whole milk, and samples were measured at the wave-
length of 937.5-1653.7 nm with 4.8 nm of average wavenum-
ber spacing. The NIR spectra of pure milk powder and
adulterated milk powder with melamine were very similar
in a pattern (Figure 2). There is no specific peak of melamine
observed; however, deep investigation at wavenumber of
1466.3 nm showed specific change as the depth of milk pow-
der increased. The decrease in milk absorbance was obtained
with the depth of milk powder from 1 to 3mm whereas the
spectra of melamine-milk powder and pure milk powder
were very similar at the depth of 4-5mm. It is presumed that
hyperspectral NIR imaging could detect the presence of mel-
amine using 1-3mm sample depth [32].

NIR combined with chemometrics of pattern recognition
including PLS-DA and SIMCA and chemometrics regression
of PLS has also been employed for the analysis of melamine
in milk powder. The pure and adulterated samples were sub-
jected to a NIR spectrometer equipped with an optical fiber
probe in the wavenumber of 10000-4000 cm-1 with 32 scan
numbers. The variables used for chemometrics analysis were
in the range of 5882-4000 cm-1. Melamine concentration is
well predicted using PLS and uninformative variable elimina-
tion (UVE-PLS) models with high precision and accuracy.
The obtained R2 value was 0.93 for PLS model and 0.97 for
the UVE-PLS model. Internal validation using leave-one-
out cross-validation technique displayed a low value of
RMSECV which accounted for <0.5 in both the PLS and
UVE-PLS models. Qualitative analysis using SIMCA could
classify authentic and adulterated milk powder with mela-
mine. However, misclassification occurred in lower adulter-
ant concentration. Investigation using the PLS-DA model
showed better classification compared to SIMCA. PLS-DA
correctly classified all adulterated samples even in lower mel-
amine concentrations. Therefore, PLS-DA is highly recom-
mended for the classification of melamine adulteration in
milk products [33].

Enhanced Raman Scattering spectroscopy (ERSS) was
used for the determination of melamine in milk matrices
using selective binding of melamine with gold nanoparticles
(AuNPs) which promote the aggregation of AuNPs inducing
a huge enhancement of melamine signals in Raman spec-
trum. The highest intensity of melamine in Raman spectra
was observed at peak of 715 cm-1; therefore, this peak was
selected for the prediction of melamine. The method was lin-
ear at a concentration range of 0.31–5.0mg/L with a R2 value
of 0.99. The values of LOD and LOQ were 0.017 and 0.057
mg/L, respectively, in the milk extracts which correspond to
values of 0.17mg/L (LOD) and 0.57mg/L (LOQ) in the milk
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matrix. The accuracy of method as described by mean recov-
ery resulted in percentage recovery of 99.9% and 96.3% in
samples spiked by low and high levels of melamine, respec-
tively. In addition, the RSD values for precision study were
of 9.6% and 3.8% samples spiked with low and high levels
of melamine, respectively. This method is simple and rapid
and does not require a long extraction procedure for the
detection of melamine in milk samples [34].

3.4. Analysis of Urea in Milk. Urea is often added into milk
products in order to obtain more concentrated milks by
increasing the solid nonfat (SNF) value. The presence of urea
in milk is normal; however, the acceptance limit of urea con-
centration is approximately 70mg/dL [35, 36]. High con-
sumption of urea is related to several health problems.
Therefore, it is very important to ensure the quality of milks
by analyzing the amount of urea presented in milks. A high
accuracy and precision analytical method instead of lact-
ometer is highly required to detect and quantify the presence
of urea in milks because a lactometer often failed to differen-

tiate between pure milk and milk added with urea. A lact-
ometer tests the purity of milk by measuring relative
density of milk with respect to water. Urea is one of com-
pounds which can be used to increase relative density of milk;
therefore, it increases the lactometer reading [37]. A lact-
ometer recognizes this condition as a good purity milk; as a
consequence, other methods are required to detect the pres-
ence of urea in milk. Raman spectroscopy was successfully
used for the analysis of urea in milk. Combined with PLS, it
can be used for the quantification of urea in milk. The con-
centration of urea added into the milk was in the range of
10-1000mg/dL. The acquisition of Raman spectra was car-
ried out with Raman spectroscopy equipped with a 785nm
diode laser. Data preprocessing steps including spectra cor-
rection, derivatization using Savitzky-Golay method, and
binning were carried out prior to PLS analysis to obtain good
variation of variables. The PLS model using wavenumber
range of 1800-750 cm-1 was successfully applied for quantifi-
cation of urea in milk. The model showed high R2 (>0.99)
in both the calibration and validation models. Obtained
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Figure 2: Raman spectra of milk powder and melamine measured using different penetration depth of milk samples prepared using “valley”
nonfat milk (a) and “peak” whole milk (b). Plots A and C show the full spectra, while plots B and D show the enlarged spectra in the
wavelength of 1466.3 nm [32].
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RMSEC was 39:71 ± 5:50mg/dL while the RMSEP was
43:89 ± 6:01mg/dL. The developed PLS model indicated
high accuracy because it can detect the urea samples in milk
with accuracy more than 90% [38]

The presence of urea in cow and buffalo milk (ratio of 1 :
1) was also detected using FTIR-ATR spectroscopy com-
bined with pattern recognition and multivariate calibration.
The urea added into milk was in the concentration range of
100-2000 ppm. The spectra were recorded in the wavenum-
ber region of 4000-700 cm-1 using resolution of 4 cm-1 and
24 scan numbers. The FTIR spectra of authentic and adulter-
ated milk with urea could be distinguished because they
exhibited different spectral pattern especially in the region
of 3600-2800 cm-1 and 1670-1564 cm-1. The peaks presented
in the 1670-1564 cm-1 associated with the peaks of the CO,
CN, and NH2 groups in urea [39, 40]. PCA could differenti-
ate between authentic and adulterated milks with urea. There
were three separated groups observed in the PCA score plot,
namely, authentic cow-buffalo milk, adulterated milk with
urea (concentration of 100-900 ppm), and adulterated milk
with urea (concentration of 1300-2000 ppm). Another
chemometrics classification method, namely, SIMCA (soft
independent modeling class analogy), perfectly classified
authentic cow-buffalo milk and adulterated milks with urea.
All adulterated samples well separated from authentic cow-
buffalo milk. Quantification of urea in cow-buffalo per-
formed using the PLS calibration model resulted maximum
R2 for calibration and validation of 0.9 and 0.86, respectively,
whereas the RMSEC value was 183.77 ppm and the RMSEP
value was 254.23 ppm. It was suggested that FTIR spectros-
copy combined with chemometrics was adequate enough
for analysis of urea in milk samples [14]

3.5. Determination of Geographical Origin. Authentication of
bovine milk was evaluated by determining the origin of fresh
grass feeding, pasture grazing, and organic farming using
FTIR spectroscopy and chemometrics. The samples were
obtained by taking bovine milks from the cows on pasture,
with the presence or absence of fresh grass in different farm-
ing systems of organic and biodynamic or conventional type.
Previously, the samples were subjected to PCA at MIR spec-
tral regions of 900–3000 cm-1 with the exclusion of regions of
1800–2800 cm-1, intended to reveal natural clustering of the
samples and to detect outliers. Some PLS-DA regression vec-
tors exhibited high scores for bands at around 1/λ 1640 cm-1,
1585 cm-1, and 1695 cm-1, smaller peaks around 1020 cm-1

and 1380 cm-1 and at 1/λ 3000–2800 cm-1. Bovine milk clas-
sification for the prediction of fresh grass feeding, pasture
grazing, and organic farming was carried out using partial
least square discriminant analysis (PLS-DA) using variables
of absorbance values of FTIR spectra at certain wavenum-
bers. The PLS-DA model could discriminate bovine milk
from cows feeding fresh grass and not fresh grass with sensi-
tivity and specificity values of 88% and 83%, respectively.
PLS-DA was also able to discriminate bovine milk pasture
grazing (indoors versus outdoors). Discrimination of organic
and conventional bovine milk could be accomplished with
PLS-DA providing acceptable accuracy of 80% and 94% in
training and validation sets, respectively. From this result,

FTIR spectra could contain valuable information on bovine
milks from on cows differing in diet which could be used
for authentication purposes [15].

4. Conclusion

Detection and analysis of milk adulteration are very challeng-
ing due to the wide ranges of adulterant types. The develop-
ment of rapid and high reproducible method is highly
important for milk authentication. Vibrational spectroscopy
including Fourier transform infrared (FTIR), near-infrared
(NIR), and Raman spectroscopy revealed promising analyti-
cal techniques for screening and identification of other sub-
stances in milk products. Optimization of wavenumber
region of FTIR, NIR, and Raman could be used for the anal-
ysis of specific adulterants in milk samples. Combined with
chemometrics techniques including pattern recognition and
multivariate calibration, vibrational spectroscopy methods
emerge as promising, rapid, and reliable analytical tools for
the authentication of milk products with high precision and
high accuracy.
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