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Food is a basic necessity for life, growth, survival, and maintaining a proper body function. Rising food demand leads both
producers and consumers to search for alternative food sources with high nutritional value. However, food products may never
be completely safe. The oxidation reaction may alter both the physicochemical and immunological properties of food products.
Maillard and caramelization nonenzymatic browning reactions can play a pivotal role in food acceptance through the ways
they influence quality factors such as flavor, color, texture, nutritional value, protein functionality, and digestibility. There is a
multitude of adulterated foods that portray adverse risks to the human condition. To maintain food safety, the packaging
material is used to preserve the quality and freshness of food products. Food safety is jeopardized by plenty of pathogens by
the consumption of adulterated food resulting in multiple foodborne illnesses. Though different analytical tools are used in the
analysis of food products, yet, adulterated food has repercussions for the community and is a growing issue that adversely
impairs human health and well-being. Thus, pathogenic agents’ rapid and effective identification is vital for food safety and
security to avoid foodborne illness. This review highlights the various analytical techniques used in the analysis of food
products, food structure, and quality of food along with chemical reactions in food processing. Moreover, we have also
discussed the effect on health due to the consumption of adulterated food and focused on the importance of food safety,
including the biodegradable packaging material.

1. Introduction

The major classes of nutrients are primarily obtained from
food, including essential amino acids, organic acids, and
peptides which cannot be generated in the human body [1].
Food also brings various health problems when consumed in
an inappropriate quantity or without considering a balanced
diet. Improperly consumed food cannot be beneficial and
cause a severe problem in health. One major aspect of food
quality is the contamination of food by other harmful constit-
uents. For food consumers, the examination of food contami-
nants and their quantitative analysis is of paramount
importance. Thus, continuous assessment of food quality
and its safety is essential to deal with public health [2]. Food
hazards are another focused area in the changing contexts.
Thermal processing quickly removes biological and physical

hazards rarely causing significant foodborne diseases [3].
Several cases of chemical hazards have been identified, such
as melamine contamination in infant formula powder, heavy
metal residues in fish products, and egg contamination with
insecticide fipronil, which have a direct effect on consumer
health [4]. Chemical analysis of food constituents allows one
to assess food quality in such respect [5]. The chemical
hazards or contaminants present in food are detected by spec-
troscopic techniques such as mass spectrometry, ultraviolet
detection, fluorescence techniques either alone or in conjunc-
tion with other separation techniques, thermal processing,
electrophoresis, and specific quantification immunoassays [6,
7]. The method of analysis also uses chromatographic tech-
niques such as gas chromatography and high-performance
liquid chromatography [8]. However, several factors may
directly influence foods’ chemical properties, resulting in
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variations in their bioactive and nutritional qualities. Thus, the
implementation of efficient, versatile, and reliable analytical
techniques to assess the authenticity and traceability of foods
is of keen interest [9].

The issue of food security at present has set a daunting task
for the food industry. In addition to an ever-expanding world
population, the requirement for food is increasing, generating
a greater and more complex food chain. However, the food
may be contaminated by parasites, toxic agents, bacteria, and
pathogens, as well as pollutants that bring more than 200 dis-
eases, including severe infectious diseases and even cancers
[10]. Thus, food safety is a major public health concern for
the food processing and packaging industries, distributors,
retailers, and consumers, as every year, about 48 million
people get sick, about 1.28 million people get admitted to
hospitals, and about 3000 people die due to consumption of
unsafe and adulterated food products [11]. The principal
aim of food assessment is associated with the maintenance of
food safety and security. Food laboratories swap their conven-
tional technologies for innovative and modern analytical
methods to pursue new visions [12, 13]. One of the prevailing
analytical challenges in food product safety is accurately por-
traying precise information as efficiently as possible concern-
ing official guidelines without impeding the attributes of
procedures such as precision, recovery, and sensitivity [14].
There are still many problems that need to be addressed in
authentication and traceability of food, with a considerable
range of analytical innovations and implementations seen in
food analysis [15].

The safety of food products is intrinsically linked to the
method of food packaging. Moisture, heat, and microorgan-
isms often pollute food, and its quality is diminished. Micro-
organisms contribute to the threat of diseases transmitted to
food among people and thereby pose a public health
concern. Thus, the packaging material is used to avoid
food contamination and reduce food waste and preserve
food quality [16]. Plastic packaging materials represent a
vulnerability to the ecological system since they are not
degradable in the environment. Therefore, today’s society
needs both environment-friendly and degradable packag-
ing materials. Scientists and researchers worldwide have
been intrigued by the adoption of biodegradable plastics
for food packaging [17].

2. Current Status of Food

2.1. Food Structure and Quality. Foods are composed of
nutritionally essential components that majorly include car-
bohydrates, proteins, fats, vitamins, water, and minerals as
well as fiber. Foods are regarded as “functional” based on
their composition as it is responsible for the quality of the
food determining the health benefits [18]. Starch, a signifi-
cant source of energy for humans, produced in storage units
of plants, consists of almost completely two main polysac-
charides (amylose and amylopectin) [19]. The relation
between starch structure and digestion is highly complex,
and the starch in digestion extent and speed can also get
affected by the amylose content, amylopectin structure,
degree of crystallization, and particle size [20]. The majority

of starchy foods are however poor in dietary fiber (DF). DF
is the edible portion of the plants that are nondigestible
carbohydrates and therefore proceed to the bowel. Polysac-
charides, oligosaccharides, lignin, and related plant
substances constitute dietary fiber [21], and intakes of the
meal with an adequate amount of DF are proved to be
crucial in reducing the risk of various diseases like heart dis-
eases, high blood pressure, diabetes, obesity, cancer, and
other gastrointestinal disorders [22].

Food structure is decided by the different ingredients
present and the processing of producing food. In terms of
ingredients, various bioactive materials, color, and flavor
enhancers as well as functional elements are now being
introduced into the dietary system [23]. A best natural
source of antioxidant, antimicrobial, anti-inflammatory,
antimutagenic, and antiviral activity, as well as other
health-friendly properties is a structurally diverse range of
bioactive compounds like carotenoids, polyphenols, flavo-
noids, vitamins, organic acids, phytosterols, nucleosides,
and fatty acids extracted from various plants and microor-
ganisms (algae, bacteria, fungi, and myxomycetes) [24, 25].
Thus, in utilization of these extracted bioactive molecules
into the food system to make the food qualitative and func-
tional, interests and efforts are being given worldwide. The
substantial amount of bioactive compounds in beetroot pulp
can be used to create a variety of novel value-added func-
tional foods to fight diseases such as diabetes, cardiovascular
disease, cancer, and other chronic diseases while also being
widely utilized in the food industry as a nontoxic food color-
ant or additives [26]. No doubt, bioactive compounds in the
food system play a crucial role in determining the quality of
the diet. However, most of the active compounds are water-
insoluble that creates difficulties in the absorbance of the
active constituents so the bioavailability to the desire sites
has always been a challenge as their bioefficacy depends
upon the chemical structure and the matrix of food [27].

Processing can positively or negatively modify both nutri-
ent density and food structure (the matrix effect) that deter-
mine food health potential [28]. Food structure gets changed
due to food processing, determining various appearances,
tastes, texture, and food functionality. For instance, the food
drying method is aimed at eliminating water to prolong food
shelf life deteriorates food quality. However, this change in
product quality attributes like shrinkage, deformation, and
color was observed less in the rugged surface, indicating better
textural characteristics and more quality in it than in the plane
surface [29]. Basically in cooking, the starch, amylose, and
resistant starch content lowered, and the sugars increased.
Cooking methods also vary the sugar contents as on boiling,
microwaving, and frying; starch content decreased substan-
tially on average by 40%, 64%, and 2% and amylose by 14%,
17%, and 34%, respectively [30]. Freezing is the most used
food storage method during which cellular food moisture is
crystallized and made into ice crystals, which are most likely
to negatively impact the microstructure of food and contribute
to the loss in quality of food on thawing [31]. The consistency
of frozen vegetables can also be influenced positively by chem-
ical pretreatment. The effects of the addition of soybean
protein isolate, whole milk powder, and sodium caseinate in
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mashed potatoes and then frozen for at least one month at
₋24°C confirmed the positive results on rheological properties
among which soybean protein isolate showed greater ability to
minimize the freeze effect [32]. Hydrolyzed egg yolk protein
has been reported as a novel additive to prevent irreversible
gelation induced by the freeze/thaw process better than NaCl
or sucrose [33]. In addition to that, microorganism fermenta-
tion enhances the nutrition quality by increasing the content
of bioactive compounds along with short-chain fatty acids
through the metabolism of food components like fiber and
carbohydrates [34]. One of the significant factors in deciding
food quality, which is regarded as the sensory property of food,
is food texture that arises from mechanical and structural ele-
ments and is capable of being tested only by humans [35].
Food structure is related to mechanical properties. Conse-
quently, rheological changes are related to structural changes.
Rheological activity not only has a significant effect on the
development, storage, and texture of hydrogels of proteins/po-
lysaccharides but also naturally represents the molecular
structure and chain conformation of macromolecules [36].

Food structure designing with the inclusion of sufficient
amounts of desirable nutrients retaining or improving the
textural/sensory effect and quality of food is of great interest
to all [37]. The involvement of dietary fibers and pullulans
has demonstrated the interference effect in starch hydrolysis
by reducing gelatinization by sequestering some water, cov-
ering the starch granule, and increasing the viscosity of the
gel [38]. Thus, the addition of DF and the water-soluble
polysaccharide polymer and pullulan increases the quality
of food by reducing the risk of obesity and diabetes by lim-
iting starch absorption. In the water phase or the oil phase,
several efforts have been taken to develop gel structures for
enhancing the bioactive compounds’ delivery efficiency and
several bioactive food ingredients be stable and bioavailable
[39]. Food structure is decided by the composition of the
food that plays a vital role in determining its quality and
health benefits.

2.2. Effect of Pesticides on Food and Detection Methods. In
this modern era, pesticides are often used, particularly to
preserve food, and in the agrarian and floricultural practices,
to combat undesirable pests and improve productivity which
has undoubtedly reduced food value. The residue of such
chemicals on soil, terrestrial, and aquatic ecosystems affects
not only human health but also animals’ health [40]. For
instance, organochlorine is the most toxic yet widely used
pesticide in agriculture, and its exposure has caused a
dramatic decline in honeybee populations as well as direct
pollution of honey [41]. To detect organochlorine pesticides
like DDT chemically known as 1,1′-(2,2,2-trichloroethane-
1,1-diyl) bis (4-chlorobenzene), an immune nanobiosensor
based on AuNPs in dipstick format using competitive
immunoassay was developed [42]. Furthermore, in Israel,
all honey samples were regularly identified with at least
two pesticides, amitraz metabolites and coumaphos, and at
most nine more, while lipophilic pesticides were primarily
contained in beeswax, and the results suggest that children’s
well-being can be jeopardized if honey and beeswax are
consumed regularly [43]. 24 new pesticide residues were

selectively determined by a miniaturized extraction-
partition procedure requiring small amounts of nonchlori-
nated solvents in fruits like apple puree, concentrated lemon
juice, and tomato puree [44]. New detection methods like
aptasensor [45], enzyme-based biosensor [46], origami
multiple paper-based electrochemical biosensors [47], and
graphene quantum dots-based photoluminescent sensor
[48] are used for the detection of pesticides in food. Along
with the advancement of spectrometric methods, liquid
and/or gas chromatography-tandem mass spectrometry
(LC-MS/MS and/or GC–MS/MS) and biosensors are used
for monitoring pesticides, and various enzyme inhibition-
based detectors have been used for detecting pesticides in
food [49, 50]. To ensure food safety, pollutants must be
continuously regulated and monitored using appropriate
advanced procedures.

2.3. Adulteration in Foods and Health Risks. Food adultera-
tion is the act of intentionally degrading the quality of food
offered for sale either by adding or substituting inferior
materials or by the removal of some valuable ingredients.
Just for limited economic advantages, foods are being adul-
terated without caring for an individual’s health [51].

The current issues on the food show that no food is
deprived of food adulteration. Melamine, a nitrogen-rich
compound and 67% nitrogen per mass unit, is adulterated
in milk and wheat gluten to increase protein content and
avoid detection, as milk was tested based on nitrogen con-
tent. In India, sample nonconformity was 31% out of 81%
of unpacked milk samples in the rural area. In the urban
area, 8% of detergent, 45% of skimmed milk powder, and
27% of glucose were found in the unpacked (67%) noncon-
forming sample [52]. There are many examples of the
adverse effect of food adulteration on human health. Some
of them are mentioned as (i) paralysis, cancer due to the
addition of minerals oils in edible oils and fats; (ii) abortion,
brain damage of baby, liver damage, and allergies; (iii) stom-
ach disorders, giddiness and joint pain by the substitution of
coffee powder with chicory powder; (iv) vomiting and diar-
rhea because of zinc substances and so on [53].

Various techniques (physical, chemical/biochemical, and
molecular) are applied for the detection of adulteration
based on the type of adulteration to be detected. Physical
techniques include macroscopic visual structural analysis
and analyzing the physical characteristics of food [51].
Chemical/biochemical techniques include spectroscopic,
chromatographic, immunologic, and electrophoretic-based
techniques [54]. Some methods like vibrational spectros-
copies, near-infrared, Raman, NMR spectroscopy, midin-
frared, and mass spectrometry techniques are developed
not only to concern the continuous engagement with
adulterated food but also on serious issues like food security,
bioterrorism, and climate change [55]. Initially, thin-layer
chromatography [56], adsorptive voltammetry [57], and
spectrophotometry methods [58] are used to detect food
dyes and are now replaced by capillary electrophoresis
[59], reversed-phase liquid chromatography (RPLC), and
ion pair RPLC since they are time-consuming and are not
suitable for color mixtures [60]. Food preservatives like
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formaldehyde used in aquatic products are detected from
surface-enhanced Raman spectroscopy Au/SiO2 used as
enhancer substrate [61]. Nitrate and nitrite in cured meat
are detected by sequential injection analysis and benzoate
and sorbate in orange beverage and tomato by concentrated
gas chromatography [62].

UV-visible, midinfrared, and fluorescence spectra are used
for testing the purity and adulteration of pomegranate oils
[63]. The combination of visible-near infrared spectroscopy
(Vis-NIRS) with chemometric tools like hierarchical cluster
analysis (HCA), principal components analysis (PCA), and
linear discriminant analysis (LDA), is used for the detection
of high fructose corn syrup in honey [20], and detection of
adulteration of fresh olive oils with old olive oils has been done
by the combination of midinfrared, UV-visible, and fluores-
cence spectroscopy [63], in grape syrup by dielectric spectros-
copy sensors (parallel plate capacitor (PPC) and cylindrical
stub resonator (CSR) [64]. FTIR and ATR spectroscopy were
explored to discriminate between beef meat and chicken meat
[65]. Raman spectroscopy is used to detect titanium dioxide
(TiO2) which is used as a color additive in food. The combina-
tion of FTIR technique and chemometric methods provides
effective cooperation in tracing and detecting adulteration
[66]. Enzyme-linked immunosorbent assay (ELISA) is an
immunological approach used for the detection of food adul-
teration. Similarly, adulteration in milk can be detected by
urea-PAGE in terms of the origin of milk’s species [51].

Nanotechnology has great potential in detecting food con-
tamination (biological and chemical contaminants) through
nanosensors and nanobiosensors. For example, a sensitive
electrochemical AChE nanobiosensor developed on PANI
and MWCNT core shell-modified GCE is used to detect car-
bamate pesticides in fruits and vegetables [67]. Carbofuran
(a pesticide used to control insects and nematodes on crops)
is detected and qualified by using AuNPs, Prussian blue-
MWCNT-CTS (PB-MWCNT-CTS) nanocomposite film,
and staphylococcal protein A (SPA) layer-by-layer assemble
technology (electrochemical immunonanosensor) [68]. Mela-
mine used in milk as adulterated is detected by the combina-
tion of AuNPs, cadmium telluride (CdTe) quantum dots
(QDs), and SWCNTs with various sensors rapidly [69, 70].

Though we all know “health is wealth,” people with an
economically motivated mentality do not even leave food
by making food adulterated. Adulterated and contaminated
food has been a part of our daily life because adulteration
is everywhere even though various acts on food adulteration
have been implemented. That is why we should be aware of
the adulteration process and mostly use organic ones for our
healthy life.

2.4. Mycotoxins and Food Contamination. Mycotoxins are
low molecular weight, secondary toxic metabolites synthe-
sized by fungi such as Aspergillus, Fusarium, and Penicillium
that cause food and feed contamination globally inviting
several health hazards [71]. Among several renowned myco-
toxins, aflatoxin, ochratoxins, fumonisins, and their deriva-
tives are the most common toxicologically familiar
mycotoxins [72]. According to a WHO survey, aflatoxin
contamination affects about 25% of the world’s food crops

causing major economic loads [73]. The intake of
mycotoxin-infected foodstuffs causes serious health
problems to humans and animals that can be carcinogenic,
mutagenic, teratogenic, nephrotoxic, hepatotoxic, embryo-
toxic, and immunosuppressive [74, 75]. Mycotoxin contam-
ination, mostly by aflatoxin, fumonisins, ochratoxins, and
deoxynivalenol is observed in major agriculture crops like
cereals, groundnut, milk, coffee, and beer and also appears
in entire animal fodder and human foodstuff [76]. These
food cause chronic intoxication relative to acute symptoms.
High-dose mycotoxin exposure results in acute toxicity like
abdominal pain and diarrhea, while low-level mycotoxin
exposure for prolonged period results in severe damage in
the liver, kidney, and immune system organs causing
cancers in these organs [77].

2.5. Nutrition and Alternative Diets. Food quality refers to
food, acceptable by consumers with the main characteristics
of having safety, nutrition, freshness, availability, conve-
nience, and integrity [78]. Biogenic amines (a nitrogenous
and organic compound) like tyramine, histamine, and sper-
midine are found in a wide range of food (cheese, wine,
meat, vegetables, fish, etc.), with different concentrations.
Biogene amine histamine is one of the toxins targeted by
the Food and Drug Administration (FDA) and European
Food Safety Authority (EFSA) and also plays an important
role as indicator of food quality [79]. The quality of meat
and flesh is determined by the presence of proteins, essential
amino acids, essential fatty acids, vitamins (A, E, and B), and
minerals [80]. Because of the high content of glycine and
nonessential amino acids, collagen-rich muscles have a
lower nutritional value [81]. LED green light technique
could help extend shelf life, maintaining visual quality,
increasing DPPH radical scavenging activity, and preventing
the decrease of bioactive compounds in broccoli florets [82].
A novel hydrothermodynamic (HTD) technology, based on
the high turbulence and cavitation in viscous liquids, has
the potential for manufacturing originative natural whole
food with high nutritional and nutraceutical values. It has
the potential to minimize the effect of thermal degradation
of bioactive phenolics and increase the shelf-life of pasteur-
ized blueberry food [83].

To meet the balanced diet, an alternative diet is of great
importance and can be included in the diet by various
methods. Vitamin D can be synthesized from cholesterol
under the skin in the presence of UV light but can also be
consumed from the diet through fish, eggs, fortified milk,
and mushrooms. The active form of vitamin D and calcitriol
(1,25 D dihydroxy vitamin D), developed after hydroxyl-
ations in the kidneys and liver, has been shown to regulate
the immune system [84]. Vitamin D reduces the risk of viral
infections. Grant et al. discussed data supporting the posi-
tion, including those from influenza, coronavirus (CoV),
and pneumonia, for greater concentrations of 25-
hydroxyvitamin D (25 (OH)D) in reducing infection and
death risk from acute respiratory tract infection (ARTIs).
Research indicates that increased intakes of vitamin D can
decrease infection risk and COVID-19 [85]. The water-
soluble nutrient vitamin C serves as an antioxidant that
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scavenges reactive oxygen species (ROS), thus shielding bio-
molecules from oxidative damage and dysfunction, such as
proteins, lipids, and nucleotides. In leukocytes, vitamin C
accumulates at levels 50-100 times higher than in plasma,
which can demonstrate the vitamin’s functional roles in
these immune system cells [86, 87]. Foods like Kakadu
plums, cherries, chili peppers, guavas, kiwi, broccoli, and
citrus fruits are rich sources of vitamin C, which exhibits a
plausible mechanism of anti-inflammatory and immuno-
modulatory functions that are important to severe respira-
tory infections [88].

Vitamin B helps to better stimulate both innate and
adaptive immune responses, decreases proinflammatory
cytokines, and enhances respiratory function. Vitamin B
plays a crucial role in cells’ functioning, energy metabolism,
and proper immune function [89]. A combination of vita-
min D/magnesium/vitamin B12 in older patients with
COVID-19 was associated with a substantial reduction in
the proportion of clinically affected patients needing oxygen
support, intensive care support, or both [90].

Vitamin E can be obtained through dietary sources such
as vegetable oils, nuts, seeds, and various leafy vegetables and
fortified cereals. In animal and human models, vitamin E has
been shown to strengthen immune responses and provide
defense against many infectious diseases. By scavenging oxy-
gen species, vitamin E can exert its immune-enhancing
effects to reduce oxidative stress [91, 92]. Healthy dietary
choices with high biological value protein intake, such as
fish, eggs, lean meat (poultry), and whey protein (or other
nonfat dairy protein), can decrease inflammation and post-
prandial lipogenesis when consumed together with meals
[84]. To survive, proliferate, and work, immune cells depend
primarily on amino acids’ availability like glutamine and
ultimately protect our body against pathogens. Metabolism
and immune functions are modulated by certain amino
acids such as glutamine and l-arginine [93, 94].

Among polyunsaturated fatty acids (PUFAs), arachi-
donic acid (AA), eicosapentaenoic acid (EPA), and docosa-
hexaenoic acid (DHA) are essential long-chain PUFAs. To
preserve human health, dietary intake of AA, EPA, and
DHA is important, and livestock and marine foods are the
primary sources of nutrients for AA and EPA/DHA, respec-
tively [95]. AA is nontoxic and can be administered orally
and intravenously, and its administration increases the for-
mation of lipoxin A4 (LXA4), an anti-inflammatory enzyme
that also has AA-like antiviral and antibacterial activities
[96]. This is supported by reports that exogenous linoleic
acid (LA) or AA supplementation in human coronavirus-
(HCoV-229E-) infected cells substantially suppressed the
replication of the HCoV-229E virus and preserved the inhib-
itory effect of LA and AA on virus replication for the highly
pathogenic coronavirus respiratory syndrome in the Middle
East (MERS-CoV) [97]. SARS-CoV-2, SARS, and MERS are
enveloped and can quickly be inactivated by AA and other
unsaturated fatty acids. Oral or intravenous administration
of AA and other unsaturated fatty acids is recommended
to enhance tolerance and recovery from such infections [96].

Zinc is a trace element with immunoregulatory and anti-
viral properties, found in various fruits and vegetables. For

cell growth and immune cell maturation, zinc is important,
particularly in T-lymphocytes’ development and activation
[98]. Malnutrition is the principal cause of zinc deficiency.
Zinc deficiency leads to cell-mediated immune disorders. Zinc
deficiency encourages the development of proinflammatory
cytokines and is associated with fibrosis-predisposing inflam-
matory alterations throughout the lungs. Iron, an enzyme
component critical for immune cells’ function, is important
for cell differentiation and development [99]. Iron-deficient
children are more likely to develop persistent acute respiratory
tract infections (ARTI) [100]. Anemia is prevalent in patients
with serious infection with SARS-CoV-2 and that anemia is
associated with extended hospital stays, poor health outcomes,
and poor survival [101].

The diet we take regularly might not be available every
time, so one should have a sound knowledge of alternative
diets. A healthy diet, compliance with safety conditions,
and finding appropriate and safe methods to increase the
body’s immunity, is an excellent alternative to a major tran-
sition through difficult times, such as pandemics [102]. The
bioactive peptides extracted from food have gained increased
interest as agents in chronic disease control and reduce the
risk of side effects resulting from synthetic drugs. Bioactivity
associated with cereal proteins includes antioxidant, anti-
inflammatory, cholesterol-lowering, satiety, antidiabetic,
and others recently studied [103].

Growing food demand would cause producers and con-
sumers alike to look for alternative food sources of high nutri-
tional value; snails, in particular, may be considered a good
candidate to avoid viscera containing high concentrations of
nonessential trace elements, such as Al, Cr, Cd, and Pb. An
interesting and alternative source of critical trace elements,
such as Fe, Zn, Cu, Mn, and Se, may be considered the
home-processed food analyzed in this research. In this analy-
sis, concentrations of eight important (Fe, Zn, Cu, Mn, Se, Ni,
Mo, and Co) and six nonessential (Pb, Cd, Hg, Al, As, and Cr)
trace elements were determined in home-processed food
derived from snails and three common species of game ani-
mals (woodcock, pheasant, and hare), seasoned with ancho-
vies, mushrooms, and various vegetables using inductively
coupled plasma mass spectrum (ICP-MS) [104].

The human immune system is very important for a nor-
mal existence and can prevent the mass spread of major
health problems, such as introducing novel viruses, such as
COVID-19, which has rapidly become a global pandemic.
Stress is detrimental to human health since it produces free
radicals in the human body. According to numerous recent
reports, volatile oils from different aromatic plants have high
antioxidants and antimicrobial substances. To kill these free
radicals, an external supply of antioxidants is needed [103].
Thus, to meet the ever-increasing food demand, above-
mentioned alternative diets and nutrition can be included
in the food table.

3. Analytical Approaches

3.1. Chemical Reaction in Foods. The Maillard reaction (MR)
is defined as an array of nonenzymatic, consecutive, and par-
allel chemical reactions that supervise both food quality and
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safety. Since Louis-Camille Maillard observed in 1912 that a
mixture of amino acids and sugars resulted in a brown solu-
tion upon heating, overwhelming evidence established that
the condensation reaction between reducing sugars and
amino groups of free amino acids or proteins is the main
source of N-glycoside derivatives in foods and in vivo
[105]. Maillard reaction is a part of the nonenzymatic brow-
ning reactions. Due to the formation of caramelization, the
reaction of polymers called melanoidins produces a charac-
teristic brown color. For the food industry, this is a critical
reaction, as it describes a large part of the sensory properties,
fragrance, and taste of the products cooked. In terms of
anti/prooxidant ability, immunogenicity, allergenicity, and
carcinogenicity, Maillard reaction products (MRP) can have
beneficial or adverse effects on health [106]. Maillard reac-
tion products (MRPs) result from a chemical reaction
between amino acids and sugar reduction when foods are
processed at high temperatures. This reaction increases
flavor and color, and positive and adverse health effects have
been correlated with MRPs [107]. Maillard reaction takes
place through multiple reactions, which can follow several
different routes. However, the reaction pathway can divide
the reaction sequence into three primary stages. The scheme
of formation of melanoidins from aldose sugar is shown in
the supplementary section (Figure S1) [108].

Some of the key molecules are depicted on the top, the
Amadori compounds, in the middle Strecker’s aldehyde,
dicarbonyls, and at the bottom, acrylamide, styrene, and
melanoidins. The chemical reactions that changed due to the
Maillard reaction have been studied in the following food pro-
cessing. Methylglyoxal (MGO) and 3-deoxyglucosone (3-DG)
are 1,2-dicarbonyl compounds formed from carbohydrates
during caramelization and the Maillard reaction, Figure 1.
Under physiological conditions, MGO is also formed as a
byproduct of glycolysis, and 3-DG is formed from 3-
phosphorylated fructose and fructosamine [109].

Caramelization is a nonenzymatic browning reaction of
sugars providing a caramel-like flavor during the high-
temperature treatment of foods. Sugar degradation during
the Maillard reaction, characterized by nitrogen-containing
low and high molecular weight compounds, is catalyzed by
amino acids. Both reactions proceed together at elevated
temperatures so that one affects the other. The Maillard
reaction may take place under milder conditions, but sugars
are caramelized at temperatures above 120°C [110].

The main reactions of sugar degradation are schematized
in Figure 2. The acyclic sugar forms are very reactive, and by
increasing temperature, more acyclic forms are discovered.
Ring-opening followed by enolization initiates isomeriza-
tion, epimerization, dehydration, and oxidation reactions
of the cyclic reducing sugar.

Likewise, the physical and chemical properties of ther-
mally and oxidatively degraded sunflower oil and palm fat
are subject to a variety of changes. A significant method used
worldwide for the preparation of foods is deep-fat frying.
Numerous polar compounds are formed due to oxidation,
hydrolysis, decomposition, and oligomerization. These
compounds modify the physical, nutritional, and sensory
properties of oil or fat [111].

Similarly, cholesterol oxidation products, cholesterol
dimers, and cholestadienes are formed after thermal pro-
cessing of cholesterol standards and butter. In particular,
the presence of cholesta-3, 5-diene is examined in unheated
samples of free cholesterol and cholesteryl palmitate (105.3-
116.4mg g-1) and thermally processed butter (0.009mg g-1).
Moreover, standard samples (34.7-98.8% losses) relative to
butter samples (25.5-73.5% losses) observe the processes of
extensive cholesterol degradation. Research indicates that
cholesterol-containing materials’ thermal processing should
be carried out at the lowest possible temperatures, e.g.,
150°C, which prevents cholesterol from dimerization, oxida-
tion, and degradation [112].

Similarly, there is an effect of temperature on acrylamide
formation in cocoa beans during drying treatment. When
foods containing free asparagine and reducing sugar are
cooked at a temperature above 120°C in low humidity condi-
tions, acrylamide is produced [113]. During the production
of block panela (noncentrifugal cane sugar), Mesias et al.
evaluated the formation of acrylamide and other heat-
induced compound hydroxymethylfurfural (HMF) and
furfural at different levels [114].

3.2. Current Status of Analytical Testing of Foodstuffs. A
huge number of analytical techniques have been used for
the food analysis; few of which include (a) spectroscopic as
mass spectrometry, nuclear magnetic resonance, infrared,
etc.; (b) biological as a polymerase chain reaction, biosen-
sors, etc.; (c) separation as high liquid performance chroma-
tography, capillary electrophoresis and so on [13]. Among
those varieties of analytical techniques, the chromatography
technique can be considered as the best method for the
simultaneous determination of several classes of contami-
nants and residues. In the last few years, though gas chroma-
tography has been used to determine nonpolar compounds,
LC has been widely used for monitoring the more polar
compounds. HPLC is becoming a good choice due to its
considerable reduction in the analysis time [115]. But several
problems such as strong matrix effects and low retention
time make it not amenable to multiresidue methods, and
to reduce analysis time, the authors have proposed eliminat-
ing chromatographic steps and using flow injection analysis
[116]. The use of hydrophilic interaction chromatography is
another alternative for the determination of very polar com-
pounds [117]. Nowadays, the miniaturization of the chro-
matographic systems (micro- or nano-LC) has been widely
used in proteomics, offering suitable properties as robustness
and reliability, as well as for the determination of allergens,
amines, pesticides, and toxins in food since it possesses
powerful possibility to reduce sample volume and analysis
time, increasing sensitivity, separation efficiency, and peak
capacity [109, 110].

To confirm the screening result, chromatographic sepa-
ration is not enough, and confirmatory methods require a
mass spectrometric detector. The commonly used methods
that enable wide linear ranges and LODs down to the micro-
gram kg-1 level or even less are liquid chromatography-
tandem mass spectrometry (LC-MS/MS) and gas
chromatography-tandem mass spectrometry (GC-MS/MS)

6 International Journal of Food Science



[118]. However, the QqQ detector coupled with chromato-
graphic systems provides a great result for hundreds of ana-
lytes per run whereas chromatographic methods coupled to
HRMS may also be used due to their high-throughput and
excellent selectivity for food contaminant screening [119].
Instead of the classical reversed-phase (RP) systems for the
separation of polar analytes, alternative LC separation tech-
niques such as hydrophilic interaction liquid chromatogra-
phy (HILC) and supercritical fluid chromatography (SFC)
have been proposed although C18 or octyl (C8) columns

can efficiently separate nonpolar compounds; polar analytes
separation can be a rather challenging task. HILC follows the
opposite mechanism of RP, that is, the polar stationary
phase retains polar analytes that are eluted by a mobile phase
consisting of a mixture of acetonitrile (usually) and water
[120]. Hence, the strongest weapon to detect contaminants
in foodstuffs is the chromatographic separation coupled to
various MS detectors. For the analysis of phthalates, BPA,
and NIAS in food, and food packaging materials, the mainly
used technique is GC-MS [121]. On the other hand, for the
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more polar substances including PFCs, PAAS, and photoini-
tiators, LC-MS/MS has been the selected technique [122].
The application of HRMS in LC for target, posttarget, and
nontarget analysis has been observed but not in the case of
GC. Recently, for the analysis of some FCM contaminants
such as PFCs, PAAs, additives, and phthalates in FCMs,
the LC-HRMS method using TOF or Orbitrap mass ana-
lyzers has been introduced. Applying the HRMS technique,
the analytical challenges in this field should be the develop-
ment of FCM contaminants methodologies in food, food
simulants, and food contact materials [123]. The presence
of mycotoxins is determined by chromatography like high-
performance liquid chromatography (HPLC), thin-layer
chromatography (TLC), gas chromatography-mass spec-
trometry (GC-MS), enzyme-linked immunosorbent assay
(ELISA), and biosensor-based screening techniques. The
removal of mycotoxins is quite difficult as it is unaffected
by physical, chemical, and biological methods [124].
Recently, many studies have shown the potential of Raman
spectroscopy and hyperspectral imaging (HSI) techniques
for the quality inspection of a variety of food products,
representing a promising future for these techniques in the
food industry. For the analysis of a broad variety of prod-
ucts, the use of chemometrics with spectroscopy makes these
techniques more convenient and effective [125]. The pri-
mary goal of food irradiation is to extend the shelf-life of
goods stored in diverse circumstances such as stores and
houses, as well as to destroy harmful organisms that cause
illness as a result of food intake [126]. Electron-beam irradi-
ation (EBI) is a revolutionary food decontamination method
that employs low-dose ionizing radiation to eradicate micro-
bial contamination in crops or food. Furthermore, EBI slows
crop germination and regulates the ripening rate of vegeta-
bles and fruits, increasing the shelf life of these items [127].

3.3. Challenges of Analytical Testing. To offer an adequate
response to the rising consumer’s demands, food analysts
have to face increasingly complex challenges that involve
using the best available science and technology [128]. Its
great potential for rapid identification of trace chemicals
has been in surface-enhanced Raman spectroscopy (SERS)
history, but the technology is still not ready to be used as a
routine analytical method to solve any problems in real-
world food analysis, as one of the driving forces for the
development of SERS technology is the value of rapid analy-
sis, simplifying sample preparation would continually be one
of the major focuses and challenges for applying SERS in
food analysis [129].

In NMR spectroscopy, by applying multivariate chemo-
metrics to 1H NMR data, instrumental developments allow
quick and reliable quantification and authentication of food
ingredients simultaneously. However, in 1H NMR spectros-
copy, signal overlap exists due to its lower spectral resolution
and must be carefully considered to measure spectra. The
drawbacks of 1H NMR spectroscopy include the high initial
setup costs, the need for dedicated housing facilities, the pro-
vision of cryogens, and dedicated expert personnel [130].

For identifying nanoplastics in food, asymmetric flow
field-flow fractionation (AF4) coupled to multiangle light

dispersion (MALS) can be used. The technique requires
recognizing the nanoplastic particles observed since the LS
signal is not selective to a particular type of NPs [131]. The
possibility consists of an offline study of the collected
fractions of AF4 size by spectroscopy or spectroscopic tech-
niques to classify the eluting nanoplastics. The sensitivity of
these techniques, of course, limits this, and because nano-
plastics could be present at trace levels, a concentration
phase might be needed to ensure proper detection and iden-
tification of the material in the collected fractions. For deter-
mining the particle absorption and particle concentration in
cells, tissues, or small organisms by AF4MALS, fluorescently
labeled particles may be used where major problems arise
due to autofluorescence from cells/tissues [132].

In identifying food adulteration, mass spectrometry-
liquid chromatography (MS-LC) is one of the most com-
monly used analytical techniques [133]. High-performance
liquid chromatography and enhanced ultrahigh perfor-
mance liquid chromatography have impressive separation
capabilities and can isolate and detect many unknown com-
pounds for nontarget detection. The key disadvantages are
the relatively low separation in the standard reverse phase
setting of hydrophilic compounds and minimal structure
knowledge obtained from MS [134].

Biosensors had been hooked up as placing analytical gad-
gets for fast screening of food impurities, dangerous chemical
compounds, and pollutants for food safety. Although biosen-
sors show clear advantages over conventional techniques, a
perfect biosensing approach does not yet exist, and there are
numerous difficulties in its development to be triumph over.
Presently, many biosensors could not without problems have
been used for on-website online tracking; consequently, only
a few are currently available commercially. Moreover, the
weight of the call for the improvement of touchy organic sens-
ing layers has pushed researchers to lay out extraordinarily
complicated and luxurious methods, which ultimately grow
to be an exceedingly expensive factor [2].

For identifying food adulteration, authenticity, traceabil-
ity, protection, and consistency, different detection methods
utilized include spectroscopic techniques, DNA-based tech-
nologies, and immunological techniques, most of which
require lengthy and complicated sample preparation and
assay times. Ambient mass spectrometry is a new field
providing comparable results to other techniques that can
overcome these problems. But in terms of quantitation, there
are problems regarding how precise the results are and the
probability of false-negative and false-positive results.
Moreover, the quantification of solid samples cannot be
accomplished [135].

Blockchain technology to store chemical analysis data in
order is one way to solve traceability problems and ensure
transparency as they cannot be manipulated afterward.
Although it looks promising, some limits remain to be
considered. To scan food tracking data, we mostly rely on
sensors, and data collection sensors are linked to the block-
chain network. There is no authentication process for the
blockchain to prove whether the raw data were correct and
has nothing to do if one tempers with a sensor. Also, the over-
all cost of adopting blockchain technology is uncertain [15].
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FT-MIR potential for fingerprinting-based honey
authentication is demonstrated which can achieve accuracy
levels that could be commercially useful. The combination
of multiple vibrational spectroscopic fingerprints in honey
authentication is carefully considered in terms of cost/bene-
fit in the industrial context [136]. Electrochemical biosensors
have made substantial advances in quantitative detection
and screening, and they have enormous potential for over-
coming conventional limitations. These biosensors solve
the multifactorial food industry’s challenge of providing
high analytical accuracy amidst complex food matrices while
also demonstrating high specificity towards the analyte [137].

Parallel to the consumer’s concern about what is in their
food and the quality of the food they eat, the development
and application of analytical methods and techniques in
food science has expanded.

4. Food Safety

Foods are being adulterated in various ways. Various
hazardous physical, chemical, microbial, and radioactive
agents in food cause foodborne diseases. Food safety is a
basic element in public health concern, and mycotoxin is a
massive food safety challenge worldwide. Food contamina-
tion causes a significant impact on food security, trade, econ-
omy, and health causing considerable financial losses to the
people globally [138]. Food coloring, use of fruit ripening
chemicals, mixing of clay, pebbles, sawdust, charcoal decom-
posed fruits, and vegetables, etc. in food particles are some
common methods of food adulteration which may lead to
severe diseases like stomach disorder, gastro-intestinal dis-
turbance, liver disorders, kidney failure, cancer, tumor, and
toxicity in the body on the consumption of adulterated food
[139]. Thus, food safety, food security, and balanced eating
are crucial components of food systems that have big
repercussions for well-being. Food safety complies with
foodborne diseases and encompasses food handling, prepa-
ration, and storage [140].

Foodborne diseases worsen individuals’ health condi-
tions, and also, they often have detrimental consequences
for families, societies, corporations, and ultimately nations.
Such illnesses disrupt people’s livelihoods by creating a
significant impact on healthcare and commerce networks.
The Member States of the World Health Organization
(WHO) have listed health care, protecting people from
immediate potential hazards, as being one of the five core
fields of work for WHO in the 12th General Work Pro-
gramme [141]. The World Health Organization has
acknowledged the safety and wholesomeness of irradiated
food and advocated its suitable usage as a sanitary treatment.
Countries in the Asia Pacific area recognize irradiation as a
beneficial method for reducing pathogens of public health
relevance as part of overall good manufacturing practice
(GMP) and hazard analysis critical control points (HACCP)
systems [142]. The food supply chain is influenced by the
development, proliferation, or longevity of harmful micro-
bial and chemical agents. That is further associated with

the elimination of food waste and the effective usage of
natural resources [143].

Food security has been described by the United Nation’s
Food and Agriculture Organization (FAO) as “a situation
that exists when all people at all times have physical, social,
and economic access to sufficient, safe, and nutritious food
to meet dietary needs and food preferences for an active
and healthy life” [144]. The human security concept might
also advocate a people-centered approach, assemble on indi-
vidual capacity, and provide key resources for building resil-
ience in food security and nutrition [145].

According to the Committee on World Food Security
(CFS), food and nutrition security are regarded as a time,
every individual has physiological, socioeconomic accessibil-
ity to food products as well as supplied in adequate quantity
and quality to fulfill the nutrition requirements, and that is
facilitated by requisite hygiene, healthcare surroundings that
ensure a good standard of living [146]. Inter-Agency Work-
ing Group (IAWG) has focused on the Food Insecurity and
Vulnerability Information and Mapping Systems (FIVMS)
that rely on a food diet and nutritional status varying from
persons to household to nations which are represented in
Figure 3 [147, 148].

4.1. Various Aspects of Food Safety. To reduce the risk of
foodborne illness, safe food handling methods and protocols
are enforced at any point in the food processing life cycle
[149]. The different aspects of food safety are summarized
as shown in the supplementary section (Figure S2).

4.1.1. Microbiological Aspect. A large number of foodborne
diseases and outbreaks have been identified, with pathogenic
bacteria, viruses, and protozoa contaminating fresh products
and animal products from contaminated sources [150].
Bacterial agents found in food are the main cause of serious
and deadly foodborne illnesses [151].

4.1.2. Chemical and Toxicological Aspect. Empirical evidence
shows that FCCs can move from food contact materials and
articles into food, implying that the vast majority of the
human population is exposed to one or more of these chemi-
cals [152]. Heavy metals like lead, arsenic, mercury,
cadmium, and copper were found in higher concentrations
in some food samples than in others, indicating potential
utensil leaching and poor food hygiene [153].

4.1.3. Environmental Aspect. Pesticide residues in the atmo-
sphere are recorded, as well as mass extinctions of nonhu-
man biota such as bees, birds, amphibians, fish, and small
mammals occurred due to food spoilage [154]. The Stock-
holm Convention, which was accepted in 2002, outlawed
persistent and bioaccumulative chemical compounds like
DDT, toxaphene, HCH, aldrin, and dieldrin and substituted
them with environmentally safe and less-bioaccumulative
chemicals [40].

4.1.4. Nutritional Aspect. Diets are having devastating health
effects when combined with snacking behavior associated
with busy lives and increasingly sedentary behaviors, and
the burden of illness due to diets and lifestyles may well raise
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more throughout the future. For goods that may not come
under the EU’s existing diet and health claim regulations,
or similar legislative structures around the world, a regula-
tory mechanism may be required [155, 156].

4.1.5. Personal Hygiene. Food handlers and preparers with
poor personal grooming habits put their own and the pub-
lic’s health at risk. Many foodborne illnesses can be avoided
with simple practices including extensive hand washing and
proper washing facilities [157].

4.1.6. Legislative Aspect. Food legislation’s main goals are to
protect the consumer’s well-being, protect the consumer
from theft, and promote trade. It may also be appropriate
to pass legislation prohibiting the adding of nutrients to
foods where it is nutritionally unnecessary or unhealthy or
where fortification may give the wrong opinion about nutri-
tion [158]. The EFSA, European Food Safety Authority, in
the European Union (EU), and the FDA, Food and Drug
Administration of the United States of America, are the
three most powerful regulatory bodies in the world that leg-
islate and enact the legislation and supervise clearance and
control of food additives. The JECFA, the Joint Food, and
Agriculture Organization (FAO)/World Health Organiza-
tion (WHO) Expert Committee on Food Additives, and
the Codex Alimentarius are two other relevant organizations
that assess safety risks, conduct research, question state-
ments, and are generally concerned with food additives
[159]. Hazard Analysis Critical Control Point system
(HACCP) and other quality assurance systems like ISO
9000 system can be used to assure the quality of both goods
(products) and services. The ISO 9000 family includes stan-
dards such as the ISO 9001:2015, the ISO 9000:2015, the ISO

9004:2009, and the ISO 19011:2011 to monitor food
hygiene [160].

Food supply, sustainability, utilization, and safety are
prominent food security features within the food supply
chain. A horrible situation of illness and food insecurity
hampering every age group created by food contamination.
A collaborative approach among government agencies, man-
ufacturers, distributors, and purchasers will undoubtedly
help ensure food safety.

5. Biodegradable Food Packaging Materials

Materials for the packaging of foods commonly include
plastics, sheets, glasses, and metals such as aluminum foils,
laminates, and tin-plates. Packaging materials protect food
from degradation by providing various mechanisms, such
as avoiding entry to the product, odor transmission preven-
tion, and the conservation of an internal packaging environ-
ment [161]. Plastics such as polyvinyl chloride (PVC),
polyethylene (PE), and polyamide (PA) have high thermal
tolerance. They are inexpensive and have exceptional
mechanical characteristics, such as carbon dioxide and oxy-
gen, and heat tolerance. Plastics are, therefore, used intensely
for food packaging [162]. As a result of food packaging, a
massive amount of plastic waste is formed, and its manage-
ment turns into a global problem in many developing and
underdeveloped countries [17]. However, the biodegradable
packaging material is scattered as small fragments into the
biodegradation waste and byproducts and formed carbon
dioxide, water, and biomass, which is recycled to the natural
environment by biocycles by microorganisms [163]. Polyhy-
droxyalkanoates (PHAs) that can be prepared from
renewable and biowaste resources are considered as
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biodegradable and biocompatible biomaterials and prospec-
tive replacement for nondegradable plastics [164].

Many natural and synthetic polymers that have been
found biodegradable are used for food packaging applica-
tions. Natural polymers like cellulose, starch, and protein
are used in food packaging, etc. Likewise, fossil fuel sources
such as gasoline, natural gas, and coal, as well as natural
monomers, are used in food packing, and all of which are
naturally biodegradable, originate synthetic polymers as
shown in Figure 4 [165].

5.1. Based on Natural Polymers. Synthetic polymers are the
most widely used materials for packaging because of their
ease of processing, low cost, and low density. However,
many of these materials are not easily recyclable and are
difficult to degrade completely in nature, creating environ-
mental problems. Thus, there is a tendency to substitute
such polymers with natural polymers and copolymers that
are easily biodegraded and less likely to cause environmental
pollution. There has been a greater interest in poly-lactic
acid (PLA), polyhydroxyalkanoates (PHAs), cellulose and
starch-based polymers, and copolymers as the emerging bio-
degradable material candidates for the future. The field of
use of biodegradable polymer in food-contact articles incor-
porates expendable cutlery, drinking cups, serving of mixed
greens cups, plates, overwrap and cover film, straws, stirrers,
covers and cups, plates, and holders. Cellulose is the most
bountiful, practical, compostable, biodegradable, and reusable
natural material on earth and has numerous applications.
Plant cellulose is dominatingly accepted to be among the most
extravagant natural polymers on earth. Paper and board mate-
rials have great mechanical properties as bundling material;
however, the gas and water fume porousness is regularly
exceptionally high for some food applications [166].

Poly (lactic acid) (PLA) is one of the most encouraging
biopolymers acquired from the controlled depolymerization
of the lactic acid monomer obtained from the fermentation
of sugar feedstock, corn, etc., which are renewable resources
readily biodegradable. It is a flexible polymer, recyclable, and
compostable, with high transparency, high molecular weight,
great processability, and water solvency opposition [167].

In addition to minimizing environmental contamination
as biodegradable, edible protein packaging films often
improve packaged food quality, including tastes and color-
ings. In the development of biodegradable films that can pre-
serve food by controlling the bacterial formation, naturally
occurred compounds, including nisin, pediocin, or lyso-
somes, are used [168]. Composite biofilms are made of two
types of biomolecules, namely, hydrocolloids and lipid. Since
composite films are an obstruction to oxygen, water, and
carbon dioxide, food products’ fragrance is preserved. They
are therefore used in food packaging [169].

The most plentiful polysaccharide on earth after cellu-
lose is chitosan. Chitosan is created from chitin by deacety-
lation to eliminate the acetyl group [170]. The chitosan-
based composite nanolayers can be used to develop novel
food packaging materials that can potentially be as
functional as conventional plastics and, therefore, replace
conventional plastic packaging while leaving a significantly

lower environmental footprint [171]. The incorporation of
different nanomaterials into biobased polymers such as
chitosan, potato starch, carboxymethyl cellulose (CMC),
cornstarch, and Arabic gum can improve the different prop-
erties of packaging materials by enhancing antimicrobial
activity, thus preventing foodborne pathogens, thereby
significantly enhancing the properties of biobased materials
like food packaging materials [172]. Numerous examples
show that bacterial growth can be inhibited by organic
acid-based food packaging and extend foods’ shelf life.
Researchers developed antimicrobial EVOH films with
sorbic acid chitosan microcapsules (S-MPs) and applied
them to fish fillets (Hu et al., 2017). In terms of the antimi-
crobial property, TiO2 nanoparticles (NPs) were found to
kill a wide range of microorganisms, including Gram-
negative and Gram-positive bacteria, fungi, protozoans,
and virus bacteriophage [173].

Organic acids are commonly used as traditional food
additives, including propionic acid, lactic acid, malic acid,
sorbic acid, and tartaric acid. Sorbic acid and potassium sor-
bate are active against many bacteria and molds [129]. Due
to their potential in the food and pharmaceutical industries
and aromatherapy, essential oil (EOs) kits have shown
in vitro efficacy against microorganisms and oxidants in
food experiments and/or food simulator evaluation tests
[174]. The possible use of natural and sustainable ingredi-
ents, rather than conventional synthetic molecules or chem-
ical compounds, is being used in packaging systems.
Nanotechnological methods are promising techniques for
the entire agricultural industry chain, from industry to
customers [175].

Adding antimicrobial properties to the biodegradable
packages, these new materials can offer enhanced protection
against food spoilage, extending the shelf life [176]. Because
of the low priced, nontoxic, antibacterial action, poly
(butylene adipate-co-terephthalate) films incorporating dif-
ferent amounts of chitosan nanofibers have great potential
in food and pharmaceutical packaging [177]. Nanocompos-
ite films based on cellulose acetate and polyethylene glycol
cetyltrimethylammonium bromide-modified montmorillon-
ite can be used as an active packaging material because of
its good antimicrobial activity as well as nontoxicity on
human blood [178].

5.2. Based on Polymers Derived from Renewable and Fossil
Resources. Petroleum-based plastics are the most commonly
used polymers in packaging applications due to their supe-
rior properties and relatively low cost [179], although these
plastic materials are not biodegradable, recycled, and depend
on nonrenewable sources leading to adverse environmental
depletion and global warming [180]. To overcome these
problems, biodegradable polymers derived from renewable
resources are given much attention in recent years for the
packaging process, which is driven by increased public
awareness of the global environmental challenges related to
nondegradable plastics. Biodegradable polymers for food
packaging from a renewable source can be classified as
microbial polymers and synthetic polymers from natural
monomers [181].
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5.3. Microbial Polymers. Microbial polymers are obtained
from microorganisms through the metabolic engineering
process. Polylactic acid (PLA), polyhydroxyalkanoates
(PHA), and exopolysaccharides (EPS) are the major micro-
bial fermentation-based biopolymers [182].

Polyhydroxyalkanoates (PHA) are obtained from renew-
able raw materials like fatty acids, maltose, and glucose from
biotechnological conversion [183]. PHAs are biocompatible,
crystalline, and nontoxic thermoplastic elastomers with a
low melting point, good UV resistance, and physical and
chemical properties that depend on the composition of
PHA monomer [184]. Polyhydroxybutyrate (PHB) is the
common illustration of PHA for short-term food packaging
applications with a high degree of crystallinity. It has the
benefits of biodegradability with 70% crystallinity showing
mechanical properties like polyethylene. Additionally, PHB
is used in packaging applications because of its lamellar
structure and higher aroma barrier properties with the
permeability of water vapor [185].

Exopolysaccharides (EPS) are complex microbial poly-
mers synthesized from bacteria, fungi, and blue-green algae.
They are composed of carbohydrates and are secreted
outside the cell wall [182]. Among various types of EPS like
alginate, glucans, dextrin, and xanthan, kefiran gains much
attention in packaging application due to its water solubility,
biocompatibility, emulsifying and stabilizing effect, and
biodegradability [186].

5.4. Based on Synthetic Polymers from Natural Monomers.
Synthetic polymers from natural monomers for food pack-
aging technology are novel biodegradable and eco-friendly,
alternative to petrochemical plastics and synthetic polymers
from fossil resources.

Polyglycolic acid (PGA) is a biodegradable polymer
obtained from both petrochemical resources and
renewable-derived monomers. It is a rigid polyester used in
packaging applications as a protective layer for carbonated
soft drinks and beer [187]. PGA possesses a similar structure
as PLA but retains higher heat distortion temperature, high
crystallinity, mechanical properties, biocompatibility, and
gas barrier properties against carbon dioxide and oxygen
[188]. On the other hand, large-scale production and appli-
cation of PGA are still facing challenges due to the lack of a
low-cost method for monomer preparation [189].

Polylactic acid (PLA) is a biodegradable polymer
obtained from lactic acid by the fermentation of renewable
crops like starch, sugar, and corns. It has gained much atten-
tion in food packaging because of its comparatively better
mechanical strength, easy availability, durability, and trans-
parency than other biodegradable plastics [188, 190]. Due
to the high gas permeability and poor barrier property,
PLA is not applicable for beverage bottle applications, which
can be improved by combining with high barrier plastics like
PGA from melt compounding or lamination [188].

Poly butylene succinate (PBS) is an aliphatic polyester
prepared from the polycondensation of succinic acid and
1,4-butanediol monomers with noble biodegradability,
compostability, extensive thermoplastic processing, stable
mechanical properties, and good thermal and chemical resis-
tance. Nowadays, these monomers can be produced from
renewable biomass like starch, xylose, and glucose [191].
PBS is used in the food packaging application because of
its resistance towards degradation when exposed to heat
and light [192]. The properties of PBS like high crystallinity,
good thermal properties, mechanical properties, and easy
processibility made these polyester candidate materials for
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Figure 4: Classification of biodegradable polymers for food packaging application [165].
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food packaging applications such as films and semirigid
bowls [193, 194]. The low impact strength and tear resis-
tance might limit its application in food packaging [195].

Even though these polymers derived from renewable
sources are biodegradable, biostable, environment friendly,
and mostly used as packaging material, they limit in their
large-scale industrial applications due to oxygen, water vapor
barriers, thermal heat resistance, and expensive cost [196].

Biodegradable polymer advancement is yet in its initial
stages; as of now, it covers a little part of the current
bundling market around the world. Biopolymers satisfy the
ecological concerns; however, such have a few constraints
regarding financial aspects and execution.

6. Challenges and Suggestions

One of the most challenges for the present and future is the
supply of sufficient, healthy, pure, and safe food to the
increasing world population. Among the world population,
almost 11% of them are still undernourished despite suffi-
cient energy supply [197]. Food security, the access to suffi-
cient amounts of food, cannot be achieved by growing
agricultural production or fair global distribution alone since
most food is wasted between production and retail. Hence,
developing innovative technologies for food preservation,
processing, and packaging is required. But the sophisticated
analytical techniques used for food control generally work in
a targeted mode where contamination remains undiscov-
ered, raising the level of contaminants [198].

The presence of various toxigenic fungi or their second-
ary metabolites as mycotoxins in human food and livestock
feed is a recurring food safety problem so the mycotoxin-
producing species and the particular strain must be authen-
tically identified by adopting recently developed techniques
(like PCR-based techniques, laser biospeckle technique,
apta-sensor, immune-sensor, enzymatic-sensors, and others)
and by the development of new fungal selective agar media
for the isolation of toxigenic fungal strains only. Similarly,
several innovative methods such as attenuated total reflec-
tance Fourier transform infrared spectroscopy (ATR-FTIR),
enzyme-linked immunosorbent assay (ELISA), liquid
chromatography-tandem mass spectrometry (LC-MS/MS)
via a multiple antibody immunoaffinity column, and suspen-
sion array technology can be applied for detection of myco-
toxins in commodity [199, 200]. As shown by recent reports,
“Surface Active Maghemite Nanoparticles” is indicated as a
stable and good magnetic nanocarrier for mycotoxin
removal; the potential of which can be tapped by the food
industries [201]. Food chemistry has an important task to
improve food security to give perishable products longer
shelf lives by developing appropriate strategies.

7. Conclusions

Food can be contaminated, often by different variants such
as microorganisms, heat, moistness, or water, contributing
to many foodborne diseases. Food safety and security are
important to maintain the wellness of human beings. Thus,
to ensure food safety, biodegradable packaging materials

are exclusively used since they are eco-friendly. The procure-
ment of suitable packaging materials and technology plays a
crucial role during the delivery and storage process to properly
preserve quality and freshness. Food adulteration entails
incorporating irrelevant, deleterious chemicals into food,
which diminishes the food’s quality and has become a signifi-
cant problem to people’s well-being. Though a massive num-
ber of analytical tools and techniques are used for food
analysis, there are still a decent number of problems that need
to be improved. People around the globe have changed their
diets from mainstream food for the increment of the immune
system. To meet the ever-increasing food demand, alternative
food sources of high nutritional value, such as snails and home
processed food, are considered a good alternative candidate.
The rationale of this article was to present the main chemical
reactions that are present in food, for instance, Maillard reac-
tion, caramelization reaction, oxidation reaction, and forma-
tion of acrylamide in the various food matrices and
demonstrate the need for modern analytical techniques and
numerical analyses to elucidate the various reaction pathways
that are in some cases still very complex to understand in
depth. Understanding these reactions enables us to put for-
ward mitigation strategies in food processing technology to
limit the occurrence of toxic or carcinogenic compounds.
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