
Conference Review

ISYS (Integrated SYStem): a platform for
integrating heterogeneous bioinformatic
resources{

Damian Gessler*
National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA

*Correspondence to:
National Center for Genome
Resources, 2935 Rodeo Park
Drive East, Santa Fe, NM 87505,
USA.
E-mail: ddg@ncgr.org

Received: 28 January 2002

Accepted: 7 February 2002

Keywords: Bioinformatics; Integration; integrated system; loose coupling; selection

synchronization; Java

Introduction

Modern biological discovery is becoming a domain
where one increasingly requires a synthesis of dis-
parate biological data to make significant progress.
For example, over the life of an investigation it is
not uncommon to need to employ QTL (Quantita-
tive Trait Loci) mapping techniques, access seq-
uenced information of the candidate regions, cross
species boundaries with sequence homologies via
BLAST (Basic Local Alignment Search Tool), seek
to relate interesting annotations via gene ontologies,
and follow this up with directed gene expression
studies. In fact, the multifaceted approach to
biological discovery can be seen by noting that the
opposite sequence of events is equally feasible.

To be able to deploy this type of investigation,
one requires the computational analysis of data at
numerous stages. Indeed, while bioinformatic ana-
lysis is clearly not solely sufficient for biological
discovery (except in rare cases), it is becoming
increasingly necessary as a component in almost all
cases. In response to this, much bioinformatic
development to date has been in been in either the
development of individual, specialized tools and

algorithms, or integration at the data level. This is
witnessed by the wide variety of expert tools availa-
ble and the plethora of different standards and
databases for cross-data type comparisons.

Yet despite this, moving between even a small
number of programs during a single session at the
computer can be clumsy and inefficient, and integ-
ration at the data level has numerous inherent
limitations, including constraints on flexibility,
biological context, cost, and timeliness. Integration
– or the lack of it – remains one of the fundamental
obstacles to the efficient identification, inclusion,
analysis, and synthesis of biological data.

ISYS2: NCGR’s Integrated SYStem

There is no one, global integration solution, but a
combination of approaches can build systems that
really are more efficient than others. Upon studying
the problem, it becomes clear that there has been
much work and thought in developing specialized
bioinformatic tools and unified approaches to data
modeling, but relatively little work on a low cost,
minimum buy-in, plug-and-play architecture for the

{This review is adapted from a section of the Proceedings of the International Cotton Genome Initiative (ICGI) 2001 workshop and
reflects a presentation recently delivered at the 10th Plant, Animal and Microbe Genomes Conference. The content derived from the
report for the ICGI is reproduced by kind permission of the ICGI Steering Committee (Roy Cantrell, Chair).

Comparative and Functional Genomics

Comp Funct Genom 2002; 3: 169–175.
Published online 11 March 2002 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002 /cfg.150

Copyright # 2002 John Wiley & Sons, Ltd.



integration of applications [2]. ISYS, an acronym
for Integrated SYStem, approaches the problem by
offering a way to integrate computer applications
themselves. This should be seen as complementary
to the advances of other approaches. Essentially, it
allows one to use mouse-clicks and selection events
between applications to emulate the experience of
working within a single application. Yet ISYS pre-
serves these applications’ separate development
trajectories: because ISYS integrates legacy code
and data sources with arbitrarily complex data
models, it value-adds to existing expert specialized
code and to existing data integration approaches.
ISYS:

$ is designed to be a light-weight platform that

does not require a costly, up-front investment.

ISYS is written in Java and runs client-side on

scientists’ individual computers. This makes it

attainable to a broad number of researchers and

developers – the very people who are often

directly involved in designing and writing expert

specialized applications;
$ requires no formalized standards for integration

dependent on a wide-scale, industry buy-in. ISYS

encourages convention over standardization as a

mechanism to build grass-roots interoperability

amongst components. ISYS is not incompatible

with standardization efforts, it simply does not

require that such industry-wide standards be set

before one begins to integrate components;
$ allows different technologies to advance at differ-

ent rates. Computer programs, sometimes called

tools, components, or expert code, ‘plug in’ to

the ISYS bus (see below, next section), not to

each other. This means that when one wants

to incorporate advances in one field, one can

plug in the latest ISYS-compatible code without

having to make changes to other components. In

fact, the new component can immediately experi-

ence integrated behavior (see below, this section)

with existing components even if they were

developed entirely independently of each other.

This design feature means that developers can

value-add to their code and conserve their efforts

(because they can deliver new functionality in

combination with other components in an inte-

grated environment), while scientists can custo-

mize their desktops to reflect the most recent

changes in the fields of their unique interests;
$ preserves existing investments by requiring a

minimum of effort to get integrated behavior.
ISYS does not require changes to the data
models of plugged-in components. This makes
ISYS very friendly to integrating legacy code,
preserving investments, and leveraging work
already done. Integration (that is, the act of
making code ISYS-compatible) may or may not
require changes to a component’s source code,
with the level of changes varying with the
amount and type of integration sought. In
general, ISYS ‘sits on top of’ existing code, so
integration usually requires a dozen to a few
hundred lines of code to make data available to
other programs. When compared to the thou-
sands of lines of code often necessary to develop
new applications or significantly expand their
functionality, building an integrated environment
from existing tools offers substantial savings in
investment, while delivering expert code written
by experts in their own fields;

$ imposes no intellectual property reach-through
on code. When you write code to plug into ISYS,
that code is yours, to use, restrict, distribute as
you see fit. There is no intellectual property
reach-through to your code; you have merely
adapted it to work in a particular environment
(i.e., ISYS), and you can even maintain your
code’s run-time independence of ISYS in a non-
ISYS environment with a single ‘if’ statement.
NCGR makes the API (Application Program-
ming Interface) available to developers via
registration for the Software Development Kit
(http://www.ncgr.org/isys/developers), so research-
ers train their own undergrads, graduate stud-
ents – even themselves –to plug tools into
ISYS;

$ encourages the wide distribution of plug-and-
play code. The preceding features mean that
ISYS-adaptability encourages the broad sharing
and exchange of specialized, integrated applica-
tions. For example, ISYS allows the integration
of gene expression viewers and gene ontology
viewers, and the ability to unplug either viewer
and replace it with a newer one without changes
to the rest of the integrated environment;

$ presents the equivalent of complex declarative
queries in a simple, visual environment. Consider
two databases, one of gene expression results
and one of gene ontologies, where, for example,
one wants to see all results with gene expression
ratios greater than five that are involved in DNA

170 D. Gessler

Copyright # 2002 John Wiley & Sons, Ltd. Comp Funct Genom 2002; 3: 169–175.



repair. It is often costly to go through a complex
data-integration process, to be then followed
by the need to construct complex declarative
queries. Data integration projects require not
only the original integration effort, but also
regular maintenance and curation. ISYS inserts
a level of uncoupling between the informatic
projects that really require data integration and
the researcher. This moves maintenance and cura-
tion costs back to the original data integration
providers. ISYS then addresses integration at the
application level. For the developer, the costs
associated with implementing ISYS functionality
can be significantly less than the alternative data
integration approach. One such functionality is
called selection synchronization, and it can be
expanded to not only synchronize selection
events across independently written programs,
but to also send data-hidden events, data-added
events, visibility events, etc. Data-events allow
one program to filter the display of another. This
filtering ability greatly enhances functionality,
since now users can get a functional behavior
out of the integrated behavior of two programs
even if the developers of neither application ever
anticipated the scientist’s biological question. So,
in the above example, ISYS allows researchers to
plug in a gene expression viewer and use all of
that tool’s complicated and sophisticated features
to view their gene expression data, and to do so
similarly with a gene ontology viewer accessing a
gene ontology database. They can then merely
select gene symbols of interest in one program
and see associated information (e.g., gene onto-
logies) highlight in the other. Currently, while
ISYS can coordinate access to data sources or
algorithms written in virtually any language, this
type of special on-the-screen visual synchroniza-
tion requires programs to be written in Java;

$ allows one to move from one program to another
without having to anticipate all possible paths.
ISYS employs a patent-pending technology
called DynamicDiscovery2. When programs are
‘plugged into’ ISYS, they register with ISYS and
tell it the type of data they use. ISYS records and
coordinates this amongst programs, so when a
researcher simply selects something in a program
and right-mouse clicks (Ctrl-click on web pages),
ISYS returns all those programs that can
currently operate on the data. Because single
pieces of data can be tagged with many data

types (for example, a sequence can be tagged as a
sequence, but also with a taxon and an associated
gene symbol), there is a rapid combinatoric
increase in how one can pursue discovery with
data. One may select a sequence anticipating to
do BLAST, but then see that one can also go to
Gene Ontology and get all related gene symbols
in the same biological process. This frees the
scientist from always thinking in terms of a
bioinformatic recipe, and opens to him or her a
point-and-click way to do exploratory discovery.
The important point is not that one could not
have gone first to Gene Ontology if one had so
thought, but that discovery as an endeavor is
more fruitful in a richer environment, and this
is the environment ISYS attempts to provide.
As one combines event synchronization and
DynamicDiscovery in the same environment,
ISYS begins to bring the same type of point-and-
click efficiency one is used to within an applica-
tion, to between applications; thus the original
goal of bringing an application-integration solu-
tion to bioinformatics;

$ respects legacy data models. Applications present
to the ISYS bus the data they choose, and
respond to ISYS requests as they choose. This
makes ISYS broadly forgiving in the type of
applications that can be plugged into the bus, but
it also means that ISYS functionality is not
imposed on applications: for example, many
applications may not be able to do full selection
synchronization, so the specific behaviors will
vary from application to application in accor-
dance with the developers’ design;

$ allows integration with web pages. ISYS allows
developers to treat web pages as ‘components’
plugged into ISYS. Users can do Dynamic
Discovery in a client-side program and send the
data straight to web services. Alternatively, web
pages can be ‘marked up’ with data tags, so users
can doDynamicDiscovery straight fromweb pages
and bring the data either back client-side or pass
it onto other web pages. Data can be disparate
and in different locations –either visually on the
web page or even spatially at different web sites
–yet with a single mouse-click users can get a list
of all those programs currently suitable for those
types of data and launch them with a single click.
Just like cut-and-paste relieved the need for
tiresome and error-prone data-reentry, Dynamic-
Discovery on web pages can relieve repetitive

ISYS (Integrated SYStem) 171

Copyright # 2002 John Wiley & Sons, Ltd. Comp Funct Genom 2002; 3: 169–175.



cutting-and-pasting. ‘Marking up’ requires a
developer to ‘wrap’ a web page, but users can
also do DynamicDiscovery on single selections of
generic text on virtually any web site (currently,
ISYS does not support cookies, though the level
of functional compromise varies.) As just two
examples, a researcher may be reading an
article’s abstract on a web site, she can then
simply select a gene symbol in the text, send if off
for a look-up in Gene Ontology and concurrently
send it to GenBank to get sequence information.
Or she could grab sequence text off a web page
and concurrently send it to NCBI for BLASTing
and GenScan for gene prediction. The process of
‘marking up’ allows developers to add what are
essentially virtual hyperlinks to a web page. The
Java code to do this is relatively simple and
resides client-side, so with a little programming
individuals can customize web page behavior to
their needs. It used to be that users only had
those hyperlinks presented to them by the web
page author, but now non-authors can mark
up web pages so they decide where new links
should be: importantly, these ‘links’ are content-
sensitive, so instead of just being a static hyper-
link, they link you to whatever services are
currently registered with ISYS.

Software bus and the loose-coupling
architecture

ISYS itself is invisible to the user. ISYS can be
thought of as a bus, that is, a piece of middleware
that acts like an orchestra conductor, coordinating
events and movement between applications. When
one adapts one’s program to plug into ISYS, one
merely adds some code that allows the program to
register with ISYS and act appropriately when a
user does something like selecting data, hiding data,
etc. ISYS does not require one to implement all
these features, since some data models may be less
amenable to certain operations that others. When a
user in another application does something relevant
to your application, ISYS sends your application an
event and gives it a chance to take some action.
Because your application has registered on the bus
as being relevant for certain data types, whenever a
user does DynamicDiscovery on that data type your
application is listed as a viable route for invocation.
Because event synchronization between components

needs to be meaningful, ISYS establishes synchro-
nization between components only upon Dynamic-
Discovery. Applications can always desynchronize
if they choose. Because applications do not syn-
chronize directly with each other (nor do they
directly handle DynamicDiscovery themselves),
they need not be concerned with what else is
plugged into the bus. This type of architecture is
called ‘loose coupling’ [1] and it is what gives
developers and scientists the flexibility to plug-and-
play different components in a simple coordinated
fashion. ISYS has the notion of static services
whereby a component can demand that another
specific application be present. In this manner, if a
component requires tighter integration it can
demand it, but it is not mandated by ISYS.

Modules can be upgraded without
rewriting software

The loose coupling architecture achieves integration
by having components interact via the common
ISYS API, not directly with each other. Thus, for
example, if an application receives an ItemSelected
event (altering it that it should now highlight
matching items for the user), it does not care if
that event was generated by a gene expression
viewer, a database browser, a generic viewer, or
whatever application. Components are essentially
ignorant about why they are requested to do some-
thing. Because of this, if the user unplugs the gene
expression viewer and replaces it with a newer one –
or even replaces it with an entirely different
application like a thesaurus/glossary program –
and this program also generates an ItemSelected
event that is sent to the receiving application, then
the application processes the event in the same
way; that is, there are no code changes necessary
to get instant visual integration with this new
application.

DynamicDiscovery

DynamicDiscovery is the process whereby users can
invoke new programs based on the type of data
they are currently selecting. Upon invocation, event
synchronization is established (Figure 1). Dynamic-
Discovery allows one program to send data to
another program, and minimizes the chance that
the data will be inappropriate. ISYS runs all

172 D. Gessler

Copyright # 2002 John Wiley & Sons, Ltd. Comp Funct Genom 2002; 3: 169–175.



visually synchronized programs within the same
process space inside a single Java Virtual Machine,
though it can easily interact with non-synchronized
programs in other process spaces. This means that
developers can take advantage of Java interfaces to
display views of their data model to other programs
without the actual transfer of data. This means that
formats such as XML, or technologies such as RMI
(Remote Method Invocation) or CORBA (Com-
mon Object Request Broker Architecture) are not

necessary. Often, ‘data transfer’ is achieved simply
by passing memory references, without the data
itself ever being copied. This can allow extremely
efficient inter-application communication. A dis-
advantage is that memory sharing and CPU alloca-
tion within a process space does not benefit from
the many operating system level inter-process secur-
ity and robustness measures, so errant or malicious
applications can destabilize ISYS or corrupt data.
The latter problem can be minimized by a strict

Figure 1. Research using four different, integrated tools. The researcher has gene expression results with simply ORFs
(open reading frames) as identifiers (background tool). Via ISYS, the information is sent to a database table view, which maps
ORFs to gene symbols, and then to the Berkeley Drosophila Genome Project’s gene ontology viewer (red table in
foreground). All three tools are synchronized, highlighting the gene symbol REV7 (YIL139C). The researcher has then filtered
back to the original set so it only includes those genes included in DNA repair. The researcher is also viewing information
about REV7 on the Saccharomyces Genome Database’s web page and has invoked DynamicDiscovery (gray menu) directly on
the web page. The researcher can now extract information and send to the list of registered ISYS services. Reproduced by
permission of the International Cotton Genome Initiative (ICGI) Steering Committee

ISYS (Integrated SYStem) 173

Copyright # 2002 John Wiley & Sons, Ltd. Comp Funct Genom 2002; 3: 169–175.



adherence to good object-oriented programming
standards.

Data types and attributes

At the heart of synchronization and Dynamic-
Discovery is the tagging of data as different data-
types. This is done by employing Java interfaces to
tag classes with attributes. Just like a cup on your
desk may be white, made of porcelain, exist in some
space-time framework, and belong to you ‘all at the
same time’ – i.e., without any explicit data structure
– ISYS allows that tagging of data with disparate
biological meanings by similar ‘all at the same time’
attributes. This independence of attributes means
that you can unplug gene expression programs
without if affecting the functionality of your gene
ontology browser on an given piece of data, and
vice versa. Developers can add attributes in a local
manner as they see fit, so ISYS does not dictate any
global biological data model.

Within a top-level independence of attributes,
other attributes can be hierarchy nested, and all
attributes can mandate the implementation of
arbitrarily complicated (or simple) methods or func-
tions to ensure that they are used and interpreted
correctly. For example, a developer may add the
new attribute MyComplicatedMethylatedSequence
under the existing attribute SequenceText. Imple-
mentations of that new attribute on data will have
to satisfy methods dictated by SequenceText (e.g., a
method called getSequenceText() which returns the
sequence as a text string), while at the same time
specifying any new methods. Legacy programs
that were registered on the bus as listening for
SequenceText will continue to work, while new
programs that register to listen for MyComplica-
tedMethylatedSequence will also interact with
programs recognizing just SequenceText (since
MyComplicatedMethylatedSequence is a type of
SequenceText), while also offering new functionality
for their new type of data. Synchronization is
accomplished on the values of the attributes, as
returned by the attributes’ methods.

An example of ISYS in comparative
genomics

NCGR and international centers of the Consulta-
tive Group on International Agricultural Research

(CGIAR) have recently completed a pilot project
to connect the CGIAR’s International Crop Infor-
mation System (ICIS) to ISYS with the inclusion of
a new Comparative Map Viewer. ICIS stores
hundreds of megabytes of crop genealogical and
associated data. The Centers of the CGIAR want
this data available to a variety of analysis tools,
thereby leveraging the value of their data by being
able to analyze it in an integrated, customizable
manner. The Comparative Map Viewer allows the
visualization of syntenous regions between linkage
groups either within or between species. Via ISYS
services, the tool can access data directly from ICIS
and also from more generic sources. Both the
Comparative Map Viewer and ICIS plug into
ISYS, so, for example, CGIAR researchers can
view their mapping data and simply click on
annotated regions to search amongst Gene Onto-
logies and GenBank, or even click on unannotated,
physical regions and send sequences to gene predic-
tion algorithms like GenScan.

The larger picture

There is a common theme in how bioinformatics
operates in research communities. Efficient data
utilization tends to spring from 1. community-wide
resources, such as server/web configurations, and 2.
client-side analysis tools that reflect each scientists’
needs. CottonDB, SGD (Saccharomyces Genome
Database), Flybase, MGI (Mouse Genome Infor-
matics), TAIR (The Arabidopsis Information
Resource, a collaboration between Stanford Uni-
versity’s Carnegie Institute of Washington and
NCGR), and numerous others provide important
resources to their research communities. These
resources gain even greater functionality when 1.
and 2. are combined, presenting an integrated
client-server package. ISYS is designed so that
these different technologies can proceed at different
rates, with the input and contribution of different
people, while leaving the basic power of integration
configuration in the hands of the scientists and
developers themselves.

NCGR is currently integrating their biochemical
network database and software tool called PathDB
into ISYS. Curators enter biochemical pathway
data into PathDB’s database as atomic reaction
steps. Currently, information from over 900 papers
on Arabidopsis have been entered into PathDB,
and while the total number of ‘pathways’ is still

174 D. Gessler

Copyright # 2002 John Wiley & Sons, Ltd. Comp Funct Genom 2002; 3: 169–175.



small (about 162), the Arabidopsis information
complements entries spanning 202 taxa and thou-
sands of proteins, compounds, metabolites, and
literature citations. When completed, a researcher
will be able to query the database by numerous
means, and the program will then rebuild and
display networks on-the-fly. Because reactions, and
not pathways, are the basic building blocks, the
computer can identify new network connections
(essentially, hypotheses at this stage) not known by
previous researchers. Once integrated into ISYS,
users will be able to go from gene expression
displays to biochemical networks simply by select-
ing and clicking on their results. For availability of
ISYS, please visit http://www.ncgr.org/isys.

Acknowledgement

ISYS reflects the work of many people. Of special note and

recognition for their pioneering roles are Adam Siepel,

Andrew Farmer and Andrew Tolopko.

References

1. Siepel AC, Farmer AD, Tolopko AN, et al. 2001. An

integration platform for heterogeneous bioinformatic software

components. IBM Systems Journal 40: 570–591.

2. Siepel A, Farmer ATolopko A, et al. 2001. ISYS: a

decentralized, component-based approach to the integration

of heterogeneous bioinformatic resources. Bioinformatics 17:

83–94.

ISYS (Integrated SYStem) 175

Copyright # 2002 John Wiley & Sons, Ltd. Comp Funct Genom 2002; 3: 169–175.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Anatomy 
Research International

Peptides
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Molecular Biology 
International 

Genomics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Evolutionary Biology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biochemistry 
Research International

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Genetics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2014

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Enzyme 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Microbiology


