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Simultaneous testing of multiple genetic variants for association is widely recognized as a valuable complementary approach to
single-marker tests. As such, principal component regression (PCR) has been found to have competitive power. We focus on
exploring a robust test for an unknown genetic mode of all SNPs, an unknown Hardy-Weinberg equilibrium (HWE) in a
population, and a large number of all SNPs. First, we propose a new global test by means of the use of codominant codes for all
markers and PCR. The new global test is built on an empirical Bayes-type score statistic for testing marginal associations with
each single marker. The new global test gains power by robustly exploiting the Hardy-Weinberg equilibrium in the control
population and effectively using linkage disequilibrium among test markers. The new global test reduces to PCR when the
genotype for each marker is coded as the number of minor alleles. This connection lends insight into the power of the new
global test relative to PCR and some other popular multimarker test methods. Second, we propose a robust test method based
on the new global test and the ordinary PCR test built on a prospective score statistic for testing marginal associations with each
single marker when the genotype for each marker is coded as the number of minor alleles by taking the minimum p value of
these two tests. Finally, through extensive simulation studies and analysis of the association between pancreatic cancer and some
genes of interest, we show that the proposed robust test method has desirable power and can often identify association signals
that may be missed by existing methods.

1. Introduction

Association analyses that test multiple genetic markers as a
set rather than individually have been appreciated for their
potential power. These statistical methods largely fall into
three classes: those for summarizing p values from the tests
of each single marker [1–5], those that synthesize single-
marker test statistics, such as Hotelling T2 (standard Chi-
squared) statistic [6–8] and the burden test [9, 10], and those
based on a direct test of joint associations of multiple
markers, such as variance component tests (VC) [11–13],
the sequence kernel association test (SKAT) [14–18], and
principal component regression (PCR) methods [19–21].
The relative performance of these methods has been com-
prehensively compared in previous work [22]. When the
number of single-nucleotide polymorphisms (SNPs) is
small, these methods have similar power; however, when

the number of SNPs is large, the effects of SNPs are not con-
stant and may have different directions, the linkage disequi-
librium (LD) among multiple markers is somewhat strong,
and the SNPs adopt additive genetic code. Three methods,
namely, VC, SKAT, and PCR, have been found to have com-
petitive power in this case [22, 23]. A major reason is that all
3 methods can decrease the degrees of freedom of the test to
some extent [12]. In this work, we focus on exploring a
robust test for unknown genetic modes of SNPs of interest,
unknown Hardy-Weinberg equilibrium (HWE) in a popula-
tion, and a large number of SNPs of interest.

We first propose a novel multi-SNP test under the
case-control study design, which we term the principal
Chi-squared test. The principal Chi-squared test applies a
two-degree-of-freedom score statistic based on the empirical
Bayes method for each SNP and derives a global test based on
the eigenvalue decomposition of the asymptotic variance-
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covariance matrix of each SNP test. The global test achieves
improved power by robustly exploiting the HWE in the con-
trol population and effectively exploiting the LD among all
SNPs. We denote the global test by PChiB (see Methods).
In addition to competitive power, PChiB is conveniently
implemented and is easily comprehensible by the nonsta-
tistics community because of the well-known eigenvalue
decomposition method. The global test is closely related to
standard PCR in that it reduces to the score test of PCR when
each SNP is coded as the number of minor alleles. This rela-
tion not only lends insight into its power relative to PCR
but also into the connection between PCR and variance-
component-based tests. We show that both classes of these
methods are weighted combinations of uncorrelated Chi-
squared random variables, each of which is a weighted
combination of a single SNP test with weights equal to
the loadings of the eigenvectors of their joint asymptotic
variance-covariance matrix. This observation, while support-
ing documented conclusions that none of the two classes of
methods is uniformly more powerful than the other [22],
reveals theoretically that the LD structure among SNPs plays
a critical role in the powers of these methods. When a real
disease causal SNP adopts recessive and dominate codes, test
PChiB can gain desirable power. When a real disease causal
SNP adopts an additive code, test PChiB may have somewhat
lower power. Thus, we propose a robust test by taking the
minimum p value of the new global test PChiB and the ordi-
nary prospective score test of PCR in which each SNP is
coded as the number of minor alleles, regardless of the actual
genetic code of each SNP. We denote the robust test by Min2.

Suppose that q diallelic SNPs in a genomic region of
interest are genotyped for n1 case samples and n0 control
samples. Let Yi denote the binary case-control status
(Yi = 1: case; Yi = 0: control) for sample i (i = 1, 2,⋯, n),
where n = n1 + n0, the first n1 samples are cases, and the
remaining n0 samples are controls. Denote Gik as the count
of the minor alleles of SNP k from sample i for i = 1, 2,⋯,
n, and k = 1, 2,⋯q. A new global test is designed to test
the null hypothesis that the genomic region spanned by
q SNPs is not associated with the phenotype status of
interest against the general alternative that one or more
SNPs, which may or may not be genotyped, are associated
with the phenotype status of interest. We fit an ordinary
logistic regression model for the binary case-control status
and all SNPs.

Incorporating HWE constraints into the control popula-
tion based on the retrospective likelihood for testing a dialle-
lic marker may lead to increased power under dominant and
recessive genetic models compared to standard prospective
likelihood-based tests [24]. To address the issue that devia-
tion from HWE may lead to an inflated type I error rate in
this test, an empirical Bayes score test, which is a data-
adaptive linear combination of the prospective likelihood
score test and retrospective likelihood score test under the
HWE constraint, was proposed [25]. This test can maintain
nominal type I error rates under deviations from HWE that
are observed in real settings and largely maintains the power
gain under the recessive genetic model. Here, our new global
statistic uses this test principal as the building block. We

expect that our method achieves considerably improved
power when aggregating the small power gains at each SNP.

The rest of this paper is organized as follows. In Results,
we demonstrate, through simulation studies and analysis of
pancreatic cancer data [26, 27], that the proposed robust test
can often have desirable power compared to some popular
tests across a broad range of scenarios. In Discussion, we fur-
ther discuss the merits and disadvantages of our proposed
test method and note some directions for future research.
In Methods, we present the new global test in detail and dis-
cuss its connections to PCR and other existing methods. We
also briefly introduce the robust test by taking the minimum
p value of the new global test and the score test of PCR, where
each single SNP is coded as the number of minor alleles,
regardless of the actual genetic code of each SNP.

2. Results

2.1. A Robust Statistical Method Based on Two Types of
Principal Chi-Squared Tests. For real genotype data, we can
first calculate the prospective score test, denoted by ~UP =
ð~UP,1,⋯,~UP,qÞ, in which all SNPs are supposed to adopt
additive codes. We denote a consistently estimated covari-
ance ~VP for ~UP and calculate the ordinary principal compo-
nents regression (PCR) score statistic, which is denoted by
PChiP (selecting the top PCs explaining 85% of genetic vari-
ability) based on the estimated covariance ~VP, as in Gauder-
man et al. [19]. Second, we can obtain the p value of PChiP,
which is denoted by PVA,P because PChiP follows a Chi-
squared distribution asymptotically under the null hypothe-
sis. Third, we calculate the empirical Bayes score denoted
by UB = ðUB,1,⋯,UB,qÞ and its consistently estimated covari-
ance, which is denoted by VB, based on codominant codes
(see Methods). Similarly, we calculate the new aforemen-
tioned principal Chi-squared statistic PChiB based on the
estimated covariance VB. Note the dimension of UB is 2q,
and we can estimate the p value of PChiB, which is denoted
by PVC,B, because PChiB also follows a Chi-squared distribu-
tion asymptotically under the null hypothesis. Finally, we
take the minimum of the two p values of PChiP and PChiB
as a robust test, as follows:

Min 2 =min PVA,P , PVC,Bð Þ: ð1Þ

We estimate the p value of Min2 via statistical permuta-
tion. We conduct extensive simulations to investigate the
power performance of Min2.

To view the performance of Min2 comprehensively, we
can compare it to 4 other tests, namely, PChiB, PChiP, SSUP
(see Methods) and GOLD, where GOLD is constructed as
follows. Suppose the first SNP is the real causal SNP satisfy-
ing the logistic regression model logitPrðY = 1Þ = β0 + β1 ∗
G1, where β0 and β1 represent log odds ratios. Other SNPs
are correlated with the first SNP with genotypes G2,⋯,Gq.
The Gold method (denoted by GOLD) is an ordinary score
test based on the above real statistical model. Clearly, in real
data analysis scenarios, we do not know the causal SNP.
GOLD only has a value in simulation studies and is not
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practical in real data analysis. We consider 3 scenarios for
analysing genotype data. First, we apply PChiB, Min2, PChiP,
SSUP, and GOLD to analyse genotype data, including all
SNPs. Second, we apply PChiB, Min2, PChiP, SSUP, and
GOLD to analyse genotype data, excluding the first SNP,
which is the causal SNP. Third, we apply PChiB,Min2, PChiP,
SSUP and GOLD to analyse genotype data, including only
labelled SNPs. To comprehensively assess the performance
of these 5 methods, we designate every SNP among all q SNPs
as the causal SNP in turn in the simulation procedure.

2.2. Simulation Procedure. We conduct extensive simulation
studies to assess the relative power of Min2 by comparing its
performance with that of 4 other test statistics, namely,
PChiB, PChiP, SSUP, and GOLD. We consider real LD
structures defined by haplotypes inferred from the Interna-
tional Hapmap Project CEU samples. We set the haplotype
information for gene NAT2 studied by Kwee et al. [28] as
the basis of our simulations. To generate multilocus geno-
type data based on real haplotypes, we estimated haplotypes
and their frequencies in a genomic region via HaploView
software [29]. The LD structures plot based on the complete
set of SNPs for gene NAT2 is displayed in Supplementary
Figure 1 (See Supplementary File). For gene NAT2, we
select SNPs with MAFs > 0:05 and genotype rates ≥ 75%,
for a total of 18 SNPs. Haplotypes based on the complete
set of SNPs and their frequencies are provided in Table 1.
Five SNPs, rs13277605, rs1799930, rs1208, rs1961456, and
rs2410556, are tag SNPs.

To obtain the n0 control samples, we generated multilo-
cus genotype data, as follows. Let f f Hg denote the set of esti-
mated haplotype frequencies with ∑H f H = 1. Then, a pair of
haplotypes for each control sample was generated under
HWE, where the frequency of haplotype pairs ðH,H ′Þ takes
the form ϕHH0 = f 2H as H =H ′ and ϕHH0 = f H f H0 as H ≠H ′.

The haplotype phase information was then deleted, and only
locus-specific genotype data were retained. To generate mul-
tilocus genotype data for each case sample (total number n1),
we generated the pair of haplotypes ðH,H ′Þ using the follow-
ing probabilities:

ϕ1
HH′ =

RI HH0includes}Aa}ð Þ
Aa RI HH0includes}aa}ð Þ

aa ϕHH0

∑H,H0RI HH0includes}Aa}ð Þ
Aa RI HH0includes}aa}ð Þ

aa ϕHH0
,: ð2Þ

where RAa and Raa are the odds ratios for genotypes “Aa” and
“aa”, ‘A’ is the major allele for the disease causal SNP, ‘a’ is
the minor allele of the disease-causal SNP, and indicator
functions IðHH ′includes}Aa}Þ and IðHH ′includes}aa}Þ
refer to whether haplotype pair ðH,H ′Þ has allele combina-
tions (A,a) and (a, a), respectively, at the causal SNP.

To evaluate the impact of deviation from HWE on the
power of PChiB, we additionally generated multilocus geno-
type data from real haplotypes based on gene NAT2, as
described above, but with the frequency of haplotype pairs
ðH,H ′Þ equal to ϕHH0 = ð1 − FstÞf H f H0 + δHH0Fst f H : Here,
δHH0 is an indicator function, with δHH0 = 1 if H =H ′ and
δHH0 = 0 if H ≠H ′, and Fst is the fixation parameter, which
represents mild deviation from HWE, as observed in real
gene association analysis studies.

We set n1 = 1000 and n0 = 1000 and consider two scenar-
ios with HWE indicator Fst = 0 and 0:5 log ð2Þ, as in Luo
et al. [25]. Furthermore, we designate every SNP as the causal
SNP in turn. When the causal SNP adopts an additive code,
we obtain the genotype and case-control status based on
the logistic model with causal SNP odds ratio 1 for estimating
the empirical type I error rates and with causal SNP odds
ratio 1.2 for estimating the empirical power. When the causal
marker adopts a dominant code, we obtain the genotype and
case-control status based on the logistic model with causal
SNP odds ratio 1.3 for estimating the empirical power. When
the causal marker adopts a recessive code, we obtain the
genotype and case-control status based on the logistic model
with causal SNP odds ratio 1.5 for estimating the empirical
power. With the genotype and case-control status informa-
tion, we calculate the p value of Min2 via 200 permutations.
The empirical type I error rates and powers of the 4 tests were
considered under a significance level of 0.05 by means of 500
repetitions, as Kwee et al. [28] examined the type I error and
power of the semiparametric and single-tag SNP approaches
assuming a nominal significance level of 0.05.

2.3. Numerical Results. To comprehensively assess the perfor-
mance of Min2, we construct test statistics under 3 scenarios,
namely, using all SNPs, using all SNPs except the causal SNP,
and using only tag SNPs.

Because the empirical type I error rates are nearly the
same when the real causal SNP adopts an additive code,
dominant code, and recessive code, we present the empiri-
cal type I error rates for only the case where the real causal
SNP adopts an additive code. The results based on all 18
SNPs with Fst = 0 are displayed in Figure 1, and the results
based on all 18 SNPs with Fst = 0:05logð2Þ are displayed in

Table 1: Size and haplotypes with frequencies for gene NAT2.

Haplotype Frequency

443423442114244211 0.279

214242244112422433 0.246

413443444332224231 0.211

214242224112422433 0.092

214243444332222431 0.042

413243444112422233 0.025

413443444332244231 0.018

443423444332224231 0.017

214242244112224233 0.017

413423442134244211 0.011

244242244112422433 0.008

413243224112422433 0.008

413443442332422433 0.008

214242224132422433 0.008

413423422134244211 0.006

214242244132422433 0.002
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Figure 2. Other results based on all 17 SNPs (excluding the
causal SNP) and 5 tag SNPs are displayed in Supple-
mentary Figure 2a, Figure 2b, Figure 3a, and Figure 3b (See
Supplementary File). From Figures 1 and 2, we can see that

Min2 can control the type I error rate well when the HWE
indicator coefficient Fst equals 0 or 0.5log(2.0), but PChiB
has a conservative empirical type I error rate when Fst
equals 0. We further investigate this phenomenon: when
the real genetic model adopts additive code, PChiB adopts
a codominant code with Fst equal to 0, so the correlations
between every two SNPs are decreased and test PChiB may
absorb a large number of degrees of freedom. For example,
when considering the scenario with all 18 SNPs and
designating the 1st SNP as the causal SNP, PChiP absorbs 2
degrees of freedom and PChiB absorbs 5 degrees of freedom,
according to the simulation data. When the real genetic
model adopts recessive and dominant codes, all 5 tests
control the type I error rate well, regardless of whether Fst is
0 or 0.5log(2.0).

For the empirical power comparison, when the real
causal SNP adopts a recessive code, we display the results
based on all 18 SNPs in Tables 2 and 3 for Fst = 0 and Fst =
0:5 log ð2Þ. Other results based on 17 SNPs (excluding the
causal SNP) and 5 tag SNPs are displayed in Supplementary
Figure 4a, 4a, Figure 5a, and Figure 5b (See Supplementary
File). From Table 2, Supplementary Figure 4a and
Supplementary Figure 4b for Fst = 0, we can see that the
GOLD test always performs best because it is an oracle test,
and Min2 performs nearly as good as PChiB in all 3
scenarios. Additionally, Min2 always performs better than
PChiP and SSUP, regardless of which of the 18 SNPs is the
causal SNP. For example, in Table 2, the empirical powers
of PChiP, SSUP, GOLD, Min2, and PChiB are 0.364, 0.352,
0.826, 0.504, and 0.492, respectively, when the 2nd SNP is
the causal SNP. From Table 3, Supplementary Figure 5a,
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Figure 1: Empirical null hypothesis rejection rates (based on all 18
SNPs) of GOLD, PChiP, SSUP, PChiB, and Min2. Each SNP is
treated as the causal locus in turn, which has an additive effect,
with simulated odds ratio 1.0 and Fst = 0 based on 1000 controls,
1000 cases and 500 iterations.
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Figure 2: Empirical null hypothesis rejection rates (based on all 18
SNPs) of GOLD, PChiP, SSUP, PChiB, and Min2. Each SNP is
treated as the causal locus in turn, which has an additive effect,
with simulated odds ratio 1.0 and Fst = 0:5 log ð2:0Þ based on
1000 controls, 1000 cases, and 500 iterations.

Table 2: Empirical powers (based on all 18 SNPs) of GOLD, PChiP,
SSUP, PChiB, and Min2. Each SNP is treated as the causal locus in
turn, which has a recessive effect, with simulated odds ratio 1.5 and
Fstt = 0 based on 1000 controls, 1000 cases, and 500 iterations.

Causal SNP no. PChiP SSUP GOLD Min2 PChiB

1 0.672 0.738 0.948 0.764 0.764

2 0.364 0.352 0.826 0.504 0.492

3 0.678 0.768 0.954 0.784 0.796

4 0.748 0.826 0.972 0.846 0.842

5 0.428 0.394 0.816 0.546 0.534

6 0.642 0.704 0.926 0.726 0.732

7 0.588 0.638 0.932 0.736 0.73

8 0.048 0.042 0.186 0.054 0.024

9 0.42 0.366 0.81 0.506 0.524

10 0.348 0.168 0.778 0.372 0.286

11 0.398 0.186 0.844 0.378 0.2

12 0.434 0.4 0.812 0.554 0.542

13 0.586 0.642 0.938 0.684 0.708

14 0.428 0.426 0.836 0.54 0.522

15 0.73 0.818 0.978 0.822 0.826

16 0.678 0.746 0.972 0.78 0.808

17 0.34 0.328 0.778 0.51 0.518

18 0.71 0.768 0.954 0.802 0.794

4 International Journal of Genomics



and Supplementary Figure 5b for Fst = 0:5logð2Þ, we can see
that Min2, when using all 18 SNPs, using all 18 SNPs except
for the causal SNP, and using only tag SNPs, always performs
much better than PChiP and SSUP, regardless of which of the
18 SNPs is the causal SNP. For example, in Table 3, the
empirical powers of PChiP, SSUP, GOLD, and Min2 are
0.755, 0.795, 0.970, 0.840, and 0.875, respectively, when the
1st SNP is the causal SNP.

When the real causal SNP adopts a dominant code, we
display all the results based on all 18 SNPs in Tables 4 and
5 for Fst = 0 and Fst = 0:5 log ð2Þ. Other results based on 17
SNPs (excluding the causal SNP) and 5 tag SNPs are dis-
played in Supplementary Figure 6a, Figure 6b, Figure 7a,
and Figure 7b (See Supplementary File). From these figures,
we can see that Min2 performs robustly among all 5 tests
over all 3 scenarios with Fst = 0 and 0.5log(2). For example,
in Table 4, the empirical powers of PChiP, SSUP, GOLD,
Min2, and PChiB are 0.598, 0.588, 0.846, 0.636, and 0.556,
respectively, when the 9th SNP is the causal SNP, and the
empirical powers of PChiP, SSUP, GOLD, Min2, and PChiB
are 0.638, 0.382, 0.826, 0.628, and 0.496, respectively, when
the 10th SNP is the causal SNP. In Table 5 for Fst = 0:05 log
ð2Þ, the empirical powers of PChiP, SSUP, GOLD, Min2,
and PChiB are 0.585, 0.310, 0.786, 0.545, and 0.455,
respectively, when the 11th SNP is the causal SNP.

When the real causal SNP adopts an additive code, we
display all results based on all 18 SNPs in Tables 6 and 7
for Fst = 0 and Fst = 0:5 log ð2Þ. Other results based on 17
SNPs (excluding the causal SNP) and 5 tag SNPs are dis-
played in Supplementary Figure 8a, Figure 8b, Figure 9a,

and Figure 9b (See Supplementary File). From these figures,
we can see that Min2 performs robustly among all 5 tests
over all 3 scenarios for Fst = 0 and 0.5log(2). Under these 3

Table 3: Empirical powers (based on all 18 SNPs) of GOLD, PChiP,
SSUP, PChiB, and Min2. Each SNP is treated as the causal locus in
turn, which has a recessive effect, with simulated odd ratios 1.5 and
Fst = 0:5 log ð2:0Þ based on 1000 controls, 1000 cases, and 500
iterations.

Causal SNP no. PChiP SSUP GOLD Min2 PChiB

1 0.755 0.795 0.97 0.84 0.875

2 0.45 0.46 0.865 0.51 0.605

3 0.765 0.835 0.965 0.855 0.885

4 0.835 0.925 0.99 0.84 0.88

5 0.555 0.58 0.85 0.605 0.67

6 0.69 0.77 0.935 0.785 0.765

7 0.65 0.715 0.965 0.74 0.79

8 0.06 0.085 0.37 0.07 0.1

9 0.515 0.48 0.905 0.65 0.755

10 0.535 0.28 0.825 0.6 0.59

11 0.58 0.33 0.88 0.625 0.665

12 0.48 0.475 0.83 0.62 0.665

13 0.695 0.765 0.94 0.735 0.79

14 0.58 0.595 0.895 0.655 0.7

15 0.79 0.875 0.98 0.84 0.88

16 0.725 0.805 0.97 0.805 0.865

17 0.52 0.495 0.83 0.61 0.65

18 0.785 0.825 0.955 0.86 0.875

Table 4: Empirical powers (based on all 18 SNPs) of GOLD, PChiP,
SSUP, PChiB, and Min2. Each SNP is treated as the causal locus in
turn, which has a dominant effect, with simulated odds ratio 1.3 and
Fst = 0 based on 1000 controls, 1000 cases, and 500 iterations.

Causal SNP no. PChiP SSUP GOLD Min2 PChiB

1 0.51 0.56 0.76 0.532 0.456

2 0.57 0.552 0.822 0.564 0.49

3 0.486 0.576 0.79 0.532 0.438

4 0.448 0.532 0.74 0.476 0.416

5 0.644 0.626 0.824 0.628 0.518

6 0.556 0.61 0.808 0.576 0.516

7 0.568 0.63 0.79 0.596 0.504

8 0.13 0.152 0.712 0.128 0.078

9 0.598 0.588 0.846 0.636 0.556

10 0.638 0.382 0.826 0.628 0.496

11 0.574 0.338 0.818 0.586 0.51

12 0.614 0.614 0.836 0.622 0.56

13 0.506 0.58 0.79 0.548 0.502

14 0.584 0.578 0.836 0.576 0.51

15 0.458 0.518 0.756 0.482 0.388

16 0.462 0.538 0.808 0.478 0.418

17 0.694 0.662 0.822 0.676 0.598

18 0.492 0.55 0.76 0.51 0.448

Table 5: Empirical powers (based on all 18 SNPs) of GOLD, PChiP,
SSUP, PChiB, and Min2. Each SNP is treated as the causal locus in
turn, which has a dominant effect, with simulated odd ratio 1.3 and
Fst = 0:5 log ð2:0Þ based on 1000 controls, 1000 cases, and 500
iterations.

Causal SNP no. PChiP SSUP GOLD Min2 PChiB

1 0.56 0.645 0.774 0.47 0.45

2 0.55 0.505 0.816 0.475 0.455

3 0.5 0.55 0.778 0.44 0.445

4 0.455 0.5 0.75 0.4 0.43

5 0.615 0.645 0.834 0.54 0.51

6 0.62 0.68 0.816 0.565 0.61

7 0.56 0.61 0.812 0.46 0.515

8 0.15 0.19 0.712 0.12 0.145

9 0.58 0.56 0.834 0.53 0.515

10 0.67 0.435 0.822 0.6 0.56

11 0.585 0.31 0.786 0.545 0.455

12 0.61 0.6 0.852 0.57 0.555

13 0.485 0.575 0.812 0.445 0.455

14 0.68 0.645 0.804 0.56 0.53

15 0.505 0.545 0.776 0.415 0.43

16 0.455 0.55 0.79 0.43 0.44

17 0.66 0.64 0.826 0.61 0.6

18 0.51 0.55 0.76 0.475 0.46
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scenarios, the real genetic codes are additive, so it is not
unexpected that the performance of PChiP is always a little
better than that of Min2, regardless of which of the 18 SNPs
is the causal SNP. Although SSUP sometimes has slightly
better power than PChiP and Min2, it can sometimes have
very low power. For example, in Table 6, the empirical
powers of PChiP, SSUP, GOLD, Min2, and PChiB are 0.626,
0.402, 0.770, 0.616, and 0.400 when the 11th SNP is the
causal SNP. In Table 7, for Fst = 0:5logð2Þ, the empirical
powers of PChiP, SSUP, GOLD, Min2, and PChiB are 0.660,
0.670, 0.800, 0.645, and 0.570, respectively, when the 9th
SNP is the causal SNP.

2.4. The Analysis of High-Density Lipoprotein Cholesterol
(HDL-C) Data from GWAS Pancreatic Cancer Data. Herein,
we present an analysis of HDL-C data from GWAS pancre-
atic cancer data [26, 27] to illustrate our method. Plasma
levels of high-density lipoprotein cholesterol are known to
be heritable, but only a fraction of the heritability is
explained. We developed a high-density genotyping array
populated with HDL-C candidate loci selected based on the
known biology of HDL metabolism, mouse genetic studies,
human genetic association studies, and available GWAS data.
SNP selection was based on tag SNPs but also included low-
frequency nonsynonymous SNPs. We performed association
analysis on the majority of reported GWAS loci (including
ABCA1, CETP, GALNT2, LCAT, LIPG, LIPC, and LPL).

The data set consists of 1231 samples (case: 625 and con-
trol: 606) with 64 SNPs from the above 13 genes. Basic infor-
mation about the 13 genes is presented in Supplementary
Table 1 (additional file 2). We calculate the p values of 4

test methods, i.e., PChiP, SSUP, Min2, and PChiB, when
analysing the data set. The numerical results are displayed
in Table 8. From Table 8, we can see that the numerical
results of Min2 are consistent with those of the other tests.
For example, when investigating the association between
HDL-C and gene GALNT2, including 2 SNPs, the p values
of PChiP, SSUP, Min2, and PChiB are 0.1065, 0.1065,
0.0370, and 0.0272, respectively. For another example, when
investigating the association between HDL-C and gene LPL,
including 15 SNPs, the p values of PChiP, SSUP, Min2, and
PChiB are 0.002, 0.00016, 0.002, and 0.0044, respectively.
For the third example, when investigating the association
between HDL-C and gene LIPG, including 2 SNPs, the
p values of PChiP, SSUP, Min2, and PChiB are 0.0012,
0.0012, 0.0001, and 0.0002.

Because the number of SNPs in each gene is not very
large in the real data, the real data do not provide a good

Table 6: Empirical powers (based on all 18 SNPs) of GOLD, PChiP,
SSUP, PChiB, and Min2. Each SNP is treated as the causal locus in
turn, which has an additive effect, with simulated odds ratio 1.2 and
Fst = 0 based on 1000 controls, 1000 cases, and 500 iterations.

Causal SNP no. PChiP SSUP GOLD Min2 PChiB

1 0.694 0.748 0.798 0.644 0.466

2 0.614 0.584 0.784 0.594 0.404

3 0.654 0.728 0.818 0.614 0.424

4 0.706 0.78 0.8 0.678 0.482

5 0.666 0.656 0.798 0.626 0.428

6 0.654 0.736 0.796 0.618 0.462

7 0.724 0.77 0.814 0.702 0.484

8 0.102 0.114 0.504 0.09 0.052

9 0.632 0.63 0.76 0.594 0.408

10 0.644 0.36 0.77 0.614 0.352

11 0.626 0.402 0.77 0.616 0.4

12 0.674 0.652 0.774 0.606 0.432

13 0.708 0.768 0.802 0.682 0.468

14 0.644 0.618 0.804 0.604 0.422

15 0.678 0.782 0.816 0.656 0.484

16 0.632 0.71 0.794 0.612 0.428

17 0.696 0.662 0.754 0.652 0.444

18 0.688 0.756 0.798 0.652 0.454

Table 7: Empirical powers (based on all 18 SNPs) of GOLD, PChiP,
SSUP, PChiB, and Min2. Each SNP is treated as the causal locus in
turn, which has an additive effect, with simulated odds ratio 1.2 and
Fst = 0:5logð2:0Þ based on 1000 controls, 1000 cases, and 500
iterations.

Causal SNP no. PChiP SSUP GOLD Min2 PChiB

1 0.76 0.805 0.855 0.705 0.625

2 0.66 0.6 0.795 0.585 0.55

3 0.745 0.78 0.825 0.725 0.655

4 0.765 0.84 0.86 0.735 0.695

5 0.755 0.72 0.825 0.69 0.57

6 0.77 0.795 0.825 0.685 0.61

7 0.725 0.765 0.84 0.665 0.625

8 0.155 0.19 0.585 0.145 0.14

9 0.66 0.67 0.8 0.645 0.57

10 0.725 0.53 0.82 0.69 0.565

11 0.665 0.435 0.835 0.63 0.51

12 0.73 0.695 0.82 0.62 0.59

13 0.695 0.74 0.85 0.675 0.6

14 0.7 0.67 0.81 0.655 0.55

15 0.66 0.725 0.82 0.635 0.545

16 0.635 0.725 0.82 0.58 0.535

17 0.72 0.705 0.81 0.705 0.57

18 0.72 0.76 0.845 0.695 0.62

Table 8: p values of tests PChiP, SSUP, Min2, and PChiB when
analysing 7 genes.

Gene SNP nos. PChiP SSUP Min2 PChiB

GALNT2 2 0.1065 0.1065 0.0370 0.0272

LPL 15 0.0020 0.00016 0.0020 0.0044

ABCA1 3 0.0311 0.0121 0.040 0.0782

LIPC 9 0.0069 0.0019 0.0050 0.0669

CETP 25 6.051e-13 3.278e-13 7.615e-14 1.114e-16

LCAT 2 0.9981 0.9999 0.9700 0.9297

LIPG 2 0.0012 0.0012 0.0001 0.0002
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example to illustrate the merit our test. However, this limita-
tion does not affect our purpose of deriving a robust test. Our
method focuses on the robustness in the following 3 scenar-
ios: the genetic code for all SNPs is unknown, whether the
HWE is satisfied in the original population is unknown,
and a large number of SNPs exists.

3. Discussion

One key factor of the improved power of kernel-machine-
based tests [17] and PCR is the reduced degrees of freedom.
Kernel-machine-based tests make full use of possible corre-
lations among score statistics, which is known to be advan-
tageous for high-dimensional data [30], and are robust to
the directions of association of different SNPs. Principal
component analysis is a standard method of reducing the
dimensionality of a large number of variables. Despite this
seemingly obvious argument, the relative merits of PCR
and kernel-machine-based tests remain understudied. We
provide insights into the theoretical connection between
kernel-machine-based tests and the PCR method. We find
that when the LD extent of each pair of SNPs is somewhat
strong, principal component analysis methods may have
higher power than kernel-machine-based tests. PCR often
has similar or higher power than kernel-machine-based tests,
where the LD pattern is an important parameter for power.
We will further explore the principle of selecting the number
of PCs in future work.

In this work, we consider an association test between
human complex diseases and genetic SNPs based on princi-
pal component analysis (PCA) since PCA is widely used in
the recent literature. PCA accounts for linear combinations
among SNPs. If this linearity exists, PCA is optimal. How-
ever, when how the multiple genetic SNPs influence the risk
of disease is unknown, one alternative strategy is to use hap-
lotype analysis since haplotypes can capture the LD informa-
tion between markers [31–37].

We propose a novel global test (PChiB) based on the
empirical Bayes score test, which is a data-adaptive linear
combination of the prospective likelihood score and the ret-
rospective likelihood score under the HWE constraint in
the control population. PChiB can maintain desirable power
when the real causal SNP adopts recessive and dominant
codes under the HWE constraint in the control population.
A small disadvantage of PChiB is that when the genetic code
of the real causal SNP is additive, PChiB does not have desir-
able power because of the large degrees of freedom. Thus, we
propose a robust test (Min2) that maintains the power gain
under deviations from HWE observed in real settings,
regardless of which genetic code the real causal SNP adopts.
Min2 gains power by effectively using the LD among all the
tested SNPs over all scenarios. Because PChiP is based on
the assumption that all SNPs adopt an additive code, while
PChiB and Min2 are based on the assumption that all SNPs
adopt a codominant code, PChiP has low degrees of freedom
and performs best when the causal SNP adopts an additive
code. PChiB and Min2 may have less power than PchiP in
this scenario. When the causal SNP adopts dominant or
recessive codes, Min2 has desirable power, regardless of

whether HWE is satisfied in the control population. We pro-
pose to use our new test Min2 for the association analysis of
multilocus genotypes and complex diseases.

We propose the robust test Min2, where the p values are
obtained via permutation and compared it with PChiB
(empirical score based on all SNPs adopting codominant
codes), PChiP (prospective score based on all SNPs adopting
additive codes), and SSUP (a VC method based on the pro-
spective score and all SNPs adopting an additive code). The
main purpose of this article is to introduce the proposed test
Min2, not to compare it with other existing tests for GWAS.

Notably, it would be a good idea to extend the proposed
tests to include covariate adjustments in the logistic models.
The derivation will be very complex and requires additional
research. We will consider this problem in our future work.
In simulations, we need to set a large sample size n as the
number of MAF is low, so we have not considered rare vari-
ants. We may investigate the robustness about PChiB when
the number of MAF is low in our further work.

4. Methods

4.1. A New Principal Chi-Squared Test. Suppose there are
n1 case samples and n0 control samples and denote n =
n1 + n0. For the ith (i = 1,⋯, n) sample and kth (k = 1,⋯,
q) SNP, denote Gik as the additive code, namely, the
numbers of minor alleles taking values 0, 1, and 2. For
the ith (i = 1,⋯, n) sample and kth (k = 1,⋯, q) SNP,
denote mðGikÞ as the codominant code, namely, mðGikÞ =
ðm1ðGikÞ,m2ðGikÞÞ = ðI½Gik = 1�, I½Gik = 2�Þ, where I½·� is an
indicator function. Clearly, mð0Þ = ð0, 0Þ, mð1Þ = ð1, 0Þ, and
mð2Þ = ð0, 1Þ.

For k = 1,⋯, q, denote f̂ k as the estimated minor allele
frequency (MAF) for the kth SNP in the pooled case-
control sample and denote gk as the number of minor
allele in a genotype for the kth SNP in a population with
values 0, 1, and 2. For k = 1,⋯, q, denote Pf̂ k

ðgkÞ as the

estimated genotype frequency for the kth SNP. We can then

obtain f̂ k =∑n
i=1fI½Gik = 1� + 2I½Gik = 2�g/ð2nÞ, Pf̂ k

ðgk = 0Þ
= ð1 − f̂ kÞ

2
, Pf̂ k

ðgk = 1Þ = 2 f̂ kð1 − f̂ kÞ, and Pf̂ k
ðgk = 2Þ =

ð f̂ kÞ
2
. For k = 1,⋯, q, denote a 2-dimensional row vector

by τðkÞ = ðτ1k, τ2kÞ = EHWE, f̂ k ½mðgkÞ� − �mðgkÞ = ðEHWE, f̂ k ½m1
ðgkÞ� − �m1ðgkÞ, EHWE, f̂ k ½m2ðgkÞ� − �m2ðgkÞÞ, where EHWE, f̂ k
½mðgkÞ� = ∑gk=0,1,2mðgkÞPf̂ k

ðgkÞ = ð∑gk=0,1,2m1ðgkÞPf̂ k
ðgkÞ,

∑gk=0,1,2m2ðgkÞPf̂ k
ðgkÞÞ is the expected value of mðgkÞ

under HWE, and �mðgkÞ = ð�m1ðgkÞ, �m2ðgkÞÞ is the pooled
sample mean of mðgkÞ = ðm1ðgkÞ,m2ðgkÞÞ, namely, �mðgkÞ
=∑n

i=1mðGikÞ/n = ð∑n
i=1m1ðGikÞ/n,∑n

i=1m2ðGikÞ/nÞ. For k =
1,⋯, q, denote s2�m1ðgkÞ as the pooled sample variance of

m1ðgkÞ, namely, the variance of m1ðG1kÞ,⋯,m1ðGnkÞ and
denote s2�m2ðgkÞ as the pooled sample variance of m2ðgkÞ,
namely, the variance of m2ðG1kÞ,⋯,m2ðGnkÞ. For k = 1,⋯,
q, denote a diagonal matrix Wk with elements equal to
ðs2�m1ðgkÞ/nÞ/ððs

2
�m1ðgkÞÞ/n + τ21kÞ and ðs2�m2ðgkÞ/nÞ/ððs

2
�m2ðgkÞÞ/n +

τ22kÞ. Clearly, Wk is extended from the weight proposed
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by Luo et al. [25] and Chatterjee et al. [38] when an additive
(dominant or recessive) code is adopted. The weight matrix
Wk is data adaptive. When codominant coding is adopted,
by means of Wk, we propose the empirical Bayes score for
the kth ðk = 1,⋯, qÞ SNP with the following form:

UB,k = 〠
n1

i=1

n
m Gikð Þ −

h
EHWE, f̂ k m gkð Þ½ �Wk

+ �m gkð Þ I2×2 −Wkð Þ
io

,
ð3Þ

where I2×2 is an identity matrix with dimension 2.
Let UðBÞ denote the vector of empirical Bayes scores for

all q SNPs, namely, UðBÞ = ðUB,1,UB,2,⋯,UB,qÞ, which is of
length 2q. Denote the estimated asymptotic covariance
matrix by VB (See Supplementary File) for empirical Bayes
score vector UðBÞ. A common test for whether all q markers

can be jointly built, similar to the Hotelling T2 statistic, is
T2 =U ðBÞV

−1
B UT

ðBÞ, where ‘T ’ indicates the transpose of a
vector or matrix. Our proposed new global statistic is based
on the eigenvalue decomposition of covariance matrix VB,
as follows. For k = 1, 2,⋯, 2q, denote λk and ξk (a 2q × 1
column vector) as the eigenvalue and corresponding eigen-
vector of covariance matrix VB. Let λ = ðλ1, λ2,⋯, λ2qÞ and
ξ = ðξ1, ξ2,⋯, ξ2qÞ denote the eigenvalues and correspond-

ing eigenvectors of covariance matrix VB. We then have ξT

VBξ = diag ðλ1, λ2,⋯, λ2qÞ, and VB can be written as ξ diag
ðλ1, λ2,⋯, λ2qÞξT . Since the norm of the eigenvector is unity

and V−1
B can be written as ξ diag ðλ−11 , λ−12 ,⋯, λ−12q ÞξT , the test

statistic T2 can be written as

T2 = U Bð Þξ
� �

diag λ−11 , λ−12 ,⋯, λ−12q
� �

ξTUT
Bð Þ

� �

= 〠
2q

k=1
U Bð Þξk

� �2
/λk:

ð4Þ

Note that UðBÞξk, is a linear combination of the score for
each individual SNP UB,k with var ½UðBÞξk� = λk for k = 1, 2,
⋯, 2q:We propose to utilize the first s(1 ≤ s ≤ 2q) summands
in T2 to test the null hypothesis and denote the resultant test
statistic as follows:

PChiB = 〠
s

k=1

U Bð Þξk
� �2

λk
: ð5Þ

Due to the orthogonality of ξ1,⋯, ξs, ðUðBÞξ1Þ2/λ1,⋯,
ðU ðBÞξsÞ2/λs are independent. Because ðUðBÞξ1Þ2/λ1,⋯,
ðU ðBÞξsÞ2/λs are all asymptotically normally distributed with
mean 0 and variance 1 under the null hypothesis that the
genomic region spanned by the q SNPs is not associated with
the phenotype status of interest, PChiB is asymptotically dis-
tributed as a Chi-squared variable with s degrees of freedom
under the null hypothesis.

A remaining issue is how to select the number of sum-
mands s. Note that PChiB is based on eigenvalue decomposi-
tion, similar to the standard PCR. Many criteria for selecting
s have been introduced in the literature [39]. It has been
shown that using the top principal components that explain
80 ~ 90% of the genetic variability is sufficient [19, 20, 23].
We select s according to the same principal, i.e., that the
top s principal components can explain approximately 85%
of the genetic variability. This strategy is supported by the
connection between PChiB and PCR (see the next subsec-
tion). In fact, the number of principal components affects
the power of the principal component test [40]. When the
LD extent of each pair of SNPs is very strong, the top one
principal component alone has desirable power. When the
LD extent of each pair of SNPs is somewhat strong, using
the top principal components that explain 80 ~ 90% of the
genetic variability is a robust method.

4.2. Understanding PChiB through an Exposition of PCR.We
revisit PChiB based on only the standard prospective likeli-
hood score under additive coding for kth (k = 1,⋯, q) and
establish its equivalence to PCR [19, 20]. This equivalence
sheds light on the promise of increased power of PChiB
since PCR has been established to be a promising method
for multi-SNP association analysis. In PCR, the phenotype
variable is regressed on only a few of the top principal com-
ponents (PCs) that summarize approximately 80-90% of
the genetic variability. The PCs represent the directions in
which most of the variability in the data occurs, as identi-
fied by the eigenvalue decomposition of the variance-
covariance matrix of the centred raw genotype scores. Each
principal component is a linear combination of genotype
scores for all SNPs, and all principal components are
uncorrelated with each other.

Here, we present the standard prospective likelihood
score under additive genetic coding. The collection of all q
prospective score functions, denoted by ~U ðPÞ = ð~UP,1, ~UP,2,
⋯, ~UP,qÞ, is asymptotically distributed as multivariate nor-
mal with mean ð0,⋯,0Þq×1 and variance-covariance matrix
~VP under the null hypothesis. Let Y = ðY1,⋯, YnÞT , �Y =
∑n

i=1Yi/n. For k = 1, 2,⋯, q, let �Gk =∑n
i=1Gik/n and �G = ð�G1,

⋯, �GqÞ. For i = 1, 2,⋯, n, let GðiÞ = ðGi1,⋯,GiqÞT . Denote G
as a genotype matrix with ith row and kth column element
Gik for i = 1,⋯, n,and k = 1,⋯, q. Let �1 be a column vector

with all elements 1 and length n. In matrix form, ~U
T
ðPÞ =

∑n
i=1ðYi − �YÞGðiÞ =GTðY − �Y�1Þ, and its covariance matrix

~VP = �Yð1 − �YÞ∑n
i=1½GðiÞ − �G�½GðiÞ − �G�T . Now, let A = ½a1, a2,

⋯, aq� be a q × qmatrix whose kth column is the characteris-

tic vector of the matrix ~VPðk = 1,⋯, qÞ, and let ~λ1 ≥ ~λ2 ≥⋯
≥ ~λq be its eigenvalues. Denote orthogonal transformation
~G = GA. The likelihood score based on a logistic regression

of Y on ~G is ~U ðPÞ = ~G
TðY − �Y�1Þ. The covariance matrix of

~U ðPÞ is a diagonal matrix with elements ~λ1, ~λ2,⋯, ~λq:
Suppose that we consider the first ~s(1 ≤~s ≤ q) PCs as

follows. Let A~s = ½a1, a2,⋯, a~s� be a q ×~s matrix containing
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the first ~s eigenvectors, and let ~G~s = GA~s. The standard PCA
test based on the score statistic for testing the association
between Y and ~G~s from the logistic regression model is

exactly equal to ðY − �Y�1ÞTGA~s diag ð~λ
−1
1 , ~λ−12 ,⋯, ~λ−1~s ÞAT

~s G
T

ðY − �Y�1Þ, which is denoted by PChiP, and is the same as
our proposed method when the adopted genetic code is addi-

tive code. Denote ~Tk = ðY − �Y�1ÞTGakaTk GTðY − �Y�1Þ/λk, k =
1, 2,⋯, q: When adopting additive code, the standard
Hotelling T2 statistic is equal to ∑q

k=1
~Tk, and the PChiP sta-

tistic reduces to ∑~s
k=1~Tk.

The proposed statistic (in this situation, equivalent to
PCR) can be shown to be closely related to a statistic
called the sum of squared score test based on prospective
likelihood [12], which is denoted by SSUP. SSUP is obtained

as SSUP= ~U ðPÞ ~U
T
ðPÞ =∑q

j=1 ~U
2
P,k, and it can be expressed as

SSUP=∑q
j=1
~λk½ð~UðPÞa

T
k Þ

2/~λk�. Therefore, SSUP and PChiB
use different weights for the contributions of the PCs: SSUP
weights all PCs by the eigenvalues, whereas PChiB assigns
equal weights to the top PCs. SSUP allows PCs with small
eigenvalues to make additional contributions to the test, but
PChiB discards PCs with small eigenvalues to reduce the
degrees of freedom. This difference has implications on their
relative power, which depends critically on the structure of
variance-covariance matrix and, therefore, the LD structure
of the assessed genomic region.
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