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Breast cancer (BC) has emerged as an extremely destructive malignancy, causing significant harm to female patients and society at
large. Proteomic research holds great promise for early diagnosis and treatment of diseases, and the integration of proteomics with
genomics can offer valuable assistance in the early diagnosis, treatment, and improved prognosis of BC patients. In this study, we
downloaded breast cancer protein expression data from The Cancer Genome Atlas (TCGA) and combined proteomics with
genomics to construct a proteomic-based prognostic model for BC. This model consists of nine proteins (HEREGULIN, IDO,
PEA15, MERIT40_pS29, CIITA, AKT2, CD171 DVL3, and CABL9). The accuracy of the model in predicting the survival
prognosis of BC patients was further validated through risk curve analysis, survival curve analysis, and independent prognostic
analysis. We further confirmed the impact of differential expression of these nine key proteins on overall survival in BC
patients, and the differential expression of the key proteins and their encoding genes was validated using immunohistochemical
staining. Enrichment analysis revealed functional associations primarily related to PPAR signaling pathway, steroid hormone
metabolism, chemokine signaling pathway, DNA conformation changes, immunoglobulin production, and immunoglobulin
complex in the high- and low-risk groups. Immune infiltration analysis revealed differential expression of immune cells
between the high- and low-risk groups, providing a theoretical basis for subsequent immunotherapy. The model constructed in
this study can predict the survival of BC patients, and the identified key proteins may serve as biomarkers to aid in the early
diagnosis of BC. Enrichment analysis and immune infiltration analysis provide a necessary theoretical basis for further
exploration of the molecular mechanisms and subsequent immunotherapy.

1. Introduction

Breast cancer (BC) is one of the most common malignant
tumors worldwide [1]. It has been reported that the inci-
dence of breast cancer is increasing at a rate of 0.5% per year,
with approximately 2 million people diagnosed with breast
cancer each year [2]. Breast cancer poses a particularly seri-
ous threat to women and is one of the leading causes of
cancer-related death among females [3]. Although the inci-
dence of BC is higher in developed countries compared to
developing countries, the mortality rate is significantly
lower. Early detection and timely treatment can prevent
28% to 37% of breast cancer deaths in these countries [4].
Currently, mammography and breast ultrasound play
important roles in early screening for breast cancer [5].
However, they have some notable limitations, such as being

subjective to the interpreting physician’s bias and being
costly [6, 7]. Therefore, it is crucial to search for more accu-
rate, objective, and cost-effective diagnostic and prognostic
biomarkers to aid in the early detection and treatment of
breast cancer.

Abnormal protein expression plays a crucial role in bio-
logical processes such as metabolism, immune response, and
biological signal transduction, making it one of the most
prominent factors in the occurrence and development of dis-
eases [8]. The study of proteomics is aimed at elucidating the
interactions between different proteins and their roles within
an organism, providing us with more detailed information to
deepen our understanding of the nature of diseases [9]. Fur-
thermore, proteomic research holds significant potential in
various applications, including early disease diagnosis, per-
sonalized treatment, and dose determination [10, 11]. This
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field offers promising prospects for advancing the field of
medicine. Protein expression can be inferred by studying
mRNA expression, but there are significant differences
between mRNA expression levels and protein expression
levels [12]. With advancements in proteomic technologies,
we can gain a more comprehensive and in-depth under-
standing of the protein landscape within organisms. This
helps address the issues of data inaccuracy and insufficient
abundance often encountered in traditional mRNA tran-
scriptome studies due to factors such as RNA stability and
post-transcriptional modifications [12]. Therefore, exploring
more accurate biomarkers through proteomic research in
breast cancer holds significant importance.

Bioinformatics is a field that harnesses advanced compu-
tational techniques to mine and analyze extensive datasets
generated from various “omics” platforms, including geno-
mics, transcriptomics, proteomics, and metabolomics [13].
Its primary aim is to identify novel diagnostic and prognos-
tic biomarkers. The rapid evolution of bioinformatics has
empowered us to distinguish between different subtypes of
breast cancer, such as basal-like and luminal B breast
tumors, indicating potential variations in patient prognoses
[14]. Furthermore, we have successfully identified protein
products located within noncoding genomic regions, thereby
offering robust support for the discovery of novel tumor-
specific immunotherapeutic targets. By amalgamating multi-
dimensional data, bioinformatics can unveil concealed pat-
terns, associations, and biological features that may elude
detection through traditional laboratory methodologies [15,
16]. These encompass changes in RNA expression levels
and alterations in DNA methylation status [17]. This
comprehensive approach holds the promise of identifying
biomarkers that could fundamentally transform disease
diagnosis, prognosis, and treatment selection. The applica-
tion of bioinformatics provides a fresh perspective to the
field of medicine, paving the way for advancements in per-
sonalized medicine and precision therapy.

In this study, a bioinformatic analysis was performed to
identify nine differentially expressed prognostic proteins. A
breast cancer survival prognostic model was constructed,
and the effectiveness and accuracy of the model were evalu-
ated. Immunohistochemical staining confirmed the differen-
tial expression of the encoding genes of the key proteins
between normal breast tissue and breast cancer tissue. Sub-
sequently, the breast cancer immune microenvironment
and immunotherapy were explored. Our research provides
evidence and future directions for early diagnosis, disease
prognosis, immunotherapy, and potential molecular interac-
tions in breast cancer.

2. Materials and Methods

2.1. Acquisition and Processing of Microarray Data. To
acquire the transcriptome and proteome datasets of breast
cancer, as well as the corresponding clinical information,
we accessed The Cancer Genome Atlas (https://portal.gdc
.cancer.gov/). The dataset included 112 samples of normal
tissue and 1100 samples of breast cancer tissue.

In our study, the inclusion criteria for data selection
entailed the incorporation of samples exclusively sourced from
individuals who had received a pathological diagnosis of breast
cancer. We accorded priority to samples providing compre-
hensive and complete clinical information, encompassing
patient demographics, histopathological data, and clinical
attributes. Additionally, the samples included in our analysis
were required to possess corresponding sequencing and prote-
omic data, including gene expression profiles and protein
expression profiles, which were deemed indispensable compo-
nents for our comprehensive analytical approach. Conversely,
our exclusion criteria were systematically implemented to
ensure the precision and integrity of our data. Samples with
missing or incomplete clinical or molecular data were rigor-
ously excluded from our study. Furthermore, our exclusion
criteria encompassed patients with co-occurring primary
medical conditions, a history of prior treatments, or any fac-
tors that might introduce interference or bias into our analysis.
All data utilized in this study were sourced from TCGA data-
base. To enhance the depth and diversity of our dataset and to
facilitate cross-validation, we randomly allocated samples into
two groups: the train group and the test group. This approach
ensured the quality, comprehensiveness, and statistical power
of our research.

Using the Perl software (https://www.perl.org/), we
extracted the clinical information of the samples and orga-
nized the protein expression data. Next, we utilized the
“Limma” and “impute” packages in R language to merge
the protein expression data with the survival data in the
breast cancer dataset. The “Limma” package provides func-
tions for differential expression analysis, while the “impute”
package offers methods for missing data imputation. By
integrating the protein expression data and survival data,
we aimed to investigate the potential association between
protein expression profiles and patient survival outcomes
in breast cancer. This analysis would allow us to identify
potential prognostic markers and provide insights into the
underlying molecular mechanisms of breast cancer progres-
sion and prognosis.

2.2. Selection of Key Proteins and Construction of Prognostic
Model. After preprocessing the data, we conducted the single-
factor Cox proportional hazard analysis and Kaplan-Meier
survival analysis on the preprocessed dataset. These analyses
are aimed at identifying proteins that showed significant asso-
ciations with patient survival outcomes. The protein candi-
dates exhibiting significant associations were determined
based on their p values. Furthermore, the expression levels of
these proteins were recorded. To determine the optimal
number of features (proteins) for the prognostic model, we
employed Lasso regression, a regularization method that
selects the most relevant features while shrinking the coeffi-
cients of less informative features.

2.3. Validation of Prognostic Model Accuracy. Survival anal-
ysis was performed on the samples using R programming
language with the “survival,” “survminer,” and “timeROC”
packages. Risk curves, including risk scores, survival status
plots, and risk heatmaps, were generated using the “pheatmap”
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package. Independent prognostic analysis was conducted using
the “survival” package. Univariate Cox proportional hazards
regression and multivariate Cox proportional hazards regres-
sion models were employed to perform independent prognos-
tic analysis based on age and tumor stage. Receiver operating

characteristic (ROC) curve analysis was performed using the
“survival,” “survminer,” and “timeROC” packages. Finally, col-
umn line plots were generated for clinical data and risk files
after data organization using the “regplot” and “rms” packages
in R programming language.
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Figure 1: Flow chart of the design and evaluation of this study.
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Figure 2: Construction of prognostic risk model for breast cancer: (a) Lasso regression model shows the number of target proteins; (b)
significantly different proteins in the volcanic map.
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Figure 3: Continued.
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2.4. GSEA. The data were cleaned and prepared using the
gene symbol file, risk file, and gene set files (including
GO.symbols and KEGG.symbols). GSEA functional and
pathway enrichment analyses were performed on these files
using R packages such as “limma,” “org.Hs.eg.db,” “cluster-
Profiler,” and “enrichplot.”

2.5. Survival Analysis of Prognostic Key Proteins and
Identification of Encoding Genes. The samples were divided
into high-risk and low-risk groups based on the expression
levels of the target proteins, and KM survival analysis was
performed for each protein in the model. The encoding
genes of the nine key proteins, which were used to construct
the prognostic model, were standardized using the Gene
Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/).

2.6. Immunohistochemical Staining Was Performed to
Validate the Differential Expression of IDO1 (IDO) and
NRG1 (HEREGULIN).We selected 10 clinical pathology diag-
nosed breast cancer patients from the Department of General
Surgery, Renhe Hospital, Three Gorges University, for the
period of 2019-2022. Inclusion criteria for breast cancer
patient selection are consisted of the following: histopatholo-
gical confirmation of excised tissue (we exclusively enrolled
breast cancer patients with a histopathological confirmation
to ensure the accuracy of disease classification) and breast
tumor stage and subtype (patients representing various breast

cancer stages and subtypes were chosen to reflect the clinical
heterogeneity of the disease). This encompassed both early-
stage (I and II) and late-stage (III and IV) breast cancer, as well
as patients with different molecular subtypes, such as ductal
carcinoma, HER2-positive breast cancer, and triple-negative
breast cancer. Exclusion criteria included incomplete clinical
information (patients with missing or incomplete clinical data,
including tumor staging, treatment history, and follow-up
information, were systematically excluded to ensure compre-
hensive dataset integrity) and concurrent medical conditions
(patients with concurrent medical conditions that could
potentially significantly affect the interpretation of immuno-
histochemical staining results were excluded). Paraffin blocks
of breast cancer samples were obtained, and the corresponding
adjacent noncancerous tissues were selected as normal con-
trols for intragroup comparison. The rabbit anti-IDO1 anti-
body (catalog number 13268-1-AP) and rabbit anti-NRG1
antibody (catalog number 10527-1-AP) were purchased from
Wuhan Sanying Biotechnology Co., Ltd.

2.7. Analysis of Immune Cell Infiltration. In the immune cell
infiltration analysis, we performed 1000 simulations of
immune cell infiltration using the “e1071” and “preproces-
sCore” packages. The resulting data on risk assessment and
immune cell infiltration for all samples were then organized
using the “ggpubr” package. Subsequently, the “ggpubr”
package was employed to conduct differential analysis of
immune cell infiltration.
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Figure 3: Survival analysis of the train group, test group, and total sample group: (a) survival analysis chart for the train group; (b) survival
analysis chart for the test group; (c) survival analysis chart for total samples.
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2.8. Immunotherapy Analysis and Sample Typing Analysis.
We downloaded the immune scoring files from The Cancer
Immunome Atlas (TCIA) (https://tcia.at/home) and per-
formed analysis and visualization using the “ggpubr” pack-
age. To differentiate the subtypes of the samples, we used
the “limma” and “ConsensusClusterPlus” packages and clas-
sified them based on the expression levels of the model pro-
teins. We conducted survival analysis using the subtype
classification result file and plotted survival curves.

3. Result

3.1. Screening Prognostic Proteins and Constructing Prognostic
Models. The transcriptomic and proteomic datasets of breast
cancer, along with the corresponding clinical information,
were extracted, processed, and analyzed from TCGA database.
Figure 1 shows the research flow chart.

Nine proteins related to breast cancer prognosis were
identified through the single-factor Cox regression analysis
and Kaplan-Meier survival analysis. In the figure, red color
indicates high-risk proteins (HR > 1), green color indicates
low-risk proteins (HR < 1), and proteins with significant dif-
ferential expression (p < 0 05) are labeled with their names.
All significantly differentially expressed proteins are pre-
sented in the volcano plot of Figure 2(b) (with log2 HR
on the x-axis and −log 10 p value on the y-axis). For exam-
ple, NFKBP65_pS536 is a high-risk protein, and higher
expression levels indicate greater risk for patients. On the
other hand, HEREGULIN is a low-risk protein, and higher
expression in breast cancer suggests a lower risk of disease
for patients. The Lasso regression model reveals the point
with the minimum cross-validation error, which represents
the number of selected feature proteins, as shown in
Figure 2(a). The multivariate Cox regression analysis dem-
onstrates the involvement of HEREGULIN, IDO, PEA15,
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Figure 4: Construction of prognostic risk model for breast cancer. (a) Train group: distribution of risk scores and heatmaps of 9 proteins
based on the survival status of patients with risk scores and the construction of prognosis models. (b) Test group: distribution of risk scores
and heatmaps of 9 proteins based on the survival status of patients with risk scores and the construction of prognosis models.
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MERIT40_pS29, CIITA, AKT2, CD171, DVL3, and CABL
in constructing the prognostic model (Supplementary
Table 1) The model’s risk score is calculated as follows:
HEREGULIN∗ −1 450 + CABL∗ 1 636 + IDO∗ −0 326
+ PEA15∗ −0 895 + MERIT40 pS29∗ −0 833 + CIITA∗

−1 599 + Akt2∗ −0 551 + CD171∗ −0 309 + DVL3∗
0 781 .

3.2. Survival Analysis between Groups. The train group, test
group, and overall sample group were stratified into high-
risk and low-risk groups based on the median risk score
(Figures 3(a)–3(c)). The Kaplan-Meier survival analysis
was performed on these three groups, and the results are
shown in the figure. The survival time difference between
the high-risk and low-risk groups is statistically significant,
with p values < 0.05 (red color represents the high-risk
group, and blue color represents the low-risk group, with

survival time on the x-axis and survival rate on the y-axis).
These findings indicate that the constructed prognostic
model can accurately distinguish patients between the
high-risk and low-risk groups. Compared to the low-risk
group, the high-risk group exhibits a significant decrease in
survival rate.

3.3. Building a Prognostic Risk Model. The accuracy of the
prognostic model was further evaluated by plotting risk
curves, survival status graphs, and risk heatmaps. As shown
in Figures 4(a) and 4(b), an increase in the risk score is asso-
ciated with a poorer survival status and an increased number
of patient deaths. The risk heatmap reveals that DVL3,
CD171, and CABL are high-risk proteins, while HERE-
GLUIN, IDO, PEA15, MERIT40_pS29, CIITA, and AKT2
are low-risk proteins. Higher expression of the low-risk pro-
teins is associated with a lower risk for patients. The results
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from the train group and test group confirm the further
refinement of the evaluation dimensions of the prognostic
risk model.

3.4. Univariate and Multivariate Cox Regression Analyses.
To evaluate whether the risk prognostic model is independent
of other clinical characteristics as independent prognostic
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Figure 8: Continued.
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factors, we performed single-factor Cox regression analysis on
the risk file. The results, as shown in Figure 5(a), indicate that
clinical features such as age, tumor stage, and risk score are
associated with survival time and survival status. The multi-
variate Cox regression analysis in Figure 5(b) further confirms
that age, tumor stage, and risk score (all with p values < 0.05)
can serve as independent prognostic factors (Supplementary
Table 2). This also suggests that the constructed model can
function as an independent prognostic factor, separate from
other clinical characteristics.

3.5. Receiver Operating Characteristic Analysis. The ROC
curve (area under the curve) can assess the accuracy of our
constructed model in predicting patient survival. As shown
in Figure 6(a), the area under the ROC curve for 1-year,
3-year, and 5-year survival is 0.765, 0.756, and 0.697, respec-
tively. In Figure 6(b), the area under the ROC curve for risk
score, age, and tumor stage is 0.765, 0.798, and 0.716, respec-

tively. These results confirm the effectiveness of the prognos-
tic model in prediction.

3.6. Risk Model Column Chart and Calibration Curve. The
column diagram (alignment diagram) integrates multiple
indicators and accurately predicts patient survival time. As
shown in Figure 7(a), the scores for each clinical feature
and the risk score are obtained based on individual scoring
scales, which further predicts the survival rates of patients
at 1 year, 3 years, and 5 years. The calibration curve is a
method to evaluate the accuracy of the column diagram pre-
diction. In Figure 7(b), the calibration curves for 1 year, 3
years, and 5 years are close to the reference line, indicating
a high accuracy of the column diagram in predicting patient
survival time. These overall results indicate that the risk
prognostic model has a high accuracy in predicting the prog-
nosis and survival time of breast cancer patients.
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Figure 8: Relationship between the expression of nine proteins and survival analysis in breast cancer: (a–h) survival analysis of nine key
prognostic proteins KM.
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3.7. Survival Analysis of 9 Key Proteins. In order to clarify the
relationship between the expression of key proteins in the
prognostic model and overall survival, the samples were
divided into high-expression group and low-expression
group based on the median expression level of the key pro-
teins. As shown in Figures 8(a)–8(h), the KM survival curves
for the 9 key proteins are presented. Among them, high
expression of HEREGLUIN, IDO, PEA15, MERIT40_pS29,
CIITA, and AKT2 is associated with higher overall survival
rates, while high expression of DVL3, CD171, and CABL is
associated with lower survival rates. Furthermore, the p values
for these associations are all less than 0.05, indicating that the
differential expression of these proteins is significantly corre-
lated with the overall survival of breast cancer patients.

3.8. Key Protein Coexpression Analysis. In order to further
understand the interaction between these 9 proteins, the
coexpression analysis results are shown in Figure 9.
Figure 9(a) displays the correlation between the 9 key pro-
teins, while Figure 9(b) further illustrates their interactions
with other proteins, leading to their biological effects. The
encoding genes of the 9 prognostic-related proteins were
standardized using the high-throughput gene expression
database GEO (https://www.ncbi.nlm.nih.gov/geo/): NRG1
(HEREGULIN), IDO1 (IDO), PEA15 (PEA15), MERIT40_
pS29 (MERIT40), CIITA (CIITA), AKT2 (AKT2), DVL3
(DVL3), L1CAM (CD171), and ABL1 (ABL1).

3.9. KEGG Enrichment Analysis. The KEGG pathway
enrichment analysis, as shown in Figure 10(a), reveals the
pathways closely associated with the high-risk group, includ-

ing the PPAR signaling pathway, cell cycle pathway, cardiac
contraction, and steroid hormone synthesis. In contrast, the
low-risk group exhibits activity in pathways such as intestinal
immune network for IgA production, chemokine signaling
pathway, graft-versus-host disease, and cytokine-cytokine
receptor interaction. In Figure 10(b), the GO functional
enrichment analysis demonstrates that in the high-risk group,
these genes are mainly involved in processes such as protein
and DNA complex formation, DNA conformational changes,
muscle contraction, and protein-DNA complex interactions.
In the low-risk group, these genes are closely associated with
biological behaviors such as antigen receptor-mediated signal-
ing pathway, immunoglobulin production, immune complex
formation, and T cell receptor complex.

3.10. Immunohistochemical Staining Analysis of the Expression
of Two Differential Proteins. Based on the GEO database,
HEREGLUIN (NRG1) and IDO (IDO1) were found to have
the most significant differential protein expression. Ten diag-
nosed BC samples from Renhe Hospital affiliated to Three
Gorges University were selected for immunohistochemical
staining using paraffin-embedded tissue sections. Tumor
tissues and their corresponding adjacent normal tissues were
used as normal controls. The results in Figure 11(a) demon-
strate that IDO1 (IDO) protein exhibits strong positive stain-
ing in breast normal tissues and shows significant differential
expression compared to the corresponding cancer tissues.
The results in Figure 11(b) show that NRG1 (HEREGULIN)
protein exhibits strong positive staining in breast normal tis-
sues. The results were visualized as a bar graph based on
grayscale scores, as shown in Figure 11(c).
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Figure 9: Graph of the relationship between 9 key proteins and other proteins: (a) coexpression circle diagram of key proteins; (b) sangi
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3.11. Differential Expression of Immune Cells in BC. Based on
the analysis of immune cell differences (as shown in
Figures 12(a)–12(i)), we found differential expression of
immune cells between the high-risk and low-risk groups.
Immune cell types such as immature B cells, dendritic cells,
macrophages, M1 macrophages, M2 macrophages, mast

cells, NK cells, plasma cells, CD4+ cells, T cells, CD8+ T cells,
and T follicular helper cells exhibited differential expression.

3.12. Results of Immunotherapy Analysis. The results of
immune therapy analysis using The Cancer Immunome
Atlas (TCIA) (https://tcia.at/home) data are shown in the
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Figure 10: Enrichment analysis of high- and low-risk groups: (a) analysis of pathway enrichment in high- and low-risk groups; (b) analysis
of functional enrichment in high- and low-risk groups.
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figure. In Figure 13(a), both CTLA4 immune checkpoint and
PD1 are negative, indicating that patients in this group are not
sensitive to these two immune therapies. In Figure 13(b),
CTLA4 is negative and PD1 is positive, suggesting that
patients in this low-risk group respond well to PD1-targeted
therapy. In Figure 13(c), CTLA4 is positive and PD1 is nega-
tive, indicating that patients in this low-risk group respond
better to CTLA4-targeted therapy. In Figure 13(d), both
CTLA4 and PD1 are positive, suggesting that patients in this
low-risk group have the best response to combined CTLA4
and PD1 therapy.

3.13. Sample Classification. The sample subtyping results
(shown in Figures 14(a)–14(i)) demonstrate that when we
categorize the samples into three different subtypes, this
classification provides the greatest benefit for subsequent
treatments. Based on this sample subtyping, we conducted
KM survival analysis (as shown in Figure 14(j)). The results
indicate a significant difference in survival time among the
different subtypes (p < 0 05).

4. Discussion

This study employed protein expression data, transcripto-
mics, and clinical data from breast cancer patients in TCGA
database to conduct an analysis aimed at investigating the
pathogenesis and prognosis of breast cancer, as well as iden-
tifying potential candidate proteins for tumor screening. The
findings of this study have the potential to offer new options
for the early diagnosis and timely treatment of BC.

We performed KM survival analysis and univariate COX
analysis to screen for 9 prognostic-related proteins. Further-
more, we utilized Lasso regression andmultivariable COX anal-
ysis to establish a prognostic risk model for BC. The accuracy of
the prognostic model was further evaluated using risk scores,
survival status plots, and risk heatmaps. To assess whether the
risk prognostic model was independent of other clinical features
as an independent prognostic factor, we conducted univariate
COX regression analysis. The accuracy of predicting patient
survival was further evaluated using ROC curves.

Various validation results demonstrated that the prognos-
tic model constructed in this study serves as an independent

Normal breast lobules Breast cancer tissue
IDO1

(a)

NRG1
Normal breast lobules Breast cancer tissue

(b)

IDO NRG1
Markers

⁎⁎⁎⁎

⁎⁎⁎⁎

10

9

8

7

6

5

4

Sc
or

es

3

2

1

0

Normal
Tumor

(c)

Figure 11: Immunohistochemical analysis of two differential protein expressions: (a) immunohistochemical staining detection of IDO1
expression in normal breast tissue and breast cancer tissue; (b) immunohistochemical staining detection of HRG1 expression in normal
breast tissue and breast cancer tissue.
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Figure 12: Continued.

14 International Journal of Genomics



prognostic factor and effectively evaluates patient survival.
KEGG pathway enrichment analysis revealed that the PPAR
signaling pathway was enriched in the high-risk group, focus-
ing on regulating gene expression related to energy homeosta-
sis, lipid metabolism, and inflammation, providing insights
into molecular interactions and targets within this pathway
[18]. The active chemokine signaling pathway was observed
in the low-risk group, providing information on the regulation
of receptors, intracellular signaling molecules, and cellular
processes related to inflammation, immune cell recruitment,
and tissue development [19].

Functional enrichment analysis indicated that DNA
conformational changes were highly active in the high-
risk group, involving processes such as DNA bending,
twisting, or unwinding, which may occur during DNA rep-
lication, transcription, or DNA-protein interactions. In the
low-risk group, activation of immunoglobulin function

was prominent, primarily contributing to the synthesis
and production of immunoglobulins (antibodies) in biolog-
ical processes [20].

Through immune infiltration and immune therapy analy-
sis, we discovered differences in immune cell expression
between the high-risk and low-risk groups defined by our
model. It is noteworthy that CD8+ T cells play a crucial role
in the immune system and work together with T follicular
helper cells to mediate cellular and humoral immune
responses [21]. The differential expression of immune cells
between the high-risk and low-risk groups may reflect distinct
immune reactions and pathological processes. For example, in
certain autoimmune diseases, macrophages and T cells may
play a critical role as they participate in the regulation of inflam-
matory and autoimmune responses. The differential expression
of immune cells between the high-risk and low-risk groups may
be associated with different immune regulatory mechanisms.
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Figure 12: Differential expression of different immune cells in breast cancer: (a–i) differential analysis of immune cells.
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For instance, CD4+ T cells and dendritic cells are key players in
immune regulation as they can recognize and modulate the
function of other immune cells [22].

Studies have shown that the prognostic proteins
identified in this study are involved in the progression of
malignant tumors. NRG1, a neuroregulatory protein, serves
as the major physiological ligand for human epidermal
growth factor receptor 3 (HER3). It can induce dimerization
of ErbB2/HER2 and ErbB3/HER3 receptors, leading to their
constitutive activation and subsequent modulation of
downstream signaling pathways such as phosphoinositide
3-kinase-protein kinase B (PI3K-AKT) and mitogen-activated
protein kinase (MAPK), thereby influencing cellular processes
including growth, proliferation, apoptosis, migration, and
angiogenesis [23–25].

Indoleamine 2,3-dioxygenase 1 (IDO1) is a rate-limiting
enzyme containing cytosolic heme, and its main function is

to catalyze the degradation of tryptophan to kynurenine
[26]. Kynurenine is typically involved in cell signaling path-
ways as a neurotransmitter and molecule in the first step of
tryptophan degradation [27]. Studies analyzing cancer
genomics have found that high expression of IDO1 indicates
poor prognosis in colorectal cancer, but in certain hormone-
related cancers such as breast cancer and ovarian cancer,
higher IDO1 expression is associated with significantly pro-
longed survival and better prognosis compared to lower
IDO1 expression levels. This may suggest a relationship
between IDO1 and hormone expression, but research in this
area is limited both domestically and internationally, indi-
cating a potential direction for future investigation [28].

Proline-rich protein 15 (PEA15), enriched in astrocytes,
is a small protein expressed widely in mammals and has
been shown to affect the localization of ERK1/2 [29]. By
promoting the accumulation of activated ERK1/2 in the
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Figure 13: Differences in immunophenotype scores between low-risk and high-risk groups. (a–d) Immunotherapy analysis violin chart.
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cytoplasm, PEA-15 can inhibit tumor cell invasion and pro-
liferation [30], and it has been demonstrated to suppress the
occurrence of triple-negative breast cancer [31]. Addition-
ally, PEA15 can induce autophagy in human ovarian cancer
cells, thereby extending patients’ overall survival [32].

Class II transactivator (CIITA) is a transacting factor that
participates in the transcriptional activation of major histo-
compatibility complex class II (MHC-II) genes by binding to
specific transcription factors [33]. In previous studies, the
inactivation of CIITA played a crucial role in lymphomas orig-
inating from thymic medullary B cells. These tumors often
exhibit genomic alterations, including structural genomic
rearrangements, missense, nonsense, and frameshift muta-
tions in 53% of primary tumor biopsies and PMBCL-derived
cell lines [34].

Akt, also known as protein kinase B (PKB), belongs to
the AGC family of protein kinases. Akt consists of three iso-
forms: Akt1 (PKBα), Akt2 (PKBβ), and Akt3 (PKBγ) [35]. It
acts downstream of phosphoinositide 3-kinase (PI3K) and
regulates various cellular processes, including cell prolifera-
tion, cell survival, metabolism, tumor growth, and metastasis.
The PI3K/Akt2 signaling pathway is frequently dysregulated
in breast cancer and plays a significant role in breast cancer
development and progression [36, 37].

Disheveled (DVL) proteins are highly conserved and typ-
ically divided into three isoforms: DVL1, DVL2, and DVL3.
They are considered central intracellular effectors of the Wnt
signaling pathway [38]. Studies have shown that humanmuta-
tions in DVL1 primarily affect craniofacial development, while
DVL3 mutations can cause short stature. In mice, DVL1 is
mainly expressed in the neuroectoderm [39].

L1 cell adhesion molecule (L1CAM) is a neural cell
adhesion molecule, also known as a cell recognition mole-
cule, belonging to the immunoglobulin superfamily of inte-
gral membrane proteins with characteristic adhesive and
signaling properties [40]. It plays a crucial role in cell migra-
tion, proliferation, and differentiation during early stages of
neural system formation [41].

ABL1 is primarily expressed in the nucleus and cyto-
plasm and is involved in cell differentiation, stress response,
and other processes. Research has indicated that the SH3
domain of the ABL1 protein negatively regulates its func-
tion, and high expression of ABL1 often indicates poor prog-
nosis, which is commonly observed in chronic myeloid
leukemia, but it is less studied in other cancers [42].

In the treatment process of breast cancer, chemotherapy
regimens should be personalized based on the patient’s can-
cer type, stage, overall health, and individual needs. Selection
of appropriate chemotherapy drugs and treatment courses
depends on factors such as the subtype of breast cancer
(e.g., hormone receptor-positive and HER2-positive) and
the stage of the disease (early-stage or advanced). Combin-
ing multiple chemotherapy drugs is often employed to
enhance treatment efficacy and reduce the risk of drug
resistance [43, 44]. Commonly used chemotherapy agents
include paclitaxel, cyclophosphamide, doxorubicin, and
docetaxel [45]. Postoperative treatment for breast cancer is
a comprehensive process. Providing psychological support,
nutritional counseling, and rehabilitation services on the
medical front can aid patients in coping with the challenges
of the treatment process and improving their overall quality
of life [46].
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The study confirms that the regulation of specific
miRNAs might be influenced by healthy diet and physical
exercise, closely correlating with the survival rates of patients
[47]. Additionally, the upregulation and downregulation of
certain circRNAs are associated with adverse prognosis in
breast cancer, indicating their potential as biomarkers for
chemotherapy resistance [48]. Furthermore, lncRNAs play
an indispensable role in the development of breast cancer.
The extensive variations in protein expression levels within
breast cancer cells constitute a primary driving force behind
their malignant transformation [49]. Alterations in RNA
expression levels drive changes in various cellular processes,
including abnormal protein synthesis and degradation, sig-
naling pathways, metabolism, DNA repair, and apoptosis
[50]. In breast cancer research, the significance of transcrip-
tomic, proteomic, and system biology studies cannot be
overstated, as they are crucial for gaining in-depth insights
into the intricate molecular mechanisms underlying protein
imbalance in breast cancer.

In future research, we intend to delve deeper into the
correlation between dysregulated proteins identified in our
study and the determinants of treatment failure. This will
encompass their potential involvement in mechanisms of
drug resistance and treatment response. Based on existing
literature reports, the prognostic proteins identified in our
study play roles in various diseases, and our research further
explores their expression and functions in BC.

5. Conclusion

In this study, we employed bioinformatic methods to screen
for prognostic-related proteins in BC and developed a prog-
nostic risk model. We validated the model’s ability to predict
prognosis and risk in BC patients. Subsequently, we con-
ducted a series of expression analyses on these feature pro-
teins, which provide novel insights for early diagnosis and
treatment of BC patients. Enrichment analysis and immune
infiltration analysis helped broaden our understanding of
the molecular mechanisms underlying BC and identify
potential therapeutic targets in clinical practice. In future
studies, we plan to conduct animal in vivo experiments
and examine clinical specimens to explore a new approach
for the early diagnosis and treatment of BC.

Data Availability

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

YYL contributed to the data analysis and writing. DLH and
DCJ contributed to data collection. ZXL contributed to the

study supervision and study design. All authors contributed
to the article and approved the submitted version.

Acknowledgments

This work has been supported by the Joint Fund Project of the
Hubei Provincial Health Commission (No. WJ2019H559).
Special thanks are due to Zhou Rui for his contributions in
the preliminary work of this article, as well as the guidance
from the Pathology Department of Renhe Hospital for the
analysis of immunohistochemical data in this article.

Supplementary Materials

Supplementary 1. Table 1: multivariate COX analysis to
obtain prognostic model proteins.

Supplementary 2. Table 2: multivariate COX regression anal-
ysis results of age, tumor staging, and risk score.

References

[1] H. Sung, J. Ferlay, R. L. Siegel et al., “Global Cancer Statistics
2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries,” CA: a Cancer Jour-
nal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021.

[2] S. W. Ruo, T. Alkayyali, M. Win et al., “Role of Gut Microbiota
Dysbiosis in Breast Cancer and Novel Approaches in Preven-
tion, Diagnosis, and Treatment,” Cureus, vol. 13, no. 8, article
e17472, 2021.

[3] A. Howell, A. S. Anderson, R. B. Clarke et al., “Risk determina-
tion and prevention of breast cancer,” Breast Cancer Research,
vol. 16, no. 5, p. 446, 2014.

[4] V. M. Cormack, F. M. Kenzie, M. Foerster et al., “Breast cancer
survival and survival gap apportionment in sub-Saharan
Africa (ABC-DO): a prospective cohort study,” The Lancet
Global Health, vol. 8, no. 9, pp. e1203–e1212, 2020.

[5] A. Qaseem, J. S. Lin, R. A. Mustafa, C. A. Horwitch, and T. J.
Wilt, “Screening for breast cancer in average-risk women: a
guidance statement from the American College of Physicians,”
Annals of Internal Medicine, vol. 170, no. 8, pp. 547–560, 2019.

[6] V. Prasad, J. Lenzer, and D. H. Newman, “Why cancer screen-
ing has never been shown to “save lives”–and what we can do
about it,” BMJ, vol. 352, 2016.

[7] D. S. Al-Mousa, M. Alakhras, K. M. Spuur et al., “The Implica-
tions of Increased Mammographic Breast Density for Breast
Screening in Jordan,” Journal of Medical Radiation Sciences,
vol. 67, no. 4, pp. 277–283, 2020.

[8] M.Wilkins, “Proteomics data mining,” Expert Review of Prote-
omics, vol. 6, no. 6, pp. 599–603, 2009.

[9] A. M. Tran-Huynh, M. V. Holt, and M. Anurag, “How valu-
able can proteogenomics be in clinical breast cancer research,”
Expert Review of Proteomics, vol. 20, no. 1-3, pp. 1–4, 2023.

[10] A. J. Claydon and R. J. Beynon, “Protein Turnover Methods in
Single-Celled Organisms: Dynamic SILAC,” in Yeast Systems
Biology. Methods in Molecular Biology, vol 759, J. Castrillo
and S. Oliver, Eds., Humana Press, 2011.

[11] C. Chen, J. Hou, J. J. Tanner, and J. Cheng, “Bioinformatics
methods for mass spectrometry-based proteomics data analy-
sis,” International Journal of Molecular Sciences, vol. 21, no. 8,
p. 2873, 2020.

20 International Journal of Genomics

https://downloads.hindawi.com/journals/ijg/2023/1738750.f1.docx
https://downloads.hindawi.com/journals/ijg/2023/1738750.f2.docx


[12] S. P. Gygi, Y. Rochon, B. R. Franza, and R. Aebersold, “Corre-
lation between protein and mRNA abundance in yeast,”
Molecular and Cellular Biology, vol. 19, no. 3, pp. 1720–1730,
1999.

[13] X. Y. Zeng, G. L. Shi, Q. K. He, and P. P. Zhu, “Screening and
predicted value of potential biomarkers for breast cancer using
bioinformatics analysis,” Scientific Reports, vol. 11, no. 1, 2021.

[14] H. J. Johansson, F. Socciarelli, N. M. Vacanti et al., “Breast can-
cer quantitative proteome and proteogenomic landscape,”
Nature Communications, vol. 10, no. 1, 2019.

[15] C. Wei, B. Wang, D. Z. Peng et al., “Pan-Cancer Analysis
Shows That ALKBH5 Is a Potential Prognostic and Immuno-
therapeutic Biomarker for Multiple Cancer Types including
Gliomas,” Frontiers in Immunology, vol. 13, 2022.

[16] S. Candido, B. M. R. Tomasello, A. Lavoro, L. Falzone,
G. Gattuso, and M. Libra, “Novel insights into epigenetic reg-
ulation of IL6 pathway: in silico perspective on inflammation
and cancer relationship,” International Journal of Molecular
Sciences, vol. 22, no. 18, article 10172, 2021.

[17] F. Giambò, G. M. Leone, G. Gattuso et al., “Genetic and Epige-
netic Alterations Induced by Pesticide Exposure: Integrated
Analysis of Gene Expression, microRNA Expression, and
DNAMethylation Datasets,” International Journal of Environ-
mental Research and Public Health, vol. 18, no. 16, p. 8697,
2021.

[18] A. Z. Mirza, I. I. Althagafi, and H. Shamshad, “Role of PPAR
receptor in different diseases and their ligands: physiological
importance and clinical implications,” European Journal of
Medicinal Chemistry, vol. 166, pp. 502–513, 2019.

[19] D. J. Waugh andW. C. Wilson, “The interleukin-8 pathway in
cancer,” Clinical Cancer Research, vol. 14, no. 21, pp. 6735–
6741, 2008.

[20] Z. E. Sauna, S. M. Richards, B. Maillere, E. C. Jury, and A. S.
Jury, “Editorial: Immunogenicity of Proteins Used as Thera-
peutics,” Frontiers in Immunology, vol. 11, 2020.

[21] N. Attaf, S. Baaklini, L. Binet, and P. Milpied, “Heterogeneity
of germinal center B cells: new insights from single-cell
studies,” European Journal of Immunology, vol. 51, no. 11,
pp. 2555–2567, 2021.

[22] M. L. Drakes, T. G. Blanchard, and S. J. Czinn, “Colon lamina
propria dendritic cells induce a proinflammatory cytokine
response in lamina propria T cells in the SCID mouse model
of colitis,” Journal of Leukocyte Biology, vol. 78, no. 6,
pp. 1291–1300, 2005.

[23] A. Dawood, S. M. Mahon, M. A. T. Dang, M. G. B. Tran,
A. Bex, and E. Boleti, “Case Report: Disease progression of
renal cell carcinoma containing a novel putative pathogenic
KAT6A::NRG1 fusion on Ipilimumab- Nivolumab immuno-
therapy. A case study and review of the literature,” Frontiers
in Oncology, vol. 13, 2023.

[24] S. Jonna, R. A. Feldman, J. Swensen et al., “Detection of NRG1
gene fusions in solid tumors,” Clinical Cancer Research,
vol. 25, no. 16, pp. 4966–4972, 2019.

[25] L. F. Cuesta, D. Plenker, H. Osada et al., “CD74-NRG1 fusions
in lung adenocarcinoma,” Cancer Discovery, vol. 4, no. 4,
pp. 415–422, 2014.

[26] Y. Fujiwara, S. Kato, M. K. Nesline et al., “Indoleamine 2,3-
dioxygenase (IDO) inhibitors and cancer immunotherapy,”
Cancer Treatment Reviews, vol. 110, article 102461, 2022.

[27] M. Platten, E. Nollen, U. F. Röhrig, F. Fallarino, and C. A.
Opitz, “Tryptophan metabolism as a common therapeutic tar-

get in cancer, neurodegeneration and beyond,” Nature
Reviews. Drug Discovery, vol. 18, no. 5, pp. 379–401, 2019.

[28] R. X. Zhang, T. G. Li, W. Q. Wang et al., “Indoleamine 2, 3-
Dioxygenase 1 and CD8 Expression Profiling Revealed an
Immunological Subtype of Colon Cancer with a Poor Progno-
sis,” Frontiers in Oncology, vol. 10, 2020.

[29] Y.Wei, “On the Quest of Cellular Functions of PEA-15 and the
Therapeutic Opportunities,” Pharmaceuticals, vol. 8, no. 3,
pp. 455–473, 2015.

[30] A. Glading, J. A. Koziol, J. Krueger, andM. H. Ginsberg, “PEA-
15 inhibits tumor cell invasion by binding to extracellular
signal-regulated kinase 1/2,” Cancer Research, vol. 67, no. 4,
pp. 1536–1544, 2007.

[31] C. Bartholomeusz, D. Rosen, C. Wei et al., “PEA-15 induces
autophagy in human ovarian cancer cells and is associated
with prolonged overall survival,” Cancer Research, vol. 68,
no. 22, pp. 9302–9310, 2008.

[32] J. A. L. Machado and V. Steimle, “The MHC class II transacti-
vator CIITA: not (quite) the odd-one-out anymore among
NLR proteins,” International Journal of Molecular Sciences,
vol. 22, no. 3, p. 1074, 2021.

[33] E. Campo, S. H. Swerdlow, N. L. Harris, S. Pileri, H. Stein, and
E. S. Jaffe, “The 2008WHO classification of lymphoid neoplasms
and beyond: evolving concepts and practical applications,”
Blood, The Journal of the American Society of Hematology,
vol. 117, no. 19, pp. 5019–5032, 2021.

[34] A. Basu and C. B. Lambring, “Akt isoforms: a family affair in
breast cancer,” Cancers, vol. 13, no. 14, p. 3445, 2021.

[35] J. Pascual and N. C. Turner, “Targeting the PI3-kinase path-
way in triple-negative breast cancer,” Annals of Oncology,
vol. 30, no. 7, pp. 1051–1060, 2019.

[36] J. J. Lee, K. Loh, and Y. S. Yap, “PI3K/Akt/mTOR inhibitors in
breast cancer,” Cancer Biology & Medicine, vol. 12, no. 4,
pp. 342–354, 2015.

[37] M. Gentzel and A. Schambony, “Dishevelled paralogs in verte-
brate development: redundant or distinct,” Frontiers in Cell
and Developmental Biology, vol. 5, 2017.

[38] K. J. Bunn, P. Daniel, H. S. Rösken et al., “Mutations in
DVL1 cause an osteosclerotic form of Robinow syndrome,”
American Journal of Human Genetics, vol. 96, no. 4,
pp. 623–630, 2015.

[39] J. J. White, J. F. Mazzeu, A. Hoischen et al., “DVL3 alleles
resulting in a -1 frameshift of the last exon mediate
autosomal-dominant Robinow syndrome,” American Journal
of Human Genetics, vol. 98, no. 3, pp. 553–561, 2016.

[40] M. Bélanger, I. Allaman, and P. J. Magistretti, “Brain energy
metabolism: focus on astrocyte-neuron metabolic coopera-
tion,” Cell Metabolism, vol. 14, no. 6, pp. 724–738, 2021.

[41] Y. J. Vos and R. M. Hofstra, “An updated and upgraded
L1CAM mutation database,” Human Mutation, vol. 31,
no. 1, pp. E1102–E1109, 2010.

[42] F. G. Haddad, J. Sawyers, and N. J. Short, “Treatment de-
escalation in Philadelphia chromosome-positive B-cell acute
lymphoblastic leukemia: the emerging role of chemotherapy-
free regimens,” Therapeutic Advances in Hematology, vol. 14,
article 204062072311512, 2023.

[43] D. Miroshnychenko, T. Miti, P. Kumar et al., “Stroma-mediated
breast cancer cell proliferation indirectly drives chemoresis-
tance by accelerating tumor recovery between chemotherapy
cycles,” Cancer Research, vol. 83, no. 22, pp. 3681–3692,
2023.

21International Journal of Genomics



[44] B. E. Adrada, T. W. Moseley, M. M. Kapoor et al., “Triple-neg-
ative breast cancer: histopathologic features, genomics, and
treatment,” Radiographics, vol. 43, no. 10, p. e230034, 2023.

[45] T. M. A. Samaan, M. Samec, A. Liskova, P. Kubatka, and
D. Büsselberg, “Paclitaxel’s mechanistic and clinical effects
on breast cancer,” Biomolecules, vol. 9, no. 12, p. 789, 2019.

[46] E. Metsälä, T. S. Salo, K. Straume et al., “The factors for success
and lack of success in the breast cancer patient care pathway: a
qualitative study from the health care staff perspective,” Euro-
pean Journal Of Breast Health, vol. 18, no. 3, pp. 222–228,
2022.

[47] L. Falzone, M. Grimaldi, E. Celentano, L. S. A. Augustin, and
M. Libra, “Identification of modulated microRNAs associated
with breast cancer, diet, and physical activity,” Cancers,
vol. 12, no. 9, p. 2555, 2022.

[48] Z. X. Zhu, H. Jiang, J. L. Xie, X. R. Jin, B. L. Li, and J. B. Liu,
“Current evidence on circRNAs as potential theranostic
markers for detecting chemoresistance in breast cancer: a sys-
tematic review and meta-analysis,” Scientific Reports, vol. 12,
no. 1, article 22016, 2022.

[49] J. Pessoa, M. Martins, S. Casimiro, C. P. Plasencia, and V. S.
Barmatz, “Editorial: Altered expression of proteins in cancer:
function and potential therapeutic targets,” Frontiers in Oncol-
ogy, vol. 12, 2022.

[50] B. Giuliani, C. Tordonato, and F. Nicassio, “Mechanisms of
long non-coding RNA in breast cancer,” International Journal
of Molecular Sciences, vol. 24, no. 5, p. 4538, 2023.

22 International Journal of Genomics


	Validation of a Proteomic-Based Prognostic Model for Breast Cancer and Immunological Analysis
	1. Introduction
	2. Materials and Methods
	2.1. Acquisition and Processing of Microarray Data
	2.2. Selection of Key Proteins and Construction of Prognostic Model
	2.3. Validation of Prognostic Model Accuracy
	2.4. GSEA
	2.5. Survival Analysis of Prognostic Key Proteins and Identification of Encoding Genes
	2.6. Immunohistochemical Staining Was Performed to Validate the Differential Expression of IDO1 (IDO) and NRG1 (HEREGULIN)
	2.7. Analysis of Immune Cell Infiltration
	2.8. Immunotherapy Analysis and Sample Typing Analysis

	3. Result
	3.1. Screening Prognostic Proteins and Constructing Prognostic Models
	3.2. Survival Analysis between Groups
	3.3. Building a Prognostic Risk Model
	3.4. Univariate and Multivariate Cox Regression Analyses
	3.5. Receiver Operating Characteristic Analysis
	3.6. Risk Model Column Chart and Calibration Curve
	3.7. Survival Analysis of 9 Key Proteins
	3.8. Key Protein Coexpression Analysis
	3.9. KEGG Enrichment Analysis
	3.10. Immunohistochemical Staining Analysis of the Expression of Two Differential Proteins
	3.11. Differential Expression of Immune Cells in BC
	3.12. Results of Immunotherapy Analysis
	3.13. Sample Classification

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials



