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Climate change has become a major source of concern, particularly in agriculture, because it has a significant impact on the
production of economically important crops such as wheat, rice, and maize. In the present study, an attempt has been made to
identify differentially expressed heat stress-responsive long non-coding RNAs (lncRNAs) in the wheat genome using publicly
available wheat transcriptome data (24 SRAs) representing two conditions, namely, control and heat-stressed. A total of 10,965
lncRNAs have been identified and, among them, 153, 143, and 211 differentially expressed transcripts have been found under 0
DAT, 1 DAT, and 4 DAT heat-stress conditions, respectively. Target prediction analysis revealed that 4098 lncRNAs were
targeted by 119 different miRNA responses to a plethora of environmental stresses, including heat stress. A total of 171 hub
genes had 204 SSRs (simple sequence repeats), and a set of target sequences had SNP potential as well. Furthermore, gene
ontology analysis revealed that the majority of the discovered lncRNAs are engaged in a variety of cellular and biological
processes related to heat stress responses. Furthermore, the modeled three-dimensional (3D) structures of hub genes encoding
proteins, which had an appropriate range of similarity with solved structures, provided information on their structural roles.
The current study reveals many elements of gene expression regulation in wheat under heat stress, paving the way for the
development of improved climate-resilient wheat cultivars.

1. Introduction

With the continuous change in climatic conditions, the rise
in global temperature is a major threat to agriculture pro-
duction as it impacts global food demand and security. This
increasing temperature affects plant growth and develop-
ment processes negatively. Heat stress is considered to be
major abiotic stress which can affect the yield performance
of economically important crops, including wheat (Triticum
aestivum L.) [1, 2]. Wheat is a largely consumed cereal crop
in the family Poaceae. Furthermore, wheat is the largest con-
tributor, with nearly 30% of the world grain production and

50% of the world grain trade [3, 4]. The Food and Agricul-
ture Organization (FAO) (https://www.fao.org/home/en)
estimated that by 2050, the world would require an addi-
tional 198 million tonnes of wheat to secure food security
goals, for which wheat production needs to be increased by
up to 77% in the developing countries [5, 6]. The tempera-
ture anomaly distribution, on the other hand, is shifting
toward higher temperatures [7], and wheat production is
estimated to be reduced by up to 6% for each 1°C rise in
temperature. Arenas-M et al. [8] have reported a significant
reduction in grain weight (23.9%) and grain dimensions due
to heat-stress in wheat. In comparison to the control

Hindawi
International Journal of Genomics
Volume 2023, Article ID 1774764, 17 pages
https://doi.org/10.1155/2023/1774764

https://orcid.org/0000-0002-5023-7618
https://orcid.org/0000-0003-3380-7831
https://www.fao.org/home/en
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/1774764


condition, grain quality was also significantly impacted, with
a fall in starch content (20.8%) and an increase in grain pro-
tein levels (14.6%) [8].

Plants employ different types of mechanisms at the bio-
chemical or molecular level to cope with heat stress [9]. By
activating almost all “heat shock genes” (HSGs), heat stress
transcription factors (HSFs) regulate crucial parts of the
heat stress response, hence defending against it. Heat shock
proteins (HSPs), which prevent intracellular proteins from
denaturation, are encoded by a number of heat-inducible
genes known as HSGs that are up-regulated in response
to heat stress. Transcription of HSG is started in response
to heat by conserved heat shock elements (HSEs) in the
promoter region. Plant HSFs are a complex gene family
which play a crucial role in regulating transcription under
heat stress [10]. To deal with heat-stress conditions, plants
have a variety of adaptation, avoidance, or acclimatization
strategies. Major tolerance mechanisms are also triggered
to counteract stress-induced biochemical and physiological
changes. These mechanisms make use of proteins, ion
transporters, osmoprotectants, antioxidants, and other ele-
ments involved in signaling cascades and transcriptional
regulation [11]. The excessive production of reactive oxygen
species (ROS), which causes oxidative stress, is one of the
main adverse effects of heat stress [12]. Heat stress alters
the expression of genes, namely, transporters, regulatory
proteins, detoxifying enzymes, and osmoprotectants,
involved in direct protection from heat stress at the molec-
ular level [13, 14]. In situations like heat stress, altering
physiological and biochemical processes through changes
in gene expression results in the progressive development
of heat tolerance in the form of acclimation or, in the
best-case scenario, adaptation [15, 16]. As evident from pre-
vious studies, long noncoding RNAs (lncRNAs) have a
principal role in the regulatory mechanisms of plants dur-
ing response to heat stress, which are highly heterogeneous,
having lengths ≥200 nucleotides [17]. Over the past decade,
significant progress in next-generation sequencing (NGS)-
based methods has accelerated the identification and func-
tional characterization of lncRNAs in different crop plants.
lncRNAs are a class of regulatory RNAs and are well known
for their pivotal role in a plethora of biological processes,
including development, genomic imprinting, cell differenti-
ation, chromatin remodeling, transcriptional activation,
transcriptional interference, regulation of protein re-local-
ization, and cell cycle at transcriptional, post-transcrip-
tional, and post-translational levels [18]. These lncRNAs
shared similarities with coding mRNA in many aspects,
including splicing, polyadenylation, conserved sequences,
and being transcribed by RNA Pol II [19–21]. LncRNAs
can act as a precursor of microRNAs (miRNAs) and can
also regulate the functions of miRNAs by acting as target
mimics or decoys in both plants and animals. It also
inhibits the interaction between miRNAs and their target
mRNAs, thus regulating the expression of corresponding
mRNAs [22, 23]. In plants, the function of most lncRNAs
is still unclear as they are comparatively less explored in
comparison to animal species. However, with significant
development in the scientific knowledge of plant genomes,

lncRNAs have been identified and characterized in different
plant species, including Arabidopsis thaliana L., Oryza
sativa L., Zea mays L., Cucumis sativus L., Populus tricho-
carpa L., and so on ([24], [25, 26], [27]). In earlier studies,
heat stress-responsive lncRNAs have been identified and
annotated in wheat [21, 28]. Despite the significant impor-
tance of lncRNAs in response to heat stress, to the best of
our knowledge, there is no single report available on deci-
phering the regulatory network of lncRNA-miRNA-mRNA
in relation to wheat. In the present study, we have identified
and annotated a set of lncRNAs involved in heat stress using
the publicly available wheat transcriptome data (24 SRAs)
representing two conditions, namely, control and heat
stressed. We also developed an RNA interaction network of
miRNAs that could potentially interact with the identified
lncRNA and their target genes followed by gene ontology
(GO) based annotations and also mined the gene-specific
SSRs and SNPs. Furthermore, three-dimensional (3D) struc-
tures of the lncRNA-targeted proteins were modeled using
the homology approach.

The current study sets the framework for a better under-
standing of how potential lncRNAs respond to heat stress in
wheat as well as provides some important insights into the
genetic and structural characteristics of lncRNAs. Our anal-
ysis provides a comprehensive picture of how lncRNAs are
expressed and controlled when wheat responds to heat
stress. This could be used as an alternative resource to
develop new wheat cultivars and increase crop yield.

2. Materials and Methods

2.1. RNA-Seq Data Used for Identification of lncRNA in
Wheat. We downloaded and extracted RNAseq data related
to heat stress in FastQ format from NCBI’s Sequence Read
Archive (SRA) database [29] (https://www.ncbi.nlm.nih
.gov/sra) to identify lncRNAs responsive to heat stress in
wheat. A total of 24 data files have been downloaded, which
include various combinations of both control and heat-stress
data at different time points, that is, 0, 1, and 4 days after
treatment (DAT). The data used here belongs to leaf tissue
and it was collected from all heat-stressed and controlled
individual plants immediately at the end of the stress period,
that is, 0, 1, and 4 DAT with 4 biological replicates [30]. Fur-
ther details of the data are provided in Table 1.

2.2. Bioinformatics Pipeline for Identification of lncRNA. Ini-
tially, the FastQC tool (Andrews, 2010) was employed to
check the quality of data available to us. Furthermore,
low-quality sequences were trimmed using Trimmomatic
[31]. Then, raw data files were mapped to the wheat refer-
ence genome (GCA_900519105.1) using the TopHat and
Cufflinks software suite [32, 33]. Transcripts less than 200
nucleotides in length are filtered using an in-house Perl
script. Furthermore, to avoid any potential protein-coding
transcripts, the Protein-Coding Calculator2 (CPC2) tool
[34] and PLEK tool (https://sourceforge.net/projects/plek/)
were utilized and further filtered out the transcripts which
had an open reading frame (ORF) of more than 100 amino
acids. After that, the common transcripts that were
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predicted as noncoding by both the CPC2 and PLEK tools
were selected. BLASTn was performed against the tRNA,
rRNA, snRNA, and snoRNA databases, and BLASTx
against the NCBI nr protein database to remove the house-
keeping RNAs, and transcripts having coding potentials,
respectively. Further downstream, the Augustus tool [35]
was used to predict the number of exons within putative
lncRNAs. These putative lncRNAs were then annotated
using the Blast2GO pipeline [36]. Furthermore, the differen-
tial expressions of the transcripts were analyzed using the
Cuffdiff module of the Cufflink software [37]. The results
of the differential expression data were visualized by the R
package CummeRbund. The whole bioinformatics proce-
dure utilized in the current study is described in Figure 1.

2.3. Prediction of lncRNA Targets and Interaction Network.
The psRNATarget web-server [38] was employed to predict
the potential targets of identified lncRNAs in the current
study. First, the targets of wheat miRNAs were predicted sep-
arately for the lncRNA database and the mRNA database of
wheat. For this purpose, 119 miRNAs from wheat were
selected as query sequences and a set of 10,965 predicted
lncRNAs was used as a database for target prediction. Fur-
thermore, the same set of 119 miRNAs was used as a query,
and mRNA sequences of wheat available to us were used as
a database for target prediction.

To build an RNA interaction network, miRNAs, their
target lncRNA, and corresponding target accessibility scores
provided by psRNATarget were used as input to Cytoscape
software [39]. Likewise, an interaction network is also built
for mRNA and miRNA separately. To get the complete inter-
action network of miRNA-lncRNA-mRNA, the Merge Net-
work option provided in Cytoscape was used to merge these
miRNA-lncRNA and miRNA-mRNA networks. A total of
101 interconnected clusters were present in the network. Fur-
thermore, from each cluster, hub genes were identified by
using the application cytoHubba, which is itself a part of the
Cytoscape tool. The top 10 hub genes were identified based
on 11 different algorithms, namely MCC, DMNC, MNC,
Degree, EPC, BottleNeck, EcCentricity, Closeness, Radiality,
Betweenness, Stress, and Clustering Coefficient. Thus, 11 sets
of the top 10 hub genes were identified for one cluster, and
finally, as a consensus, the “union” of these 11 sets of hub
genes was taken as the final set of hub genes for the same clus-
ter. In the same way, hub genes were found for each of the 101
clusters that were found in this study.

2.4. Structure Modeling of Target Genes Encoding Proteins
and Structure Evaluation. The representative mRNAs that
are associated with response to heat stress in wheat (based
on the Blast2GO annotation) were selected for structure
modeling. Totally, 6 mRNAs, namely, JP928422.1,
JP879666.1, CV762197.1, CJ542498.1, GD186945.1, and
HG916218.1, were considered and their corresponding amino
acid sequences were obtained using ORF Finder (https://www
.ncbi.nlm.nih.gov/orffinder/) tool of NCBI. 3D structure
modeling of these representative proteins was predicted by
using an automated Phyre2 program [40], based on the fold
recognition method of protein structure prediction. The struc-
tural quality of modeled 3D structures was investigated by cal-
culating the Ramachandran plot using PROCHECK tool [41]
and Protein StructureVerification Server (PSVS) [42].Wekept
going with the loopmodeling step until we had a structurewith
more than 90% of the residues in themost preferred region and
none in the least preferred region of the Ramachandran plot.

2.5. Prediction of SNPs and SSRs within Targets of lncRNAs.
SNPs were mined only for the selected mRNAs. To start
with, first, VCF file of the wheat (GCA_900519105.1) was
downloaded from the Ensembl plants database available at
https://plants.ensembl.org/triticum_aestivum [43], which also
includes positions of SNPs on the wheat genome. The corre-
sponding positions of the SNPs were located by mapping the
mRNA onto the reference genome. We have also used the
MISA tool [44] to figure out where the SSR markers are on
the hub genes.

3. Results and Discussion

3.1. Genome-Wide Identification of Heat Stress-Responsive
lncRNAs. A total of 146,865 transcripts were selected using
standard threshold (e.g., length of transcript >200 nucleo-
tides) from the whole set of merged transcripts (147029).
To know the coding potential, these 146,865 transcripts were
analyzed with CPC2 and PLEK tools. Further, the consensus
results obtained from CPC2 and PLEK (after removing tran-
scripts having an ORF length of >100 amino acids) were
considered for further analysis (a total of 15,830 transcripts).
These transcripts were searched against tRNA, rRNA,
snoRNA, and snRNA databases to filter out housekeeping
genes using blastn with a standard threshold i.e., e-value
(<1 × 10−5) and identity (>90%). Also, these transcripts were
searched against the NCBI nr protein database using
BLASTx to remove any potential protein-coding transcripts.

Table 1: Data description.

Data description Accession number Time points Tissue

4_DAT_Heat SRX3963094, SRX3963093, SRX3963092, SRX3963091 4 days (heat-stressed individuals) Leaf

4_DAT_Control SRX3963090, SRX3963089, SRX3963088, SRX3963087 4 days (controlled individuals) Leaf

1_DAT_Heat SRX3963086, SRX3963085, SRX3963084, SRX3963083 1 day (heat-stressed individuals) Leaf

1_DAT_Control SRX3963082, SRX3963081, SRX3963080, SRX3963079 1 day (controlled individuals) Leaf

0_DAT_Heat SRX3963078, SRX3963077, SRX3963076, SRX3963075 0 day (heat-stressed individuals) Leaf

0_DAT_Control SRX3963074, SRX3963073, SRX3963072, SRX3963071 0 day (controlled individuals) Leaf
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Finally, a total of 10,965 putative lncRNAs were found, with
the average length of putative lncRNAs being 1046 bp. For
further reference, the lengthwise distribution and exonic dis-
tribution of lncRNAs were given in Figures 2(a) and 2(b),
respectively. From previous studies, it was evident that the

average length of lncRNAs varies from species to species,
that is, 285, 287, 463, and 323 bp for Arabidopsis, cluster
bean, kiwifruit, and rice, respectively [45–48]. It was also
observed from Figure 2(a) that almost 93% of total putative
lncRNAs fall between 200 and 2000 bp lengths. In addition

BLASTn to filter out rRNA, tRNA, 
snoRNA and snRNA sequence

BLASTx to remove sequence having 
90% similarity to Known Protein

Mapping 
with TopHat

Assembly by 
Cufflink

Filter >200nt transcript

CPC2 PLEK

CPC2 ∩Filter ORF length <100

Common lncRNAs 
Between CPC and PLEK

Total 10965 putative 
lncRNAs 

Predict miRNA targets in 
putative lncRNA database 

using psRNATarget

Predict miRNA targets in 
mRNA database using 

psRNATarget

RNA interaction network 
construction using Cytoscape

Hubgene prediction by 
Cytohubba

SSR marker identification 
using MISA

Raw Reads

Assembled Reads

PLEK

Figure 1: Computational pipeline for systematic identification of lncRNAs and their targets in the current study.
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to that, it was observed that 2038 (18%) of 10,965 lncRNAs
contain exons from the analysis performed by the Augustus
tool. Here, in wheat, a total of 82% lncRNAs were mono-
exonic (Figure 2(b)) as compared to the previously reported
81% in both kiwifruit and maize [45, 48] and 91% in cluster
bean [47]. Besides, one lncRNA (i.e., TCONS_00042125)
having a total length of 1810 bp has nine exons, which is
the highest among all lncRNAs.

3.2. Identification of Targeted lncRNAs by Wheat miRNA
and their mRNA Target. From the results of psRNATarget,
it was observed that out of 109,65 lncRNAs, a total of 4098
(37%) were targeted by 119 miRNAs in wheat. Interestingly,
about 62.59% of lncRNAs were targeted by only one
miRNA, whereas only 3 lncRNAs were targeted by 10 miR-
NAs each. We have filtered the results to retain only relevant
target lncRNAs (having a Target Accessibility Score <20)
and found only 87 suitable lncRNAs for further analysis.
The details about the distribution of the percentage of
lncRNAs targeted by 1–10 miRNAs in wheat are given in
Figure 3. As for the targeted mRNAs, a total of 42,052
mRNAs were targeted by 119 miRNAs in wheat, among
which 3170 mRNAs had a Target Accessibility Score <20.

3.3. lncRNA-miRNA-mRNA Interaction Network and Hub
Genes Prediction. A total of 87 lncRNAs and 3170 mRNAs
targeted by 101 miRNAs were used to develop the interac-
tion network by Cytoscape. The complete lncRNA-
miRNA-mRNA interaction network is given in Figure 4. A
total of 101 separate clusters were found for each miRNA
in the network. Hub genes were predicted separately for each
miRNA (Figure 5). The total number of hub genes found
was 931, whereas for each cluster (or miRNA), the number
of hub genes ranges between 1 and 19. Figure 6(a) depicts
the distribution of the number of hub genes among each
miRNA. It was also observed that 82 miRNAs have no
lncRNA targets among their hub genes, whereas 15 miRNAs
have only one lncRNA target among their hub gene
sequences. Figure 6(b) depicts the distribution of the num-
ber of targeted lncRNAs among the total hub genes.

The majority of hub genes were localized to cells and
their parts under the cellular component category, followed
by organelle. The mRNA hub genes were annotated by

BLAST2GO and showed maximum genes associated with
binding activity, catalytic activity under the molecular func-
tion category [49–51], and cellular process and metabolic
process under the biological process category [52–54]
(Figure 7).

3.4. Mining of Gene-Specific SSRs. Simple sequence repeats
(SSRs), also known as microsatellites, are tandemly repeated
DNA sequences that consist of one to six nucleotide units.
SSRs have distinct qualities, such as co-dominant inheri-
tance, extensive genome coverage, high abundance, high
reproducibility, and multi-allelic nature. Due to these char-
acteristics, they are the most widely recognized genetic
markers actively used in plant breeding. SSR markers are
widely utilized for a variety of purposes, including popula-
tion genetics, functional diversity, linkage mapping, DNA
fingerprinting, and most importantly, assisted breeding
techniques [55]. A total of 931 numbers of hub gene
sequences, which include both lncRNA and mRNA targets
of miRNAs, were analyzed by the MISA tool. Among them,
only 171 sequences were found to have SSR markers on
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Figure 4: Complete lncRNA-miRNA-mRNA interaction network.
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them. The total number of identified SSRs was 204, whereas
26 sequences having more than 1 SSR were found. Among
171 sequences, only 3 were putative lncRNAs and the
remaining were mRNAs of wheat. Table 2 consists of all
types of SSRs and the number of their occurrences in the
hub gene sequences. The distribution of various types of
repeats (viz. mononucleotide, dinucleotide, trinucleotide,
and tetranucleotide) is given in Figure 8. The mined SSRs
from 931 hub gene sequences are provided in Supplemen-
tary Table 1. It is evident from previous studies that SSR
markers are associated with heat-stress-responsive traits
[56–58]. Sharma et al. have reported the discovery of a
total of 182 alleles by assaying 52 SSRs on 40 genotypes of
bread wheat [59]. In the present study, we have mined a
total of 204 SSR markers, which can distinguish between
heat-tolerant and heat-susceptible wheat genotypes, which

will be useful in breeding programs. Breeders will be able
to choose heat-tolerant wheat genotypes by using
polymorphic SSR markers or marker-assisted selection in
the early stages of growth.

3.5. Protein Structure Prediction and Structure Verification.
Protein 3D structures of six representative proteins were
predicted using the Phyre2 protein fold recognition server.
Template structure PDB ID, sequence alignment scores, con-
fidence values, resolution, template chain, and description are
displayed in Supplementary Table 2. During modeling,
template structures were selected based on sequence alignment
between target and template structures. Sequence alignment
between template and target indicated an acceptable range of
similarity (94%), which is the confirmation of previous studies
reported on the 3D structure models of different proteins
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[5, 60, 61]. Protein structures predicted using the Phyre server
were further visualized in different chemical shapes using
Discovery studio programs as shown in Figure 9. Modeled
structure showed <1Å RMSD with homolog template
structures as a result of superposition and comparison of
protein structures. The structure quality of modeled 3D
structures was evaluated with the prediction of Ramachandran
plots through the calculation of phi (Φ) and psi (ψ) torsion
angles. As evident from Figure 10, calculated Ramachandran
plots showed up to 96.7% of residues falling in the most
favored regions (Table 3). As per the general rule, a good
protein model must have over 90% of its residues in the most
favored regions [62]. Predicted structure models can be
utilized for structure-based functional annotation of these
heat-responsive proteins. The SNPs located on these six
mRNAs were also identified (Table 4). Plants under high
temperature stress produce more HSPs and less of their usual
proteins. As shown in Table 4, majorly 6 genes showed direct
homology with HSPs. HSPs act as chaperones regulating the
folding, accumulation, localization, and degradation of normal
proteins and combating the damaging effects of heat and other
stress on plants [63–65]. Mishra et al. [66] have also reported 6
genes (viz., HSFA6e, HSP90, HSP17, MAPK, CDPK, and
SOD) associated to heat stress in wheat. Among which, HSP17
has shown manifold change in their expression in heat stress

as compared to the control condition [66]. HSP21 was
discovered to bind with the plastid nucleoid protein pTAC5,
and it was shown to be essential for the growth of chloroplasts
in Arabidopsis under heat stress [67]. The rate of carbon
assimilation under sudden heat shock (SHS) stress and the
small HSPs amplification levels were shown to be strongly
correlated in a study on maize [68].

3.6. Differentially Expressed Genes and lncRNAs in Heat-
Stress Conditions. A total of 153, 143, and 211 differentially
expressed transcripts were found under 0 DAT, 1 DAT,
and 4 DAT conditions of heat stress, respectively. Among
them, 18 transcripts were differentially expressed both under
0 DAT and 1 DAT conditions, while 25 transcripts were dif-
ferentially expressed under both 1 DAT and 4 DAT condi-
tions. It was also found that there were 13 common
transcripts which were differentially expressed under both
the 0 DAT and 4 DAT conditions. Only four transcripts
(viz., TCONS_00034685, TCONS_00074321, TCONS_
00103626, and TCONS_00145241) were found to be differ-
entially expressed in all three conditions. The heat map of the
differentially expressed transcripts is given in Figure 11. It is also
observed that among 153 differentially expressed transcripts
under the 0 DAT condition, 9 were putative lncRNAs.Whereas,
among 143 and 211 differentially expressed transcripts, 2 and 11
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putative lncRNAs were found under 1 DAT and 4 DAT condi-
tions, respectively.

Out of these 9 lncRNAs under the 0 DAT condition, 3
lncRNAs, namely, TCONS_00008075, TCONS_00018609,
and TCONS_00105378 were differentially expressed and
mapped to 48 GO terms about the biological process, molecu-
lar function, and cellular component. Similarly, under 1 DAT
and 4 DAT conditions, 1 i.e., TCONS_00071103 (115 GO
terms) and 3 lncRNAs i.e., TCONS_00049265, TCONS_
00064961, and TCONS_00104542 (7GO terms) were differen-
tially expressed, respectively. The GO term categorized for the
biological process GO:0055114 was prominently found under
0 DAT and 1 DAT conditions, confirming the oxidation-
reduction process which is central to both genetic and epige-

netic control of plant responses to heat stress [69, 70]. The
other noticeable GO terms under the biological process were
GO:0006355, GO:0016310, and GO:0006468, associated with
the regulation of transcription [71, 72], phosphorylation, and
protein phosphorylation [73, 74], which showed regulating
heat stress in plants.

For the cellular component category, the predominant
GO terms were GO:0016020, GO:0016021, and GO:0005634,
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Figure 7: GO classification of mRNA hub genes.

Table 2: Different types of SSRs and the number of their
occurrence.

Sl. no. Repeats Total Sl. no. Repeats Total

1 A/T 128 9 ACC/GGT 4

2 C/G 11 10 ACG/CGT 1

3 AC/GT 7 11 AGC/CTG 7

4 AG/CT 8 12 AGG/CCT 4

5 AT/AT 3 13 ATC/ATG 2

6 CG/CG 1 14 CCG/CGG 17

7 AAC/GTT 3 15 AACC/GGTT 1

8 AAG/CTT 6 16 AATT/AATT 1

68% 

9% 

22% 

1% 

Distribution of various type repeats

Mononucleotide Repeat

Dinucleotide Repeat

Trinucleotide Repeat

Tetranucleotide Repeat

Figure 8: Distribution of various type repeats on hub gene sequences.

9International Journal of Genomics



JP928422.1 JP879666.1 CV762197.1

CJ542498.1 GD186945.1 HG916218.1

180

135

90

45

–45Ps
i (

de
gr

ee
s)

–90

–135

–180 –135 –90 –45 0
Phi (degrees)

45 90 135 180

0

180

135

90

45

–45Ps
i (

de
gr

ee
s)

–90

–135

–180 –135 –90 –45 0
Phi (degrees)

45 90 135 180

0

180

135

90

45

–45Ps
i (

de
gr

ee
s)

–90

–135

–180 –135 –90 –45 0

Phi (degrees)

45 90 135 180

0

180

135

90

45

–45Ps
i (

de
gr

ee
s)

–90

–135

–180 –135 –90 –45 0

Phi (degrees)

45 90 135 180

0

180

135

90

45

–45Ps
i (

de
gr

ee
s)

–90

–135

–180 –135 –90 –45 0

Phi (degrees)

45 90 135 180

0

180

135

90

45

–45Ps
i (

de
gr

ee
s)

–90

–135

–180 –135 –90 –45 0

Phi (degrees)

45 90 135 180

0

Figure 10: Calculated Ramachandran plots of modeled 3D structures using PSVS server.
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Figure 9: Predicted 3D structure models of heat-responsive representative proteins. Protein structures are visualized using Discovery Studio
programs.
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Figure 11: Continued.

Table 3: Statistics of calculated Ramachandran plot of representative proteins.

Parameters JP928422.1 (%) JP879666.1 (%) CV762197.1 (%) CJ542498.1 (%) GD186945.1 (%) HG916218.1 (%)

Most favored regions 94.3 94.4 87.9 92.3 96.7 80.0

Additionally allowed regions 5.7 5.6 12.1 7.7 3.3 20.0

Generously allowed regions 0.0 0.0 0.0 0.0 0.0 0.0

Disallowed regions 0.0 0.0 0.0 0.0 0.0 0.0

Table 4: Number of identified SNPs on Heat stress related mRNAs.

mRNA accession no. Chromosome no. Number of SNPs on mRNA

CV762197.1 1A 78

CJ542498.1 7A 13

JP879666.1 2D 13

JP928422.1 4D 19

GD186945.1 2A —

HG916218.1 1B —
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followed by GO:0005886. GO: 0016020 and GO: 0016021
demonstrated membrane localization and its integral compo-
nents. The rise in temperature changes the membrane proper-
ties, ranging from their fluidity and permeability, which alters
the lipid composition andmight affect the lipid andmembrane
proteins’ interactions [75]. GO:0005634 showed cellular local-
ization to the nucleus, while GO:0005886 to the plasma mem-
brane. Heat stress increases the degree of oxidation of the
nucleus and cytosol (GO:0005737) as noticed in Arabidopsis
leaf epidermal and stomatal guard cells [70].

The maximum occurrence of GO:0046872 terms about
metal ion binding activity clearly shows their role in the
regulation of stress response, gene expression, and their
regulation along with posttranslational modifications and
cell signaling [76]. The GO terms, namely, GO:0004497
and GO:0016740 showed molecular function associated
with monooxygenase activity and transferase activity [71],
respectively. The plant cytochrome P450/75B genes show-
ing monooxygenase activity were highly up-regulated under
heat stress [77, 78].

3.7. Functional Annotation of lncRNAs. A total of 3288
(30%) putative lncRNAs out of 10965 were annotated by

Blast2GO. The similarity search of identified lncRNA
showed the highest similarity with gamma, delta, and omega
gliadin genes and LMW HSPs. Wang and co-workers [79]
summarized those abiotic stresses that induce complex pro-
teomic changes in wheat grains ranging from the up-
regulation of processes that are required for stress adapta-
tion and tolerance, which is accompanied by kernel weight
reduction. The studies also showed that heat stress increases
the amount of alpha and gamma gliadin during the flower-
ing or post-anthesis stage. The alpha-gliadin genes were
found to be up-regulated in conditions of heat stress [80],
while gamma and omega gliadins are down-regulated
[81, 82]. The increase in heat during the growing stages of
plants in general increases their overall grain protein content
[83]. The HSPs are produced when eukaryotes respond to
abiotic stress and act as chaperons who protect cellular pro-
teins from damage during the stress. These HSPs are regu-
lated by transcription factors known as Heat Shock Factors
(HSFs). These HSFs combat various stress conditions and
are present in abundance in plants [84].

Figure 12 represents the number of transcripts
(lncRNAs) involved in the three components (viz., “biological
process,” “cellular components,” and “molecular functions”)
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Figure 11: (a) Heatmap of differentially expressed transcripts in all the samples; (b) heatmap of differentially expressed putative lncRNAs in
all the samples.
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of GO. As shown in Figure 12, the most enriched terms for
“biological process” were “metabolic process” and “cellular
process”. In the case of “molecular function,” most enriched
terms were “binding” and “catalytic activity” [85, 86],
whereas “membrane” and “intrinsic component of mem-
brane” were the most enriched terms for “cellular compo-
nents” [68]. GO enrichment analysis suggested that the
lncRNAs under heat stress were primarily involved in meta-
bolic processes and cellular processes along with regulation
of biological activity and response to stimulus [87–89]. These
lncRNAs are widely involved in metabolic and cellular pro-
cesses [90]. Heat stress affects the overall growth and develop-
ment of plants along with an increase in oxidative damage,
decreases photosynthesis and water retention, and finally,
decreases yield. These lncRNAs regulate the activity of tran-
scription factors and their associated genes [91]. lncRNAs
play a major role in regulating biological activity mainly epi-
genetic activity [92, 93] as shown in cucumber [94], Arabi-
dopsis [91]. These are also associated with plant hormone
signal transduction pathways in response to heat stress [95].
A few lncRNAs also showed involvement in the transposable
activity [96].

4. Conclusion

In this study, 10,965 lncRNAs were screened and identified in
silico using RNAseq data related to heat stress in wheat (Tri-
ticum aestivum). Heat stress-related differentially expressed
lncRNAs were also identified at three time points. To build
an RNA interaction network, the predicted lncRNAs and
their related protein-coding heat stress-responsive target
genes and miRNAs were identified. This study shows the
characteristics and expression patterns of lncRNAs during
heat stress at various time periods, which may be used to
investigate molecular regulation of heat-stress sensitive genes
subject to the wet lab validation of results obtained in the cur-
rent study. Given the need for cereals, these predicted
resources might be used to investigate the biological causes
of heat stress responses, provided they are validated in a wet
lab. The interaction of lncRNAs with coding sequences will
result in the formation of new regulatory networks that may
be used for crop improvement. As reference genomes have
become more widely available, our understanding of
lncRNAs has evolved. This has led to the development of bet-
ter cultivars to feed the world’s growing population.
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