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This study searched for aging-related genes (ARGs) to predict the prognosis of patients with cervical cancer (CC). All data were
obtained from Molecular Signatures Database, Cancer Genome Atlas, Gene Expression Integration, and Genotype Organization
Expression. The R software was used to screen out the differentially expressed ARGs (DE-ARGs) between CC and normal tissues.
A protein–protein interaction network was established by the DE-ARGs. The univariate and multivariate Cox regression analyses
were conducted on the first extracted Molecular Complex Detection component, and a prognostic model was constructed. The
prognostic model was further validated in the testing set and GSE44001 dataset. Prognosis was analyzed by Kaplan–Meier
curves, and accuracy of the prognostic model was assessed by receiver operating characteristic area under the curve analysis.
An independent prognostic analysis of risk score and some clinicopathological factors of CC was also performed. The copy-
number variant (CNV) and single-nucleotide variant (SNV) of prognostic ARGs were analyzed by the BioPortal database. A
clinical practical nomogram was established to predict individual survival probability. Finally, we carried out cell experiment to
further verify the prognostic model. An eight-ARG prognostic signature for CC was constructed. High-risk CC patients had
significantly shorter overall survival than low-risk patients. The receiver operating characteristic (ROC) curve validated the
good performance of the signature in survival prediction. The Figo_stage and risk score served as independent prognostic
factors. The eight ARGs mainly enriched in growth factor regulation and cell cycle pathway, and the deep deletion of FN1 was
the most common CNV. An eight-ARG prognostic signature for CC was successfully constructed.

1. Introduction

Cervical cancer (CC) with high morbidity andmortality [1] is
the primary reason for the death among female patients with
cancer [2]. Evidence suggests that the incidence of CC is
annually decreasing in developed countries while increasing
in developing countries. Approximately 90% of CC-related
deaths worldwide are reported each year in developing coun-
tries [3]. Studies have proposed that the development of CC is
possibly related to persistent human papilloma virus (HPV)
infection, microenvironment, lifestyle, and smoking history
[4–9]. Many CC patients do not exhibit so obvious signs
and symptoms that a significant challenge is posed for clini-
cians to determine the course of the disease until it is well
advanced [10]. Currently, the 5-year disease-free survival
(DFS) rate for patients with end-stage CC is only 45%, despite

the fact that major advancements have been made in CC
treatment methods, including clinical surgery, chemother-
apy, and radiotherapy [11]. Moreover, the prognosis of
metastatic CC and recurrent CC is poor. The development
of CC is a complex process involving a number of variables
[12], but its molecular mechanisms remain to be unknown.
Therefore, identification of the potential biological indicators
for clinical prognostic management and investigation of the
molecular mechanisms underlying their involvement in CC
are especially crucial.

Aging, a common feature of biological organisms, is an
important biological process (BP) that involves the progres-
sive loss or degradation of functions at the molecular, cellu-
lar, tissue, and organismal levels [13]. Research has shown
that aging plays a role in both the occurrence and develop-
ment of cancer as well as the resistance to cancer treatment
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[14]. Inflammation, one of the seven indicators of aging,
leads to initial gene mutations, increases the risk of cancer,
and promotes cancer metastasis [15]. Anti-tumor research
has recently focused on identifying the key characteristics
of tumor cell senescence [16]. Numerous signatures have
been developed to predict the overall survival (OS) of CC
patients, such as immune-related genes pairs signature
[17], autophagy-related gene prognostic risk model [18],
lncRNA immune prognostic signature [19], and prognosis-
related genes in carcinoma immune microenvironment
[20]. However, aging-related genes (ARGs) utilized to pre-
dict CC prognosis are poorly described.

Eight ARGs were identified as the prognosis biological
indicators through a series of bioinformatics research, and
we found that eight ARGs-based risk model could predict
the survival rate of patients with relative precision under dif-
ferent clinical symptoms. Figo_stage and risk score were dis-
covered to be the two evident independent prognosis factors
after an independent prognosis analysis. Then we identified
copy-number variant (CNV) and single-nucleotide variant
(SNV) in eight ARGs. Finally, we explored the relationship
between risk score and immune cell infiltration and discov-
ered that vascular cell adhesion molecule 1 (VCAM1) had
a strong correlation with six kinds of immune infiltrating
cells. The predictive ability of ARGs, which were specific
biomarkers of CC prognosis, had been validated in different
datasets. This study might provide a new reference index for
the stratification of prognosis risk and treatment selection of
CC patients.

2. Materials and Methods

2.1. Data Collection. A total of 307 CC samples with RNA-
sequencing expression profiles and clinical data were down-

loaded from the TCGA-CESC cohort (https://portal.gdc
.cancer.gov/projects/TCGA-CESC). After eliminating the
duplicate samples, the remaining 304 samples with complete
clinical data and survival information were used for subse-
quent analysis. Totally, 19 normal cervix samples from
Genotype-Tissue Expression Project (GTEx) portal
(https://gtexportal.org/home/) were considered as a control
group of TCGA cohort for differential analysis. GSE44001
dataset containing 300 CC samples was downloaded from
the Gene Expression Omnibus (GEO, https://www.ncbi
.nlm.nih.gov/) database. Besides, 1809 ARGs were obtained
from the 47 ARG sets in the Molecular Signatures Database
(MsigDB, http://www.gsea-msigdb.org/gsea/msigdb/).

2.2. Gene Set Enrichment Analysis. Gene set enrichment
analysis (GSEA), a computational method, aims to evaluate
whether the defined set of genes has statistically significant
differences in different biological states [21]. In this study,
we performed GSEA to analyze the enrichment of GO_
CELL_AGING and GOBP_REPLICATIVE_SENESCENCE
between CC samples and normal samples with the use of
GSEA software (version 4.10).

2.3. The Screening of Differentially Expressed Genes (DEGs)
in CC. To screen differentially expressed genes (DEGs) in
CC, we first merged the datasets of TCGA and GTEx. After
the removal of batch effects, a gene expression matrix of 323
samples was obtained. The principal component analysis
(PCA) was performed on the merged dataset for dimension-
ality reduction and quality control. The DEGs between CC
samples and normal samples in the merged database were
screened using Limma package in R, and the P < 0:05 and
|log2 fold change (FC) |> 1 were set as the cutoff criteria.
Then, the Venn online analysis was applied to identify the
overlapped ARGs selected from the merged database,
GSE44001 dataset, and ARG sets obtained from the MsigDB.
The differentially expressed ARGs (DE-ARGs) were
extracted from the overlapped ARGs, which were shown in
a heat map.

2.4. Gene Ontology (GO) Functional Enrichment Analysis.
Gene ontology (GO) was performed to annotate DE-ARGs
by employing clusterProfiler R package, which described
BP, molecular functions (MFs), and cellular components
(CCs). The significant threshold value was established at P
< 0:05 and enrichment counts ≥2.

2.5. Comprehensive Analysis of a Protein-Protein Interaction
(PPI) Network. To explore the potential interactions of these
genes, DE-ARGs were mapped to the Search Tool for the
Retrieval of Interacting Genes (STRING, https://string-db
.org) database (version 11.0). After deleting discrete ARGs,
a protein-protein interaction (PPI) network with a confi-
dence level of 0.4 was generated and visualized by Cytoscape
software (version 3.8.0). Based on the degree algorithm, key
ARGs and sub-networks from the complex network were
screened using a plugin of cytohubba in Cytoscape software.
The enrichment analysis of screened sub-networks was per-
formed using Metascape. The first Molecular Complex

Table 1: Primers used in PCR.

Gene Primer sequence

FN1-forward AGGAAGCCGAGGTTTTAACTG

FN1-reverse AGGACGCTCATAAGTGTCACC

LYN-forward TTCTGGTCTCCGAGTCACTCA

LYN-reverse GCCGTCCACTTAATAGGGAACT

CDC25A-forward GTGAAGGCGCTATTTGGCG

CDC25A-reverse TGGTTGCTCATAATCACTGCC

CCNA2-forward GGATGGTAGTTTTGAGTCACCAC

CCNA2-reverse CACGAGGATAGCTCTCATACTGT

JUN-forward TCCAAGTGCCGAAAAAGGAAG

JUN-reverse CGAGTTCTGAGCTTTCAAGGT

VCAM1-forward CAGTAAGGCAGGCTGTAAAAGA

VCAM1-reverse TGGAGCTGGTAGACCCTCG

SPP1-forward GAAGTTTCGCAGACCTGACAT

SPP1-reverse GTATGCACCATTCAACTCCTCG

CXCL1-forward AGCTTGCCTCAATCCTGCATCC

CXCL1-reverse TCCTTCAGGAACAGCCACCAGT

GAPDH-forward AGAAGGCTGGGGCTCATTTG

GAPDH-reverse AGGGGCCATCCACAGTCTTC
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NES: 1.31
NOM p-val: 0.048
FDR q-val: 0.048

NES: 1.53
NOM p-val: 0.026
FDR q-val: 0.026

Figure 1: Gene set enrichment analysis of GO_CELL_AGING and GOBP_REPLICATIVE_SENESCENCE between tumor samples and
normal samples.
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Figure 2: Difference between tumor and normal samples of merged data. (a) PCA on the merged dataset for dimensionality reduction and
quality control. (b) Volcano plot of the differentially expressed genes. The X coordinate is |log2(fold change)| and the Y coordinate was -log
10(p value). Each dot represents a gene. Red dots are the upregulated genes of significant expression. Green dots are downregulated genes of
significant expression. Black dots are genes of nonsignificant difference. (c) Expression heat map of differential genes. (d) 1611 overlapped
ARGs obtained from TCGA dataset, GSE44001 dataset, and aging-related gene sets. (e) The heat map of DE-ARGs. (f) Gene ontology (GO)
functional enrichment shows that the DE-ARGs were mostly enriched in several important biological processes including aging, cell aging,
and response to oxidative stress.
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Detection (MCODE) component was selected for subse-
quent analysis.

2.6. Construction and Validation of the Aging Prognostic
Signature. Totally, 304 CC samples of TCGA dataset with
complete clinical data and survival information were ran-
domly divided into a training set (n = 212) and a testing
set (n = 92) at a ratio of 7 : 3.

The DE-ARGs of the selected MCODE component
were extracted to conduct the univariate Cox proportional
hazards regression analysis (P < 0:2) in the training set.
The prognostic DE-ARGs were identified by multivariate
Cox analysis with stepwise regression method and then
applied to construct a prognostic risk model of multiple
ARG signature. The risk score of each patient was calcu-
lated based on the prognostic gene expressions and coeffi-
cients obtained from multivariate Cox regression analysis.
Patients in the training set were divided into low-risk and
high-risk groups in accordance with the median value of
the risk score to evaluate the prognostic value of ARG sig-
nature. The Kaplan–Meier (K–M) with the log-rank test
was conducted to compare OS between the two risk groups.
Receiver operating characteristic curve (ROC) analysis was

performed by the time ROC package of R software to assess
the effectiveness of ARG signature. In order to demonstrate
the applicability of the prognostic risk model, we further
validated it in the TCGA testing set and GSE44001 dataset,
respectively.

2.7. Association of Risk Score and Clinical Features in CC. To
investigate the association between risk score and clinical
features, the CC samples of TCGA dataset were divided into
high-risk and low-risk groups on the basis of the median risk
score calculated with gene expressions and coefficients. The
differences of Age, Figo_stage, Pathologic_T, Pathologic_
M, and Pathologic_N between the two risk groups were
compared using the chi-square test. Thereafter, comprehen-
sive stratified survival analyses were executed to explore the
association between the different clinical features (age,
TNM, and stage) and the prognostic risk model.

In addition, univariate and multivariate Cox regression
analyses were performed to identify independent predictors
for predicting the OS of CC patients. A nomogram that con-
tained independent predictors identified by univariate and
multivariate Cox regression analyses was established using
the rms R package. Besides, the corresponding calibration

Table 2: Aging-related gene sets.

Aging-related gene sets

DEMAGALHAES_AGING_DN KYNG DNA DAMAGE BY UV LY_AGING_MIDDLE_DN

DEMAGALHAES_AG ING_UP KYNG_DNA_DAMAGE_UP LY_AGING_MIDDLE_DNgmt

GOBP_AGING
KYNG_ENVIRONMENTAL_STRESS_RESPONSE_

DN
LY_AGING_MIDDLE_UP

GOBP_CELL_AGING
KYNG_ENVIRONMENTAL_STRESS_RESPONSE_

NOT_BY_4NQO_IN_OLD
LY_AGING_OLD_DN

GOBP_CELLULAR_SENESCENCE
KYNG_ENVIRONMENTAL_STRESS_RESPONSE_

NOT_BY_4NQO_IN_WS
LY_AGING_OLD_UP

GOBP_MULTICELLULAR_ORGANISM_
AGING

KYNG_ENVIRONMENTAL_STRESS_RESPONSE_
NOT_BY_GAMMA_IN_OLD

LY_AGING_PREMATURE_DN

GOBP_NEGATIVE_REGULATION_OF_
CELLULAR_SENESCENCE

KYNG_ENVIRONMENTAL_STRESS_RESPONSE_
NOT_BY_GAMMA_IN_WS

MA_PITUITARY_FETAL_VS_
ADULT_UP

GOBP_REGULATION_OF_CELL_AGING
KYNG_ENVIRONMENTAL_STRESS_RESPONSE_

NOT_BY_UV_IN_OLD
RODWELL_AGING_KIDNEY_DN

GOBP_REPLICATIVE_SENESCENCE
KYNG_ENVIRONMENTAL_STRESS_RESPONSE_

NOT_BY_UV_IN_WS
RODWELL_AGING_KIDNEY_

NO_BLOOD_DN

KIM_HYPOXIA
KYNG_ENVIRONMENTAL_STRESS_RESPONSE_

UP
RODWELL_AGING_KIDNEY_

NO_BLOOD_UP

KYNG_DNA_DAMAGE_BY_4NQO KYNG_NORMAL_AGING_DN RODWELL_AGING_KIDNEY_UP

KYNG_DNA_DAMAGE_BY_4NQO_OR_
GAMMA_RADIATION

KYNG_NORMAL_AGING_UP
WEIGEL_OXIDATIVE_STRESS_

BY_HNE_AND_H2O2

KYNG_DNA_DAMAGE_BY_4NQO_OR_
UV

KYNG_WERNER_SYNDROME_AND_NORMAL_
AGING_DN

WEIGEL_OXIDATIVE_STRESS_
BY_HNE_AND_TBH

KYNG_DNA_DAMAGE_BY_GAMMA_
AND_UV_RADIATION

KYNG_WERNER_SYNDROME_AND_NORMAL_
AGING_UP

WEIGEL_OXIDATIVE_STRESS_
BY_TBH_AND_H2O2

KYNG_DNA_DAMAGE_BY_GAMMA_
RADIATION

KYNG_WERNER_SYNDROME_DN
WEIGEL_OXIDATIVE_STRESS_

RESPONSE

KYNG DNA DAMAGE BY UV KYNG WERNER SYNDROME UP DEMAGALHAES AGING DN
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curves for predicting 1-, 3-, and 5-year survival rates were
also created.

2.8. Copy-Number Variant (CNV) and Single-Nucleotide
Variant (SNV) Analyses. Information on CNV and somatic
mutations for the TCGA-CESC cohort was acquired from
TCGA database. The cBioPortal (http://cbioportal.org) is
an open-access resource that analyzes multi-dimensional
cancer genomic data including CNV and mutation [22]. By
using segmentation analysis and the GISTIC algorithm, the
CNV and mutation of prognostic ARGs were explored
among the 304 CC patients in the cBioPortal database. The
number of somatic non-synonymous point mutations
within each sample was calculated using R package maftools
(version 2.12.0), and the results were visualized with a water-
fall plot. GISTIC (version 2.0.22) software was utilized to
identify significantly amplified or deleted genomic regions
in CC samples.

2.9. Functional Enrichment Analysis. The CC patients of
TCGA database and GSE44001 dataset were divided into
high-risk group and low-risk group based on the median
risk score. Functional enrichment analysis was carried out
by GSEA software (version 4.10). The Top30 terms with
|NES|>1, NES P < 0:05, FDR Q < 0:25 were collected and
shown in an histogram.

2.10. Experimental Verification of Eight Prognostic ARGs

2.10.1. A. Devices and Reagents. High-speed centrifuge
(D3024R DragonLab), Fluorescence quantitative PCR (CFX
Bio-rad), Super clean workbench (SW-CJ-1FD Sujingantai),
NanoDrop (NanoDrop 2000 Thermo), Barnstead
(FBZ2001-up-p Qingdao Flom Technology Co., Ltd), Trizol
(RE1200 Bingcure), Chloroform (10006818 Sinopharm
Chemical Reagent Co., Ltd), Isopropyl alcohol (80109218
Sinopharm Chemical Reagent Co., Ltd), Absolute ethanol
(10009218 Sinopharm Chemical Reagent Co., Ltd), HyPure
TM Molecular Biology Grade Water (SH30538.02
HyClone), RT First Strand cDNA Synthesis Kit (RE1205
Bingcure), 2× SYBR Green qPCR Master Mix (RE1208
Bingcure), Primer (A0G00500A Bingcure).

2.10.2. B. Cell Lines. The CC cell Hela and immortalized cer-
vical epithelial cell HcerEpic were purchased from American
Type Culture Collection (ATCC). The CC cell Hela was cul-
tured in dulbecco’s modified eagle medium (DMEM)
medium supplemented with 10% Fetal Bovine Serum (FBS),
100μg/ml penicillin, and 100μg/ml streptomycin at 37°C in
5% CO2. Immortalized cervical epithelial cell HcerEpic was
cultured in RPMI-1640 medium supplemented with 10%
FBS, 100μg/ml penicillin, and 100μg/ml streptomycin at
37°C in 5% CO2.

MCODE GO:0071363
cellular response to growth factor stimulus 

MCODE GO:0070848
response to growth factor

(c)

Figure 3: PPI network construction. (a) A PPI network among the 578 DE-ARGs. (b) In the PPI network, the top 60 genes with the most
neighboring nodes were displayed. (c) The first MCODE component.
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2.10.3. C. Real-Time Quantitative PCR. The cells were seeded
in a 6-well plate (1 × 105 cells/well) and incubated at 37°C
overnight. Total RNA of the Hela cells and HcerEpic cells
were extracted using TRIzol® reagent. The RNA concentra-
tion was detected by nanodrop 2000, and the final concentra-
tion of 100–500ng/ul was achieved by diluting the RNA with
an excessive concentration in an appropriate proportion.
Afterward, the extracted RNA was reverse transcribed into
cDNA using the RT First Strand cDNA Synthesis Kit. The
Quantitative real-time polymerase chain reaction (RT-qPCR)
reaction was conducted using a 2× SYBRGreen qPCRMaster
Mix. RNA expression levels were analyzed through a real-
time quantitative thermal cycler, with GAPDH as an internal
control. The primers listed in Table 1 were used for the real-
time PCR. The thermocycling conditions were as follows:
95°C for 5minutes, 95°C for 10 seconds, 60°C for 30 seconds,

for a total of 45 cycles. The gene expression quantification was
carried out with the help of the 2–ΔΔCt method.

2.11. Statistical Analysis. All bioinformatics analyses
involved in the present study were performed using R soft-
ware. The Survminer 0.4.6 R software was implemented to
conduct the K–M survival analysis. The ROC curves were
visualized by the survival ROC 1.16.1 package in R software.
P < 0:05 was considered statistically significant.

3. Results

3.1. Aging-Related Gene Sets Were Activated in Patients with
Cervical Cancer. To examine the significance of aging in CC,
we conducted the GSEA on the gene sets of GO_CELL_
AGING and GOBP_REPLICATIVE_SENESCENCE based
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Figure 4: Construction of the eight-ARG prognostic signature. (a) Forest map of ARGs with P<0.2 in Cox regression analysis. Genes and
corresponding P and HR values are on the left; the red square on the right indicates HR>1, the green square indicates the HR<1, and the line
segments on both sides of the square are 95% CI for HR. (b) Forest map of ARGs obtained by a step multivariable Cox regression analysis.
(c) Volcano plot shows the distribution of prognostic genes in DE-ARGs.
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on the TCGA dataset. Interestingly, the ARG sets were
found to be significantly activated in CC patients compared
to the normal controls (Figure 1). Therefore, we believe that
aging may be a significant factor in the occurrence and
development of CC.

3.2. Identification of Differentially Expressed Aging-Related
Genes in Cervical Cancer. To distinguish the significant dif-
ference between CC and normal samples of merged data,
PCA was performed to visualize the spatial distribution of
samples. The results showed that there was significant inde-
pendence of each group in the merged dataset (Figure 2(a)),
which was used for subsequent analysis. Subsequently, the
gene expression levels between CC and normal tissue sam-
ples in the merged database were compared. A total of
4593 DEGs were demonstrated, of which 2171 were upregu-
lated and 2422 were downregulated (Figures 2(b) and 2(c)).
We further comprehensively analyzed the ARGs from the
merged database, GSE44001 dataset, and 47 ARG sets
obtained from the MsigDB (Table 2), and finally obtained
1611 overlapped ARGs (Figure 2(d)). Among them, 578
ARGs were differentially expressed between CC and normal
samples. The heat map of DE-ARGs was generated, as
shown in Figure 2(e).

Further, we utilized the clusterProfiler package for func-
tional annotations in order to investigate the underlying bio-
logical functions of these DE-ARGs. Figure 2(f) showed that
the DE-ARGs were mostly abundant in several important
BPs including aging, cell aging, and response to oxidative
stress. In terms of MF and cell component, DE-ARGs were
associated with growth factor binding, collagen binding,
extracellular matrix structural constituent, secretory granule
lumen, cytoplasmic vesicle lumen, and vesicle lumen.

3.3. Protein–Protein Interaction Network Construction. We
constructed a PPI network among the 578 DE-ARGs by
using the STRING database and Cytoscape plugin cyto-
hubba (Figure 3(a)). In the network, the darker the color,
the greater the number of neighboring nodes. The top 60
genes with the most neighboring nodes were displayed in
Figure 3(b), and the full name of these genes were listed in
Table S1. Furthermore, the PPI enrichment analysis was
performed on the Metascape website. The first MCODE
component that significantly enriched in the BPs
associated with growth factors was identified (Figure 3(c)).

3.4. Construction and Validation of the Eight-Aging-Related
Gene Prognostic Signature. To screen the prognostic ARGs
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Figure 5: The prognostic value of the eight-ARG signature in the train set. (a) Distribution of risk score and patient survival status of
cervical cancer. (b) Expression heat map of high-risk and low-risk groups. (c) The Kaplan–Meier (KM) curve demonstrates that patients
in the high-risk group had a poorer prognosis. (d) Time-dependent ROC curve analysis for survival prediction by the risk score.
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for CC, 51 DE-ARGs of the identified MCODE component
were initially subjected to univariate Cox regression analysis.
A total of 19 ARGs with P < 0:2 were associated with the OS
of CC patients (Figure 4(a)). Then, we constructed a multi-
ARGs prognostic model by a step multivariable Cox regres-
sion analysis so as to predict the prognosis of CC patients.
Eventually, a risk signature consisting of eight prognostic
ARGs (FN1, LYN, CXCL1, CDC25A, VCAM1, CCNA2,
SPP1, and JUN) was established (Figure 4(b)). Figure 4(c)
showed the distribution of prognostic genes in DE-ARGs.
The risk score for each patient was calculated based on the
expression of the eight prognostic genes corresponding
coefficients.

To evaluate the prognostic value of the eight-ARG signa-
ture, we classified the CC patients of the training set into
low-risk and high-risk groups based on the median risk
score (Figure 5(a)). The expression of eight prognostic DE-
ARGs was shown in Figure 5(b). The K-M curve indicated
that the patients in the high-risk group had a poorer progno-
sis than that of the low-risk group (Figure 5(c), P < 0:0001).

Moreover, the area under the curve (AUC) values of ROC
curves were 0.698, 0.775, and 0.794, respectively, for predict-
ing 1-, 3-, and 5-year survival rates (Figure 5(d)), highlight-
ing the accuracy of the eight-ARG signature in predicting
CC prognosis. The 8-ARG signature was further validated
in the TCGA testing set (Figure 6) and GSE44001 dataset
(Figure 7), and the results were consistent with our results
of TCGA training set.

3.5. Association of Risk Score and Clinical Features in
Cervical Cancer. The CC samples of TCGA dataset were
divided into high-risk and low-risk groups on the basis of
the median risk score with the purpose of further exploring
the potential relationship between risk score and clinical fea-
tures. We then compared the differences of Age, Figo_stage,
Pathologic_T, Pathologic_M, and Pathologic_N of the two
groups using the chi-square test (Table 3). As a result, there
was a significant difference in the clinical features of Figo_
stage, Pathologic_T, and Pathologic_N between the high-
risk and low-risk groups (Figure 8(a)). Stratified survival
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Figure 6: The prognostic value of the eight-ARG signature in the test set. (a) Distribution of risk score and patient survival status of cervical
cancer. (b) Expression heat map of high-risk and low-risk groups. (c) The KM curve demonstrates that patients in the high-risk group had a
poorer prognosis. (d) Time-dependent ROC curve analysis for survival prediction by the risk score.
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analyses further showed that in the subtypes of Age, Figo_
stage, Pathologic_T, Pathologic_M, and Pathologic_N, the
OS of CC patients in the high-risk score group was shorter
than that of the low-risk score group, revealing the relation-
ship between the clinical features and the risk score
(Figures 8(b), 8(c), 8(d), 8(e), 8(f)).

3.6. The Risk Score Is an Independent Predictor for Predicting
the Prognosis of Cervical Cancer. To identify independent
factors for predicting the OS of CC patients, we performed
univariate and multivariate Cox regression analyses. Risk
score and Figo_stage were strongly correlated with survival,
according to the results of the univariate Cox regression
analysis (Figure 9(a)). The risk score and Figo_stage were
identified as independent prognostic factors for CC patients
by multivariate Cox analysis (Figure 9(b)). A nomogram was
constructed by integrating the risk score with Figo_stag
(Figure 9(c)). The corresponding calibration curves for pre-
dicting 1-, 3-, and 5-year survival rates were matched with
actual survival rates, indicating that the nomogram has high
accuracy in predicting OS (Figure 9(d)). Taken together, the

eight-ARG prognostic signature exhibits high prediction
performance in terms of clinical application value in TCGA
dataset.

3.7. Landscape of Mutation of Eight Prognostic Aging-Related
Genes in Cervical Cancer. With the aim of the cBioPortal
tools, we further analyzed the mutation and CNVs of eight
prognostic ARGs in 304 CC patients to determine the asso-
ciation between the ARGs mutation and CC prognosis.
Among the CC patients, 278 occurred gene mutations in
CC progression, of which 39 samples had the mutations of
eight prognostic ARGs. Besides, 7 of 43 cases with cervical
adenocarcinoma involved mutations in 5 cases (11.63%)
and deep deletion in 2 cases (4.65%); 32 of 235 cases with
cervical squamous cell carcinoma involved mutations,
amplification, deep deletion, and multiple alterations in
15 (6.38%), 8 (3.4%), and 7 (2.98%) cases, respectively
(Figure 10(a)). Of the eight prognostic ARGs, the deep
deletion of fibronectin 1 (FN1) was the most common
CNV (frequency>5%), while CCNA2 showed no alter-
ations in amplification or deep deletion (Figure 10(b)).
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Figure 7: The prognostic value of the eight-ARG signature in GSE44001 dataset. (a) Distribution of risk score and patient survival status of
cervical cancer. (b) Expression heat map of high-risk and low-risk groups in GSE44001 dataset. (c) The Kaplan–Meier (KM) curve
demonstrates that patients in the high-risk group had a poorer prognosis. (d) Time-dependent ROC curve analysis for survival
prediction by the risk score.
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Furthermore, genetic mutations of eight ARGs were evalu-
ated in depth. Figure 10(c) demonstrated the genetic alter-
ations that occurred in CC, including FN1 (2%), SPP1 (1%),
VCAM1 (1%), CCNA2 (1%), CXCL1 (1%), and LYN (1%).
More importantly, eight ARGs had high frequencies of CNVs
in CC (Figure 10(d)).

3.8. Functional Enrichment Analysis. Based on the TCGA
and GSE44001 datasets, we conducted functional enrichment
analysis using GSEA software. The Top30 terms with |NES|>1,
NOM P < 0:05, FDR Q < 0:25 were collected and illustrated in
Figure 11. In the TCGA database, FISCHER_G2_M_CELL_
CYCLE, GNF2_HMMR, and GNF2_CDC20 were mainly
enriched in high-risk groups (Figure 11(a)). However, several
immune-related BPs, such as FAN_EMBRYONIC_CTX_
BRAIN_B_CELL, TRAVAGLINI_LUNG_CD8_NAIVE_T_
CELL, and RUBENSTEIN_SKELETAL_MUSCLE_B_CELLS,
were more abundant in low-risk groups (Figure 11(b)). In the
GSE44001 dataset, GOBP_CHAPERONE_MEDIATED_
AUTOPHAGY and GOBP_RESPONSE_TO_HEPATOCYTE_
GROWTH_FACTOR were enriched in high-risk groups
(Figure 11(c)); TRAVAGLINI_LUNG_B_CELL and GNF2_

SPRR1B were significantly enriched in low-risk groups
(Figure 11(d)).

3.9. Experimental Verification of Eight Prognostic Aging-
Related Genes. In order to further verify the expression of
eight prognostic ARGs, we carried out cell experiments.
The expression of eight prognostic ARGs in Hela and
HcerEpic cells was both measured by qRT-PCR. Gene
expression was normalized to GAPDH and quantified using
the 2–ΔΔCt method. We found that CXCL1, VCAM1, and
SPP1 were difficult to amplify in Hela and HcerEpic cells;
the expression of FN1, LYN, CDC25A, CCNA2, and JUN
was significantly different between Hela and HcerEpic cells;
the expression of FN1, LYN, CDC25A, and JUN in Hela
cells was lower than that in HcerEpic cells; and the expres-
sion of CCNA2 in Hela cells was higher than that in HcerE-
pic cells (Figure 12).

4. Discussion

Aging is considered an independent risk factor for many
chronic diseases as well as most common malignancies [16,
23]. A rising body of research indicates a direct association
between aging and cancer [24]. It has been reported that
some senescence pathways are activated in CC [25]. How-
ever, researches on ARGs as specific biomarkers for predict-
ing of CC are lacking.

In this study, DE-ARGs were screened from CC tissues
and normal tissues. Subsequently, a risk signature consisting
of eight prognostic ARGs (FN1, LYN, CXCL1, CDC25A,
VCAM1, CCNA2, SPP1, and JUN) was successfully estab-
lished by univariate Cox regression and a step multivariable
Cox regression. The prognostic model based on these eight
genes demonstrated high efficiency in differentiating
between favorable and unfavorable outcomes for CC
patients. The ROC analysis was performed to evaluate the
predictive accuracy of the prognostic model, and the AUC
for the 5-year survival prediction was 0.794.

Fibronectin 1 is a member of the FN family widely
expressed by multiple cell types and involved in cellular
adhesion and migration processes [26]. In addition, FN1
is involved in the development of multiple cancers,
including CC, oral squamous cell carcinoma, nasopha-
ryngeal carcinoma, ovarian cancer, renal cancer, and
thyroid cancer [27–31]. In CC, FN1was identified as a
direct target of miR-432 [32], which can decrease the
expression of FN1 and inhibit the proliferation and
invasion of CC cells. Therefore, FN1 may be a potential
signature of the invasive ability of CC cells. Additionally,
we analyzed the mutation and CNVs of eight prognostic
ARGs. Of the eight prognostic ARGs, the deep deletion
of FN1 was the most common CNV (frequency>5%).
These mutations might contribute to the aberrant
expression of the corresponding genes. In our experi-
ment, the expression of FN1 in Hela cells was lower
than in HcerEpic cells, and FN1 was negatively corre-
lated with the OS of CC patients. The experimental
results, however, contradict the earlier findings, possibly

Table 3: Association of risk score and clinical features.

Total
(N = 304)

Risk
High

(N = 140)
High

(N = 140) P-value

Age

<45 239 (78.6%) 112 (80.0%) 127 (77.4%) 0.687

≥45 65.0 (21.4%) 28.0 (20.0%) 37.0 (22.6%)

Figo_stage

Stage 1 162 (53.3%) 69.0 (49.3%) 93.0 (56.7%) 0.009

Stage II 69.0 (22.7%) 26.0 (18.6%) 43.0 (26.2%)

Stage III 45.0 (14.8%) 27.0 (19.3%) 18.0 (11.0%)

Stage IV 21.0 (6.9%) 15.0 (10.7%) 6.00 (3.7%)

Missing 7.00 (2.3%) 3.00 (2.1%) 4.00 (2.4%)

Pathologic_T

TX 17.0 (5.6%) 10.0 (7.1%) 7.00 (4.3%) 0.004

T1 139 (45.7%) 52.0 (37.1%) 87.0 (53.0%)

T2 71.0 (23.4%) 28.0 (20.0%) 43.0 (26.2%)

T3 20.0 (6.6%) 14.0 (10.0%) 6.00 (3.7%)

T4 10.0 (3.3%) 8.00 (5.7%) 2.00 (1.2%)

Missing 47.0 (15.5%) 28.0 (20.0%) 19.0 (11.6%)

Pathologic_M

MX 128 (42.1%) 63.0 (45.0%) 65.0 (39.6%) 0.07

MO 116(38.2%) 42.0 (30.0%) 74.0 (45.1%)

M1 10.0 (3.3%) 6.00 (4.3%) 4.00 (2.4%)

Missing 50.0 (16.4%) 29.0 (20.7%) 21.0 (12.8%)

Pathologic_N

NX 66.0 (21.7%) 36.0 (25.7%) 30.0 (18.3%) 0.01

NO 133 (43.8%) 46.0 (32.9%) 87.0 (53.0%)

N1 60.0 (19.7%) 31.0 (22.1%) 29.0 (17.7%)

Missing 45.0 (14.8%) 27.0 (19.3%) 18.0 (11.0%)
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because the cell composition is single compared with the
tumor tissue containing other cells such as immune
cells.

LYN kinase, a member of the Src family tyrosine
kinases that functions as a pro-oncogene in tumor pro-
gression, is reported to be overexpressed in numerous
tumors, including CC, chronic myelogenous leukemia,
renal cancer, head and neck squamous cell carcinoma, gas-
tric cancer, and prostate cancer [33–37]. The overexpres-
sion of LYN can not only activate the NF-κB signaling
pathway and increase the tumorigenicity of CC cells
in vivo, but also promote CC cell migration and invasion
and inhibit cell death in vitro [38]. Our experimental
results showed that the expression of LYN in Hela cells
was lower than in HcerEpic cells, and LYN was positively
correlated with the OS of CC patients, which are consis-
tent with the previous conclusions.

Chemokines, a family of soluble proteins with low
molecular mass (8–15 kDa), are originally identified as
mediators of the inflammatory process and regulators of leu-
kocyte trafficking [39, 40]. As a member of the Chemokines
family, CXCL1 acts as an autocrine growth factor in mela-
noma cells [41]. In CC, CXCL1 may be involved in tumori-
genesis, and patients with low transcriptional levels of
CXCL1 show better prognosis. In addition, some studies
suggest that the increase of CXCL1/2/8 level regulated by
AKIP 1 plays an important role in the angiogenesis and
development of CC [42].

Cell division cycle 25 A (CDC25A) is a highly conserved,
dual-specificity phosphatase that regulates the cyclin-dependent
kinases (CDKs) involved in the cell cycle [43–46]. Previous studies
have reported that CDC25A induces radio-resistance in CC cells
while silencing CDC25A induces apoptosis of CC cells [47]. Sou-
myadip et al. discovered that herpesvirus-associated ubiquitin
specific protease (HAUSP) knockout in HeLa cells significant
delayed CDC25A-mediated cell cycle progression, cell migration,
and colony formation and attenuated tumor progression in a
mouse xenograft model. Besides, HAUSP-mediated stabilization
of the CDC25A protein enhanced resistance to DNA-damaging
agents [48]. As such, we infer that CDC25A can promote the pro-
gression and drug resistance of CC by accelerating cell cycle pro-
gression, cell migration, colony formation, and enhancing the
resistance of tumor cells to DNA-damaging agents. In our exper-
iment, the expression of CDC25 in Hela cells was lower than in
HcerEpic cells, but the result is inconsistent with the previous
conclusions.

VCAM1 (CD106), a 90kDa glycoprotein, is inducible and
predominantly expressed in endothelial cells [49, 50]. VCAM-
1 expression is activated by pro-inflammatory cytokines
including TNF-α, and also by reactive oxygen species (ROS),
oxidized low-density lipoprotein, high glucose concentration,
toll-like receptor agonists, and shear stress [51]. Under situa-
tions of chronic diseases and high levels of inflammation,
VCAM-1 is also expressed on the surface of other cells, includ-
ing tissue macrophages, dendritic cells, bone marrow fibro-
blasts, myoblasts, oocytes, Kupffer cells, Sertoli cells, and
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Figure 8: The potential relationship between risk score and clinical features in the TCGA dataset. (a) Relationship between the risk score
and clinical significance (**P < 0:05). (b) KM survival curve of age. (c) KM survival curve of Figo_stage. (d) KM survival curve of Pathologic_
T. (e) KM survival curve of Pathologic_M. (f) KM survival curve of Pathologic_N.
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cancer cells [52, 53]. Certain research suggests that VCAM-1
may be important factor in controlling mononuclear cell
migration to the local cervical microenvironment [54].

Cyclin A2 (CCNA2), a member of the highly conserved
cyclin family, functions as a regulator of cyclin-dependent
kinases (CDK) kinases. This protein binds to and activates
CDC2 or CDK2 kinases to promote the cell cycle G1/S and
G2/M transitions [55]. It has been reported that in breast
cancer, NIMA (never in mitosis gene a)-related kinase 5
(NEK5)-dependent CCNA2 overexpression encourages the
proliferation of tumor cells [56]. In addition to having
tamoxifen resistance, CCNA2 has a significant predictive
value for the prognosis of estrogen receptor (ER)+ breast
cancer patients [57]. But the relationship between CCNA2
and CC is not clear. In this study, we explored the CNV
and mutation of prognostic ARGs among the 304 CC
patients, and found that CCNA2 had not undergone any

alterations in amplification or deep deletion. In our experi-
ment, the expression of CCNA2 in Hela cells was higher
than in HcerEpic cells, which is in line with the previous
conclusions.

Secreted phosphoprotein 1 (SPP1), known as osteopontin-
like protein, is a secreted glycophosphoprotein that plays a crit-
ical role in physiological and pathophysiological processes [58].
Elevated SPP1 expression has been observed in multiple can-
cers, such as CC colon cancer, lung cancer, prostate cancer,
breast cancer, ovarian cancer, multiple myeloma, acute myeloid
leukemia, and chronic myeloid leukemia [59–62]. SPP1 has
been shown to be a diagnostic biomarker for CC with a
50.6% sensitivity and 95.0% specificity. Higher levels of SPP1
expression have also been highly associated with worse DFS
and OS in CC patients [63].

C-Jun, a key member of the activator protein-1 tran-
scription factor family, can form a heterodimer with c-Fos,
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activated transcription factors, and Maf [64]. C-Jun is
engaged in various cellular processes, such as cancer cell
proliferation and survival [65]. Moreover, JUN has associa-
tion with a variety of tumors, such as breast cancer and
non–small cell lung cancer, and c-Jun is upregulated and
activated in CC cells through its transcriptional activity
[66–69]. Contrary to the earlier findings, JUN expression
in Hela cells was lower than it was in HcerEpic cells in our
study. It may be because the cell composition is singular as
opposed to the tumor tissue containing other cells such as
immune cells.

We conducted GSEA functional enrichment analysis to
further explore the reason why the model can effectively pre-
dict the prognosis of CC, and found that eight ARGs were
mainly enriched in growth factor regulation and cell cycle
pathway. It is speculated that these eight ARGs may partici-
pate in the process of aging directly or indirectly.

Tumor is initiated by oncogenic mutations. All subse-
quent stages of tumor progression, including clonal expan-
sion, invasion across tissue barriers, angiogenesis, and
colonization of distant niches, are primarily regulated by
growth factors. A variety of growth factors are implicated
in CC, such as transforming growth factor β1 (TGF-β1),
insulin-like growth factor 1 (IGF-1), and vascular endothe-
lial growth factor C (VEGF-C). As a tumor inhibitor in the

early stage of CC, TGF-β1 can downregulate expression pro-
liferative drivers such as c-Myc and upregulate expression of
p27Kip1 protein [70], and it can activate p53 expression and
Rb response pathway, and induce cellular senescence in CC
cells [71]. On the other hand, TGF-β1 as a tumor promoter
in the later stage of CC promotes tumor invasiveness
through matrix metalloproteinase (MMP) induction [72].
Besides, some reports have confirmed the role of IGF-1 in
the progression of CC and its potential as a therapeutic tar-
get [73–77]. VEGF-C is observed to be highly expressed in
CC, which accelerates CC invasiveness via regulation of
galectin-3 or moesin protein expression [78, 79]. Further-
more, VEGF-C reduces miR-326 expression and increases
cortactin expression through c-Src signaling pathway, and
finally results in enhanced CC invasiveness [80].

The cell cycle governs cellular proliferation, and its G1,
S, G2, and M-phases are processed in a carefully regulated
and ordered fashion [81]. The abnormal cell proliferation
that characterizes cancer is caused by cell cycle dysregula-
tion, which is also directly tied to the occurrence of CC. Flap
structure-specific endonuclease 1 (FEN1) is highly expressed
in CC tissues and cell lines and involved in CC cell cycle pro-
gression. miR-140-5p knockdown reverses small interfering
RNA-FEN1-mediated suppressive effects on CC cell pheno-
types, potentially via triggering cell cycle arrest at the G1
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phase [82]. Epithelial splicing regulatory protein 1 (Esrp1)
overexpression induces G1-phase cell cycle arrest by down-
regulating cyclin A2 expression and inhibits the proliferation
of cervical carcinoma cells [83].

This study still has some limitations. First off, no clinical
samples were obtained to detect the gene expression. Sec-
ondly, the total samples were randomly divided into train

set and test set. Thirdly, some clinical variables were left
out of the analysis since there were a lot of missing data.
Lastly, more researches need be done on the molecular
mechanism of aging affecting the prognosis of CC patients
and its significance for clinical translational therapy.

In conclusion, our prognostic signature can predict the
severity of CC. The ARGs prognostic signature will become
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Figure 11: Histogram of GSEA functional enrichment analysis in high-risk group and low-risk group. (a) Enrichment analysis of high-risk
groups in train set of TCGA. (b) Enrichment analysis of low-risk groups in train set of TCGA. (c) Enrichment analysis of high-risk groups in
GSE44001. (d) Enrichment analysis of low-risk groups in GSE44001.
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a new prognostic evaluation tool. However, more functional
analyses are necessary to performed in order to explore the
possible clinical value of the eight ARGs.
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Figure 12: Expression of ARGs prognostic signature in CC (**P< 0.01, *P< 0.05).
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