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Background. Post-renal transplant patients have a high likelihood of developing renal cancer. However, the underlying biological
mechanisms behind the development of renal cancer in post-kidney transplant patients remain to be elucidated. Therefore, this
study aimed to investigate the underlying biological mechanism behind the development of renal cell carcinoma in post-renal
transplant patients. Methods. Next-generation sequencing data and corresponding clinical information of patients with clear
cell renal cell carcinoma (ccRCC) were obtained from The Cancer Genome Atlas Program (TCGA) database. The microarray
data of kidney transplant patients with or without rejection response was obtained from the Gene Expression Omnibus (GEO)
database. In addition, statistical analysis was conducted in R software. Results. We identified 55 upregulated genes in the
transplant patients with rejection from the GEO datasets (GSE48581, GSE36059, and GSE98320). Furthermore, we conducted
bioinformatics analyses, which showed that all of these genes were upregulated in ccRCC tissue. Moreover, a prognosis model
was constructed based on four rejection-related genes, including PLAC8, CSTA, AIM2, and LYZ. The prognosis model showed
excellent performance in prognosis prediction in a ccRCC cohort. In addition, the machine learning algorithms identified 19
rejection-related genes, including PLAC8, involved in ccRCC occurrence. Finally, the PLAC8 was selected for further research,
including its clinical and biological role. Conclusion. In all, our study provides novel insight into the transition from the
rejection of renal transplant to renal cancer. Meanwhile, PLAC8 could be a potential biomarker for ccRCC diagnosis and
prognosis in post-kidney transplant patients.

1. Introduction

Renal cell carcinomas (RCCs) are malignant tumors orig-
inating in the urinary tubular epithelium and constitute
about 80–90% of renal tumors [1]. RCC accounts for
about 2–3% of malignant tumors in adults and 20% in
children [2]. Among the Chinese, RCC is the second most
commonly encountered genitourinary tumor after bladder
tumors. In addition, RCC has a distant metastasis rate of
about 15% at diagnosis. Furthermore, the average age of
diagnosis for RCC is 64 years old. RCCs have a higher
predominance in males than females, with a male-to-female

ratio of 1.7 :1. In addition, clear cell, chromophobe, and pap-
illary RCCs of type I and II are the most common histo-
logical subtypes of RCCs [1]. Clear cell renal cell
carcinoma (ccRCC) shows a distinct metabolic pheno-
type, particularly in patients with end-stage renal disease
(ESRD), characterized by accumulation of sorbitol, a shift
away from respiratory metabolism, and severe depletion
of mitochondrial DNA [3].

Surgical resection is the primary treatment option for
non-metastatic RCC, while medical treatment is the primary
treatment option for metastatic RCC [4]. Due to progress in
cancer research, more effective treatment options, including
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targeted and immune therapies, have become popular
alternatives. However, the treatment options for RCC in
patients with ESRD and kidney transplantation (Ktx)
remain limited. Ktx is considered the standard treatment
for ESRD [5].

Ktx is associated with a higher cancer incidence risk [6].
A previous meta-analysis study reported a 5- to 10-fold
increase in the incidence of renal carcinoma after transplan-
tation and a 0.3% incidence of renal carcinoma among
patients with ESRD [7]. Furthermore, ESRD patients have
a higher incidence of RCC than the general population.
Moreover, the cancer incidence following Ktx ranges from
2% to 31%, depending on the type of cancer and follow-up
period [6]. The increased cancer risk in kidney transplant
patients is associated with immunosuppression [8].
Although the link between immunosuppression and tumor-
igenesis is not fully understood, a previous controlled trial
reported that the intensity of immunosuppressive therapy
following transplantation was associated with higher cancer
risk [9]. A previous study reported a higher cancer-related
mortality rate among 19,103 kidney transplant recipients
with renal carcinoma accounting for 9.8% of all cancer-
related deaths [10].

The rapid development of bioinformatics and the arrival
of the big data era provide researchers with powerful tools
[11–15]. In this study, we analyzed data gathered from The
Cancer Genome Atlas Program (TCGA) database and the

Gene Expression Omnibus (GEO) database to illustrate the
underlying correlation between RCC and Ktx, as well as find
the possible biological mechanism between them.

2. Methods

The whole flow chart of this study was shown in Figure S1.

2.1. Data Collection. Next-generation sequencing data and
corresponding clinical information of patients with ccRCC
were obtained from TCGA database. The baseline informa-
tion of ccRCC patients enrolled in this study was shown in
Table 1. For TCGA database, the original file of each patient
was downloaded from TCGA-Genomic Data Commons in
the “STAR-Counts” form. The author’s own R code is used
to extract the expression data of each patient (Transcripts
Per Million (TPM) units) and integrate it into a gene expres-
sion matrix. The probe annotation was based on the human
genomic reference file GRCh38.gtf. Before data analysis, the
data was standardized and transformed into log2 (TPM+1).
The microarray data of kidney transplant patients with or
without rejection response was obtained from the GEO data-
base. For the GEO database, the GSE48581 (GPL570),
GSE36059 (GPL570), and GSE98320 (GPL15207) datasets
were selected to provide the transcriptional profile data for
kidney transplant patients with or without rejection
response. Data pre-processing was conducted before the
data analysis: (i) probe annotation based on platform files;
(ii) missing value completion; (iii) averaging the expression
of duplicate genes. The baseline information of participants
from GEO databases was shown in Table 2. Pan-cancer data
was obtained from the USCS XENA website (https://
xenabrowser.net/).

2.2. Differentially Expressed Genes Analysis. Differentially
expressed genes (DEGs) analysis was utilized to identify
the genes differentially expressed in two specific groups

Table 1: The baseline information of ccRCC patients.

Clinical features Number Percentage (%)

Age
≤65 352 65.5

>65 185 34.5

Gender
Female 191 35.6

Male 346 64.4

Grade

G1 14 2.6

G2 230 42.8

G3 207 38.5

G4 78 14.5

Unknown 8 1.5

Stage

Stage I 269 50.1

Stage II 57 10.6

Stage III 125 23.3

Stage IV 83 15.5

Unknown 3 0.6

T stage

T1 275 51.2

T2 69 12.8

T3 182 33.9

T4 11 2.1

M stage

M0 426 79.3

M1 79 14.7

Unknown 32 6.0

N stage

N0 240 44.7

N1 17 3.2

Unknown 280 52.1

Table 2: The baseline information of participants from GEO
databases.

Dataset Platform
Sample
size

Tissue
source

Histologic diagnosis
(numbers)

GSE48581 GPL570 306
Renal

allograft
biopsy

ABMR (32), mixed
(4), TCMR (29),

others (151), NA (48),
borderline (42)

GSE36059 GPL570 411
Renal

allograft
biopsy

ABMR (51), mixed
(13), TCMR (20),
others (188), NA

(107), borderline (32)

GSE98320 GPL15207 1207
Renal

allograft
biopsy

ABMR (239), AKI
(96), BK (37), Bord

(109), DiabNeph (18),
GN (97), IFTA (145),
mixed (41), NOMOA
(274), other (25),

TCMR (87), TG (40)
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Figure 1: Continued.
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using the limma package under the set threshold value (|log2
FC|> 1 and P < 0:05) [16].

2.3. Protein Interaction Network. The search tool for the
retrieval of interacting genes (STRING) was utilized to
investigate the underlying protein interactions of these genes
[17]. Detailed, the “meaning of network edges”= “evidence”;
the “minimum required interaction score”= “medium confi-
dence”. The Cytoscape software (version 3.7.2) was utilized
for network visualization.

2.4. Biological Enrichment Analysis. The Gene Set Enrich-
ment Analysis (GSEA) was used to illustrate the biological
differences between two specific groups based on the Hall-
mark gene set [18]. The ClueGO, a Cytoscape software
plug-in, was used to perform function enrichment and intu-
itive representation of input genes [19]. Furthermore, the
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses were conducted using the
clusterProfiler package.

2.5. Prognosis Analysis. Univariate Cox regression analysis
was conducted to identify genes significantly associated with

patients’ prognosis at P < 0:05, followed by Least absolute
shrinkage and selection operator (LASSO) regression analysis
to identify the most significant variables. Furthermore, multi-
variate Cox regression analysis was conducted to identify the
prognosis signature.

2.6. Machine Learning Algorithm. LASSO logistics regres-
sion and support vector machine - recursive feature elimi-
nation (SVM-RFE) algorithms were used to identify the
characteristic variable between different groups [20].
LASSO regression is an adaptation of the popular linear
regression algorithm. Through feature selection, LASSO
removes redundant variables and reduces overfitting. Fur-
thermore, SVM-RFE, another feature selection technique,
can remove insignificant variables and screen relevant
features, thus achieving a higher performance [21, 22].
Detailed, the “n fold”= “5”; the “halve.above”= “100”.

2.7. Statistical Analysis. All the analyses were conducted
using the R software. The threshold statistical significance
was set at 0.05. Different statistical methods are adopted
according to different data distribution forms.
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Figure 1: Identification of the genes involved in the rejection of the renal transplant. (a) The common genes upregulated in transplant
patients with rejection intersected by GSE48581, GSE36059, and GSE98320; (b)the common genes downregulated in transplant patients
with rejection intersected by GSE48581, GSE36059, and GSE98320; (c) PPI network of 55 upregulated genes; (d) the top 20 important
nodes of PPI network; (e) GO analysis of the 55 upregulated genes; (f) KEGG analysis of 55 upregulated genes.
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3. Results

3.1. Identification of DEGs Involved in Renal Transplant
Rejection. The transcription profile data for renal transplant
patients with or without rejection was obtained from the GEO
datasets (GSE48581, GSE36059, and GSE98320). We identified
55 upregulated genes in the transplant recipients that were
rejection-related (Figures 1(a) and 1(b)). The protein protein
interaction (PPI) network of these 55 genes is illustrated in
Figure 1(c). The top 20 important genes identified in the
PPI network were GBP1, CXCL11, CCL5, CXCL10, IDO1,
CD8A, GBP5, GZMB, IRF1, GZMA, CXCL9, GNLY, FCER1G,
C1QA, NKG7, CTSS, C1QB, TYROBP, CSF2RB, and LAPTM5
(Figure 1(d)). The GO analysis showed that these 55 genes were
mainly enriched in the interferon-gamma-medicated signaling

pathway, neutrophil process, granulocyte process, and cellular
response to interferon-gamma (Figure 1(e)). The KEGG analysis
revealed that these genes were mainly involved in asthma, allograft
rejection, graft versus host disease, and type I diabetes mellitus
(Figure 1(f)).

3.2. Role of Rejection-Related Genes in Renal Cancers. We
then evaluated the expression pattern of the 55
rejection-related genes in cancers. Interestingly, the
results revealed that all of these genes were upregulated
in ccRCC patients (Kidney renal clear cell carcinoma
(KIRC) project) (Figure 2(a)). The ClueGO analysis
showed that these rejection-related genes were primarily
enriched in the cellular response to interferon-gamma,
natural killer cells medicated immunity, interleukin-12
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Figure 2: Expression pattern and prognosis analysis of 55 genes in TCGA database. (a) The expression pattern of the 55 upregulated genes
in TCGA pan-cancer data; (b) ClueGO analysis of the 55 upregulated genes; (c) and (d) univariate Cox regression analysis of the 55
upregulated genes in ccRCC patients in TCGA.
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Figure 3: Continued.
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production, neuroinflammatory response, positive regula-
tion of innate immune response, antimicrobial humoral
immune response mediated by antimicrobial peptide, chronic
inflammatory response, regulation of T cell proliferation, lym-
phocyte chemotaxis, and neutrophil chemotaxis (Figure 2(b)).
The ccRCC patients in TCGA database were randomly
assigned to the training and validation group in a ratio of
1 : 1. The univariate Cox regression analysis indicated that
among the rejection-related genes, 14 were significantly corre-
lated with ccRCC patients’ survival (Figures 2(c) and 2(d), P
< 0:05). Subsequently, the LASSO regression analysis was
used to screen the most significant variables (Figures 3(a)

and 3(b)). Based on the identified genes, multivariate Cox
regression analysis was used to establish a prognosis model
consisting of four genes, PLAC8, CSTA, AIM2, and LYZ
(Figures 3(c) and 3(d)). According to the Kaplan–Meier sur-
vival curve, patients in the high-risk group showed a poorer
survival rate than those in the low-risk group (Figure 3(e)).
Furthermore, the Receiver Operating Characteristic (ROC)
curve showed a good performance for survival prediction at
1, 3, and 5 years (Figures 3(f), 3(g), and 3(h); 1-year
AUC=0.764, 3-year AUC=0.71, 5-year AUC=0.706). Simi-
larly, the validation cohort showed the same pattern
(Figures 3(i), 3(j), 3(k), 3(l), and 3(m)).
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Figure 3: Prognosis model. (a) and (b) LASSO regression analysis; (c) multivariate Cox regression analysis for model construction; (d)
overview of prognosis model in the training cohort; (e) KM survival between high- and low-risk patients (training cohort); (f)–(h) ROC
curves of 1-, 3-, and 5-year survival of our model in the training cohort; (i) overview of prognosis model in the validation cohort; (j) KM
survival between high- and low-risk patients (validation cohort); (k)–(m) ROC curves of 1-, 3-, and 5-year survival of our model in the
validation cohort.
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Figure 5: Continued.
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3.3. Machine Learning Algorithms Identify the Rejection-
Related Genes Involved in Cancer Occurrence. The LASSO
logistics regression and SVM-RFE algorithms (Figures 4(a),
4(b), and 4(c)) revealed that 19 rejection-related genes
involved in ccRCC occurrence, including RAC2, PLA1A,
NLRC5, LAPTM5, TYROBP, TAP1, CCL8, IRF1, GBP2,
PSMB9, FCN1, GBP1, GPR171, ITK, PLAC8, CCL5, ADAM-
DEC1, IDO1, and CXCL9 (Figures 4(d) and 4(e)). The ROC
curves showed that these genes had a good diagnosis effi-
ciency for ccRCC diagnosis (Figures 5(a), 5(b), 5(c), 5(d),
5(e), 5(f), 5(g), 5(h), 5(i), 5(j), 5(k), 5(l), 5(m), 5(n), 5(o),
5(p), 5(q), 5(r), 5(s), and 5(t)).

3.4. Further Exploration of PLAC8 in ccRCC. Only the
PLAC8 gene was significantly associated with patients’
prognosis (multivariate Cox regression) and was involved
in the occurrence of ccRCC. Therefore, we selected it for
further analysis. The pan-cancer analysis showed that
PLCA8 was differentially expressed in various cancer types,
including ccRCC (Figures 6(a) and 6(b)). Furthermore, the
Kaplan–Meier survival curves revealed that the patients
with a high expression of PLCA8 had poorer overall sur-
vival, disease-free survival, and progression-free survival
than those with a low expression of PLAC8 (Figures 6(c),
6(d), and 6(e)). Furthermore, the clinical correlation analy-
sis showed a higher expression of PLCA8 in the T3-4
patients, M1 patients, Stage III–IV patients, male patients,
and G3–4 patients than the control group (Figures 6(f),
6(g), 6(h), 6(i), 6(j), 6(k), 6(l), and 6(m)). Moreover, the
GSEA analysis showed a high expression of PLCA8 in
the interleukin 6 (IL6)/Janus Kinase (JAK)/signal trans-
ducer and activator of transcription 3 (STAT3) signaling
pathway, interferon-alpha response, allograft rejection,

interferon-gamma response, and epithelial–mesenchymal
transition (Figure 7).

4. Discussion

ccRCC is the most prevalent subtype of RCC and is a signif-
icant public health challenge [23]. According to previous
studies, kidney transplantation recipients (KTRs) exposed
to immunosuppression for more than 20 years were more
likely to suffer from RCC [6, 24]. However, the specific
mechanisms leading to the occurrence and development of
ccRCC after transplantation are still unknown. In this study,
we employed machine learning algorithms to identify the
genes associated with renal cancer. Machine learning is a
powerful tool in radiogenomics as it allows the integration
of imaging and genomics data [25, 26]. Furthermore,
machine learning could provide valuable insights into
ccRCC due to the relative lack of mutant genes. With the
help of machine learning, combining target gene detection
with radiogenomics offers an opportunity for accurate diag-
nosis, prognosis, and treatment option determination [27].

PLAC8, also known as onzin, was initially identified in
mid-gestation placentas and mice embryos using genome-
wide expression profiling [28, 29]. In addition, PLAC8 has
been identified in human cells such as plasmacytoid den-
dritic cells [30], lymphoid cells, myeloid cells, and intestinal
epithelial cells [31]. According to previous studies, PLAC8 is
a cysteine-rich protein that plays crucial roles in cell prolifer-
ation, cell immunity, cell apoptosis, and cancer pathophysiol-
ogy [32–35]. Although the precise role of PLAC8 in
tumorigenesis remains unclear, recent studies have shown that
PLAC8 plays multiple roles across various cell types. For exam-
ple, PLAC8 induces epithelial–mesenchymal transition in colon
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Figure 5: Prediction efficiency of 19 rejection-related genes in ccRCC diagnosis. (a) ROC curves of RAC2; (b) ROC curves of PLA1A; (c)
ROC curves of NLRC5; (d) ROC curves of LAPTM5; (e) ROC curves of TYROBP; (f) ROC curves of TAP1; (g) ROC curves of CCL8; (h)
ROC curves of IRF1; (i) ROC curves of GBP2; (j) ROC curves of PSMB9; (k) ROC curves of FCN1; (l) ROC curves of GBP1; (m) ROC curves
of GRP171; (n) ROC curves of ITK; (o) ROC curves of PLAC8; (p) ROC curves of CCL5; (q) ROC curves of ADAMDEC1; (r) ROC curves of
IDO1; (s) ROC curves of CXCL9; (t) ROC curves of the combined score.
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carcinoma cells [36]; regulates PD-L1 ubiquitination levels in
breast cancer cells, thus influencing immune response and can-
cer cell proliferation [37]; and triggers oncogenic autophagy,
thus affecting autophagosome–lysosome fusion in pancreatic
cells [38].

The present study showed that PLAC8 could affect tumor-
igenesis in ccRCC by regulating the IL6/JAK/STAT3 signaling
pathway, allograft rejection, interferon-alpha response, epithe-
lial–mesenchymal transition, and interferon-gamma response.
Consistent with our findings, Shi et al. reported that PLAC8
affects tumorigenesis by regulating immunity and inflamma-
tory processes [39]. In addition, the present study revealed
that the expression of PLAC8 could be used to predict clinical
outcomes in ccRCC [39]. Also, previous studies showed that
PLAC8may be a biomarker of epithelial mesenchymal transi-
tions progression and cancer metastasis [40].

The IL6–JAK–STAT3 signaling pathway plays diverse
roles in tumorigenesis, including angiogenesis, tumor inva-
sion, and migration [41–44]. Zhan et al. demonstrated that

a prognosis model based on the IL6–JAK–STAT3 pathway-
related genes had a good predictive performance for diag-
nosing ccRCC [45].

The incidence of RCC in KTRs remains unclear. Fur-
thermore, the development of RCC in KTRs could be an
interplay of various factors. Firstly, long-term therapy
with immunosuppressive drugs is associated with
reduced immune surveillance, resulting in decreased
ability to detect and clear abnormal cells, including
tumor cells [46]. Secondly, the immunosuppressive drugs
used in renal transplant patients could have tumorigene-
sis effects [46]. Furthermore, long-term dialysis treat-
ment increases the risk of developing renal carcinoma.
Moreover, patients with ESRD on prolonged dialysis
have a higher risk of developing acquired cystic nephrop-
athy, which, in turn, increases the risk of developing
renal cancer [47]. The occurrence of kidney transplant
rejection is often complex and may be related to multiple
cells or antibodies, such as antibody-mediated rejection
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Figure 6: Clinical role of PLAC8 in ccRCC. (a) Expression pattern of PLAC8 in pan-cancer; (b) expression level of PLAC8 in ccRCC and
control tissue; (c)–(e) PLCA8 level tends to have a worse overall survival, disease-free survival, and progression-free survival; (f)–(m)
expression level of PLAC8 in patients with different groups.
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(ABMR), T cell-mediated rejection (TCMR), and other
types of rejection [48]. Among them, TCMR and ABMR
are the most important types. Although the precise
mechanism behind ABMR remains elusive, researchers
generally believe that its occurrence is related to the
interaction of donor-specific alloantibodies (DSAs)
against donor human leukocyte antigen antigens [49].
Persistent T-cell damage can lead to the occurrence of
TCMR [50]. Different subtypes often have different path-
ological and physiological processes, which poses chal-
lenges for the diagnosis and treatment of Ktx [51].

There were several limitations to our research. Firstly,
the data analyzed in this study originated from Western
countries. Therefore, the findings of this study might not
apply to patients in Asian patients. Secondly, this study
had a limited sample size. Thirdly, this study did not inves-
tigate the role of other identified genes in the progression of
ccRCC in Ktx. Therefore, further studies are needed to
investigate the role of the other genes. Fourthly, the credibil-
ity of our findings could be undermined by the lack of clin-
ical data. Fifthly, we only evaluate the prognosis value of
rejection-related genes in TCGA cohort. For example, the
prognostic value of PLAC8 in other different ccRCC cohorts
still cannot be effectively validated. Therefore, our results
can only provide directional significance and still need to

be re-evaluated when applied to new cohorts. Lastly, we
did not focus on different types of rejection. The rejection
group in our study includes all types of renal rejection,
including ABMR, TCMR, and other kinds of rejection. The
potential biological differences between different subtypes
can to some extent reduce the credibility of our conclusions,
especially when focusing on a specific rejection subtype.

5. Conclusion

This study identified the molecules involved in the rejection
of renal transplant patients. PLAC8, a rejection-related gene,
was found associated with ccRCC prognosis and occurrence,
which might be a potential target. This study provides novel
insights into post-renal transplant research in patients with
ccRCC.

Data Availability

The transcriptional profile data of kidney transplant patients
with or without rejection response can be obtained from
GSE48581, GSE36059, and GSE98320 in Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/). Pan-cancer data was obtained from the USCS XENA
website (https://xenabrowser.net/).
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17International Journal of Genomics

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/


Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

JY and RJ contributed to the conception and design. YC wrote
the paper. ZL, XS, SW, and QY analyzed the data and pre-
pared figures. YC, QY, and RJ revised the manuscript. Yinwei
Chen, Zhanpeng Liu, and Qian Yu are co-first authors.

Supplementary Materials

Figure S1. The flow chart of whole study. (Supplementary
Materials)

References

[1] B. Shuch, A. Amin, A. J. Armstrong et al., “Understanding
pathologic variants of renal cell carcinoma: distilling therapeu-
tic opportunities from biologic complexity,” European Urol-
ogy, vol. 67, no. 1, pp. 85–97, 2015.

[2] U. Capitanio and F. Montorsi, “Renal cancer,” Lancet, vol. 387,
no. 10021, pp. 894–906, 2016.

[3] J. Xu, E. Reznik, H. J. Lee et al., “Abnormal oxidative metabo-
lism in a quiet genomic background underlies clear cell papil-
lary renal cell carcinoma,” eLife, vol. 8, p. 8, 2019.

[4] B. Escudier, C. Porta, M. Schmidinger et al., “Renal cell carci-
noma: ESMO Clinical Practice Guidelines for diagnosis, treat-
ment and follow-up†,” Annals of Oncology, vol. 27, no. suppl 5,
pp. v58–v68, 2016.

[5] S. Hariharan, C. P. Johnson, B. A. Bresnahan, S. E. Taranto,
M. J. McIntosh, and D. Stablein, “Improved graft survival after
renal transplantation in the United States, 1988 to 1996,” The
New England Journal of Medicine, vol. 342, no. 9, pp. 605–
612, 2000.

[6] J. D. Fuhrmann, K. Valkova, S. vonMoos, R. P. Wuthrich, T. F.
Muller, and T. Schachtner, “Cancer among kidney transplant
recipients >20 years after transplantation: post-transplant
lymphoproliferative disorder remains the most common can-
cer type in the ultra long-term,” Clinical Kidney Journal,
vol. 15, no. 6, pp. 1152–1159, 2022.

[7] A. Chewcharat, C. Thongprayoon, T. Bathini et al., “Incidence
and mortality of renal cell carcinoma after kidney transplanta-
tion: a meta-analysis,” Journal of Clinical Medicine, vol. 8,
no. 4, p. 530, 2019.

[8] P. Braconnier, V. Del Marmol, N. Broeders et al., “Combined
introduction of anti-IL2 receptor antibodies, mycophenolic
acid and tacrolimus: effect on malignancies after renal trans-
plantation in a single-centre retrospective cohort study,”
Nephrology, Dialysis, Transplantation, vol. 27, no. 6,
pp. 2547–2553, 2012.

[9] J. Dantal, M. Hourmant, D. Cantarovich et al., “Effect of long-
term immunosuppression in kidney-graft recipients on cancer
incidence: randomised comparison of two cyclosporin regi-
mens,” Lancet, vol. 351, no. 9103, pp. 623–628, 1998.

[10] D. Farrugia, S. Mahboob, J. Cheshire et al., “Malignancy-
related mortality following kidney transplantation is com-
mon,” Kidney International, vol. 85, no. 6, pp. 1395–1403,
2014.

[11] X. Zhang, X. Ren, T. Zhang et al., “Comprehensive analysis of
the association between human non-obstructive azoospermia

and plasticisers via single-cell and traditional RNA sequencing
methods,” vol. 14, no. 4, pp. 829–842, 2022.

[12] X. Zhang, X. Ren, T. Zhang et al., “Comprehensive analysis of
the association between human non-obstructive azoospermia
and plasticisers via single-cell and traditional RNA sequencing
methods,” Exposure and Health, vol. 14, no. 4, pp. 829–842,
2022.

[13] T. Zhang, X. Zhou, X. Zhang et al., “Gut microbiota may con-
tribute to the postnatal male reproductive abnormalities
induced by prenatal dibutyl phthalate exposure,” Chemo-
sphere, vol. 287, no. Point 1, p. 132046, 2022.

[14] X. Ren, T. Zhang, X. Chen et al., “Early-life exposure to bisphe-
nol A and reproductive-related outcomes in rodent models: a
systematic review and meta-analysis,” Aging, vol. 12, no. 18,
pp. 18099–18126, 2020.

[15] M. Yuan, X. Hu, L. Yao, P. Liu, Y. Jiang, and L. Li, “Comprehensive
bioinformatics and machine learning analysis identify VCAN as a
novel biomarker of hepatitis B virus-related liver fibrosis,”
Frontiers in Molecular Biosciences, vol. 9, p. 1010160, 2022.

[16] M. E. Ritchie, B. Phipson, D. Wu et al., “Limma powers differ-
ential expression analyses for RNA-sequencing and microar-
ray studies,” Nucleic Acids Research, vol. 43, no. 7, article e47,
2015.

[17] C. von Mering, M. Huynen, D. Jaeggi, S. Schmidt, P. Bork, and
B. Snel, “STRING: a database of predicted functional associa-
tions between proteins,” Nucleic Acids Research, vol. 31,
no. 1, pp. 258–261, 2003.

[18] A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set
enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 43, pp. 15545–15550, 2005.

[19] G. Bindea, B. Mlecnik, H. Hackl et al., “ClueGO: a Cytoscape
plug-in to decipher functionally grouped gene ontology and
pathway annotation networks,” Bioinformatics, vol. 25, no. 8,
pp. 1091–1093, 2009.

[20] R. C. Deo, “Machine learning in medicine,” Circulation,
vol. 132, no. 20, pp. 1920–1930, 2015.

[21] M. L. Huang, Y. H. Hung, W. M. Lee, R. K. Li, and B. R. Jiang,
“SVM-RFE based feature selection and Taguchi parameters
optimization for multiclass SVM classifier,” The Scientific
World Journal, vol. 2014, Article ID 795624, p. 10, 2014.

[22] J. Tang, M.Mou, Y.Wang, Y. Luo, and F. Zhu, “MetaFS: perfor-
mance assessment of biomarker discovery in metaproteomics,”
Briefings in Bioinformatics, vol. 22, no. 3, p. bbaa105, 2021.

[23] B. I. Rini, S. C. Campbell, and B. Escudier, “Renal cell carci-
noma,” Lancet, vol. 373, no. 9669, pp. 1119–1132, 2009.

[24] D. Collett, L. Mumford, N. R. Banner, J. Neuberger, and
C. Watson, “Comparison of the incidence of malignancy in
recipients of different types of organ: a UK registry audit,”
American Journal of Transplantation, vol. 10, no. 8,
pp. 1889–1896, 2010.

[25] M. Ferro, G. Musi, M. Marchioni et al., “Radiogenomics in
renal cancer management-current evidence and future pros-
pects,” International Journal of Molecular Sciences, vol. 24,
no. 5, p. 4615, 2023.

[26] F. Alessandrino, A. B. Shinagare, D. Bosse, T. K. Choueiri, and
K. M. Krajewski, “Radiogenomics in renal cell carcinoma,”
Abdominal Radiology, vol. 44, no. 6, pp. 1990–1998, 2019.

[27] O. S. Tataru, M. Marchioni, F. Crocetto et al., “Molecular
imaging diagnosis of renal cancer using 99mTc-Sestamibi

18 International Journal of Genomics

https://downloads.hindawi.com/journals/ijg/2023/5542233.f1.pdf
https://downloads.hindawi.com/journals/ijg/2023/5542233.f1.pdf


SPECT/CT and Girentuximab PET-CT-current evidence and
future development of novel techniques,” Diagnostics, vol. 13,
no. 4, p. 593, 2023.

[28] C. Galaviz-Hernandez, C. Stagg, G. de Ridder et al., “Plac8 and
Plac9, novel placental-enriched genes identified through
microarray analysis,” Gene, vol. 309, no. 2, pp. 81–89, 2003.

[29] T. S. Tanaka, S. A. Jaradat, M. K. Lim et al., “Genome-wide
expression profiling of mid-gestation placenta and embryo
using a 15,000 mouse developmental cDNA microarray,” Pro-
ceedings of the National Academy of Sciences of the United
States of America, vol. 97, no. 16, pp. 9127–9132, 2000.

[30] M. C. Rissoan, T. Duhen, J. M. Bridon et al., “Subtractive
hybridization reveals the expression of immunoglobulin-like
transcript 7, Eph-B1, granzyme B, and 3 novel transcripts in
human plasmacytoid dendritic cells,” Blood, vol. 100, no. 9,
pp. 3295–3303, 2002.

[31] J. G. Ledford, M. Kovarova, and B. H. Koller, “Impaired host
defense in mice lacking ONZIN,” Journal of Immunology,
vol. 178, no. 8, pp. 5132–5143, 2007.

[32] M. Jimenez-Preitner, X. Berney, and B. Thorens, “Plac8 is
required for white adipocyte differentiation in vitro and cell
number control in vivo,” PLoS One, vol. 7, no. 11, p. e48767,
2012.

[33] C. Kinsey, V. Balakrishnan, M. R. O’Dell et al., “Plac8 links
oncogenic mutations to regulation of autophagy and is critical
to pancreatic cancer progression,” Cell Reports, vol. 7, no. 4,
pp. 1143–1155, 2014.

[34] M. Mourtada-Maarabouni, D. Watson, M. Munir, F. Farzaneh,
and G. T. Williams, “Apoptosis suppression by candidate onco-
gene PLAC8 is reversed in other cell types,” Current Cancer
Drug Targets, vol. 13, no. 1, pp. 80–91, 2013.

[35] S. Segawa, Y. Kondo, Y. Nakai et al., “Placenta specific 8 sup-
presses IL-18 production through regulation of autophagy
and is associated with adult still disease,” Journal of Immunol-
ogy, vol. 201, no. 12, pp. 3534–3545, 2018.

[36] C. Li, H. Ma, Y. Wang et al., “Excess PLAC8 promotes an
unconventional ERK2-dependent EMT in colon cancer,” The
Journal of Clinical Investigation, vol. 124, no. 5, pp. 2172–
2187, 2014.

[37] M. Mao, Y. Chen, J. Yang et al., “Modification of PLAC8 by
UFM1 affects tumorous proliferation and immune response
by impacting PD-L1 levels in triple-negative breast cancer,”
Journal for Immunotherapy of Cancer, vol. 10, no. 12,
p. e005668, 2022.

[38] B. P. Kaistha, H. Lorenz, H. Schmidt et al., “PLAC8 localizes to
the inner plasma membrane of pancreatic cancer cells and reg-
ulates cell growth and disease progression through critical cell-
cycle regulatory pathways,” Cancer Research, vol. 76, no. 1,
pp. 96–107, 2016.

[39] L. Shi, L. Xiao, B. Heng, S. Mo, W. Chen, and Z. Su, “Overex-
pression of placenta specific 8 is associated with malignant
progression and poor prognosis of clear cell renal cell carci-
noma,” International Urology and Nephrology, vol. 49, no. 7,
pp. 1165–1176, 2017.

[40] M.Mao, Y. Cheng, J. Yang et al., “Multifaced roles of PLAC8 in
cancer,” Biomarker Research, vol. 9, no. 1, p. 73, 2021.

[41] J. S. Ni, H. Zheng, Y. L. Ou et al., “miR-515-5p suppresses
HCC migration and invasion via targeting IL6/JAK/STAT3
pathway,” Surgical Oncology, vol. 34, pp. 113–120, 2020.

[42] M. S. Pan, H. Wang, K. H. Ansari, X. P. Li, W. Sun, and Y. Z.
Fan, “Correction to: gallbladder cancer-associated fibroblasts

promote vasculogenic mimicry formation and tumor growth
in gallbladder cancer via upregulating the expression of
NOX4, a poor prognosis factor, through IL-6-JAK-STAT3 sig-
nal pathway,” Journal of Experimental and Clinical Cancer
Research, vol. 40, no. 1, p. 236, 2021.

[43] R. Siersbaek, V. Scabia, S. Nagarajan et al., “IL6/STAT3 signal-
ing hijacks estrogen receptor α enhancers to drive breast can-
cer metastasis,” Cancer Cell, vol. 38, no. 3, pp. 412–423.e9,
2020.

[44] K. L. Tung, Y. T. Wu, C. Liu et al., “EBV Rta-induced IL-6 pro-
motes migration of bystander tumor cells through IL-6R/JAK/
STAT3 pathway in vitro,” Anticancer Research, vol. 40, no. 6,
pp. 3255–3264, 2020.

[45] C. Zhan, C. Xu, J. Chen et al., “Development and validation of
an IL6/JAK/STAT3-related gene signature to predict overall
survival in clear cell renal cell carcinoma,” Frontiers in Cell
and Development Biology, vol. 9, p. 686907, 2021.

[46] H. Eggers, F. Guler, U. Ehlers, P. Ivanyi, I. Peters, and
V. Grunwald, “Renal cell carcinoma in kidney transplant
recipients: descriptive analysis and overview of a major Ger-
man transplant center,” Future Oncology, vol. 15, no. 32,
pp. 3739–3750, 2019.

[47] Y. Hoshida, H. Nakanishi, M. Shin, T. Satoh, J. Hanai, and
K. Aozasa, “Renal neoplasias in patients receiving dialysis
and renal transplantation: clinico-pathological features
and p53 gene mutations,” Transplantation, vol. 68, no. 3,
pp. 385–390, 1999.

[48] X. Lai, X. Zheng, J. M. Mathew, L. Gallon, J. R. Leventhal, and
Z. J. Zhang, “Tackling chronic kidney transplant rejection:
challenges and promises,” Frontiers in Immunology, vol. 12,
article 661643, 2021.

[49] M. Crespo, L. Llinàs-Mallol, D. Redondo-Pachón et al., “Non-
HLA antibodies and epitope mismatches in kidney transplant
recipients with histological antibody-mediated rejection,”
Frontiers in Immunology, vol. 12, article 703457, 2021.

[50] F. Salem, L. Perin, S. Sedrakyan et al., “The spatially resolved
transcriptional profile of acute T cell-mediated rejection in a
kidney allograft,” Kidney International, vol. 101, no. 1,
pp. 131–136, 2022.

[51] A. Loupy, M. Haas, C. Roufosse et al., “The Banff 2019 kidney
meeting report (I): updates on and clarification of criteria for T
cell- and antibody-mediated rejection,” American Journal of
Transplantation, vol. 20, no. 9, pp. 2318–2331, 2020.

19International Journal of Genomics


	Investigation of Underlying Biological Association and Targets between Rejection of Renal Transplant and Renal Cancer
	1. Introduction
	2. Methods
	2.1. Data Collection
	2.2. Differentially Expressed Genes Analysis
	2.3. Protein Interaction Network
	2.4. Biological Enrichment Analysis
	2.5. Prognosis Analysis
	2.6. Machine Learning Algorithm
	2.7. Statistical Analysis

	3. Results
	3.1. Identification of DEGs Involved in Renal Transplant Rejection
	3.2. Role of Rejection-Related Genes in Renal Cancers
	3.3. Machine Learning Algorithms Identify the Rejection-Related Genes Involved in Cancer Occurrence
	3.4. Further Exploration of PLAC8 in ccRCC

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Supplementary Materials



