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Background. Gastric cancer (GC) is the second most frequent cause of cancer-related death worldwide and the fourth most
common malignancy. Despite significant improvements in patient survival over the past few decades, the prognosis for patients
with GC remains dismal because of the high recurrence rate. In this comprehensive system biology and experimental
investigation, we aimed to find new novel diagnostic biomarkers of GC through a regulatory RNA interaction network.
Methods. Gene expression, coexpression, and survival analyses were performed using microarray and RNAseq datasets
(analyzed by RStudio, GEPIA2, and ENCORI). RNA interaction analysis was performed using miRWalk and ENCORI online
databases. Gene set enrichment analysis (GSEA) was performed to find related signaling pathways of up- and downregulated
genes in the microarray dataset. Gene ontology and pathway enrichment analysis were performed by the enrichr database.
Protein interaction analysis was performed by STRING online database. Validation of expression and coexpression analyses
was performed using a qRT-PCR experiment. Results. Based on bioinformatics analyses, THBS2 (FC: 7.14, FDR < 0 0001) has a
significantly high expression in GC samples. lncRNAs BAIAP2-AS1, TSIX, and LINC01215 have RNA interaction with THBS2.
BAIAP2-AS1 (FC: 1.44, FDR: 0.018), TSIX (FC: 1.34, FDR: 0.038), and LINC01215 (FC: 1.19, FDR: 0.046) have significant
upregulation in GC samples. THBS2 has a significant role in the regulation of the ECM-receptor signaling pathway. miR-4677-5p
has a significant RNA interaction with THBS2. The expression level of THBS2, BAIAP2-AS1, TSIX, and LINC01215 has a
nonsignificant negative correlation with the survival rate of GC patients (HR: 0.28, logrank p: 0.28). qRT-PCR experiment validates
mentioned bioinformatics expression analyses. BAIAP2-AS1 (AUC: 0.7136, p value: 0.0096), TSIX (AUC: 0.7456, p value: 0.0029),
and LINC01215 (AUC: 0.7872, p value: 0.0005) could be acceptable diagnostic biomarkers of GC. Conclusion. BAIAP2-AS1,
lncRNA LINC01215, lncRNA TSIX, and miR-4677-5p might modulate the ECM-receptor signaling pathway via regulation of
THBS2 expression level, as the high-expressed noncoding RNAs in GC. Furthermore, mentioned lncRNAs could be considered
potential diagnostic biomarkers of GC.
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1. Introduction

Globally, gastric cancer (GC) is the second most common
cause of cancer-related mortality and the fourth most prev-
alent malignant disease [1]. The prognosis for patients with
GC is still poor because of the high recurrence rate, despite
major advancements in patient survival over the past several
decades [2]. GC is frequently identified at an advanced stage.
Since most cases of GC are asymptomatic until they reach
late stages, it is crucial to use efficient screening techniques
to identify cases early in order to reduce GC fatalities [2].
In order to serve as a marker for healthy biologic processes,
destructive processes, or pharmacological responses to
therapeutic interventions, biomarkers are traits that can be
objectively studied and measured. Recent developments in
genome analysis have led to the discovery of several bio-
markers relating to DNA, RNA, exosomes, etc. The creation
of these biomarkers in the field of cancer therapy is antici-
pated to have a significant impact on the progression of
the disease, the choice of effective therapeutic approaches,
and effective follow-up programs [2].

Better technology and bioinformatics analyses to com-
prehend dynamic changes in biology and tumor plasticity
will be linked to further advancements in cancer therapy.
Consideration must be given to tumor heterogeneity, the
interaction between the cancer genome and the epigenome,
the surrounding microenvironment, and vertical access
(changes over time) of cancer biological components to
address molecular evolution and horizontal access (changes
over sites of disease involvement) to address tumor hetero-
geneity. The potential of computational medicine and data
sharing inspires researchers to create exciting initiatives that
integrate big data and bioinformatics. The possibility of
treating cancer ultimately rests with the development of
efficient treatment approaches, well-planned clinical trials,
and coordinated efforts among crucial players in cancer
therapy [3].

Long noncoding RNAs (lncRNAs) have gotten a lot of
attention as possible diagnostic, prognostic, or predictive
biomarkers because of their high specificity and ease of
accessibility in a noninvasive way, as well as their aberrant
expression under diverse pathological and physiological
situations. They could possibly be used as stomach cancer
treatment targets [4].

Based on previous studies, lncRNAs have significant roles
in the different biological processes correlated to GC. For
example, lncRNA PCAT-1, which is significantly expressed
in tissues and cells of gastric cancer resistant to DDP, increases
DDP resistance in gastric cancer cells by engaging EZH2 to
epigenetically repress PTEN expression and controlling the
miR-128/ZEB1 axis [5, 6]. EZH2 is also considered as a poten-
tial prognostic biomarker of hepatocellular carcinoma [7].
Similarly, it has been discovered that the DDP-resistant gastric
cancer cells SGC7901/DDP and BGC823/DDP express the
lncRNA DANCR at a high level. DANCR knockdown in these
cells encourages apoptosis and prevents cell division. On the
other hand, DDP-induced SGC901 and BGC823 cells with
overexpressed DANCR might increase the expression of
MDR genes MDR1 and MRP1 [8]. Through the upregulation

ofMDR1, MRP1, and Bax expression as well as the downreg-
ulation of Bcl-2 expression, lncRNA SNHG5 decreased the
DDP sensitivity of the gastric cancer cells BGC823 and
SGC7901 [9].

Based on GeneCards (http://genecards.org), THBS2 pro-
duces a member of the thrombospondin family of proteins.
It is a homotrimeric glycoprotein with disulfide links that
mediate interactions between cells and between cells and a
matrix. It has been demonstrated that this protein acts as a
powerful inhibitor of tumor angiogenesis and proliferation.
Studies of the mouse equivalent imply that this protein
may modify the mesenchymal cells’ cell surface characteris-
tics and be involved in cell adhesion and migration. Through
regulation by miR-221-3p, THBS2 might promote angiogen-
esis in cervical cancer [10]. Zhang et al. in 2022 revealed that
THBS2 has a significant upregulation in gastric cancer
patients. Also, this study revealed that high expression of
THBS2 has significant correlations with pathological grade,
T stage, and poor overall survival of patients [11].

In this study, we performed a comprehensive bioinfor-
matics investigation and experimental validation to find
potential novel biomarkers of GC. Also, we demonstrate
novel RNA and protein interaction networks to find novel
regulatory noncoding RNAs in GC patients. The central core
of this study is the THBS2 gene as a potential misregulated
mRNA in GC patients.

2. Materials and Methods

2.1. Microarray Data Analysis. Microarray analysis was
performed on the gastric cancer-related datasets. GSE54129
was investigated in order to find the differentially expressed
genes (DEGs) in the gastric cancer microarray datasets. 111
GC samples and 21 control samples from this dataset were
evaluated. GPL570 (HG-U133 Plus 2, Affymetrix Human
Genome U133 Plus 2.0 Array) is the source of this dataset.
The raw data from the GEO online database (https://www
.ncbi.nlm.nih.gov/geo/) was transmitted to the RStudio envi-
ronment and then normalized using the affy [12] package.
The microarray dataset underwent statistical analysis using
the limma [13] package. The affy and limma packages were
obtained from the Bioconductor online site (https://www
.bioconductor.org/). For the analysis of microarray data, a sig-
nificance threshold of 0.0001 was chosen (adjusted p value).
The microarray data analysis visualizations were created using
the ggplot2 [14] and pheatmap packages, which are available
from CRAN (https://cran.r-project.org). In this microarray
study, the expression of 47568 RNA transcript (21257 genes)
was investigated. Following normalization (RMA method),
logarithmic scaling, and elimination of the transcripts with
no expression in the dataset, the difference in the expression
level of all RNAs was calculated. The RNAs with logFC > 3
were chosen as the upregulated RNAs, while logFC < −3 was
selected as the threshold of low expression.

2.2. Gene Set Enrichment Analysis (GSEA). The samples in
the GSE54129 dataset were split into control and tumor
samples. Gene set enrichment analysis (GSEA) (https://
software.broadinstitute.org/gsea/) was used to investigate
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related signaling pathways [15]. p < 0 05 was used to assess
what words were significant.

2.3. Gene Ontology (GO), Expression, Survival, and RNA
Interaction Analyses. ENCORI online database carried out
the mRNA-lncRNA interaction analyses (https://starbase
.sysu.edu.cn/) [16]. The online software GEPIA2 [17] (http://

gepia2.cancer-pku.cn/) and ENCORI carried out expression,
correlation, and survival analyses. Using Cytoscape software
(version 3.8.2), RNA interactions were visualized [18, 19].
The STRING online database analyzed and visualized
protein-protein interactions [20]. GO and pathway enrich-
ment analyses were performed by enrichr online database
[21–23]. The investigation of the interactions between

Table 1: Clinicopathological analysis of gastric cancer samples.

Variable Status Number %

Age
<50 8 32

>50 17 68

Sex
Male 18 72

Female 7 28

Tumor size
<5 cm 10 40

>5 cm 15 60

Histology

Adenocarcinoma 23 92

Mucinous adenocarcinoma 1 4

Signet ring carcinoma 1 4

Perineural invasion
No 6 24

Yes 19 76

Nodal extension
No 21 84

Yes 4 16

TNM staging

I 1 4

II 6 24

IIIA 2 8

IIIB 4 16

IV 12 48

Family history
No 19 76

Yes 6 24

Smoking

DX-smoker at diagnosis but discontinued 2 8

Ex-smoker 2 8

Nonsmoker 20 80

smoker 1 4

Table 2: Table of primer sequence.

Gene 5′–>3 Forward/reverse

THBS2
CGTGGACAATGACCTTGTTG F

GCCATCGTTGTCATCATCAG R

BAIAP2-AS1
ACCAGAAAGTTCCAGAGCGG F

ACCATGCGGATAGCTTCACC R

TSIX
GTGATCCTCACAGGACTGCAACA F

AGCTGAGTCTTCAGCAGGTCCAA R

LINC01215
AGCGCTTACCACTGTCCATT F

TGCCCAGGTGAACTGTTTTCT R

GAPDH
AGCCACATCGCTCAGACAC F

GCCCAATACGACCAAATCC R
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Table 3: List of top 20 upregulated and downregulated genes in GSE54129.

ID logFC AveExpr p value Adj. p value Gene symbol Down/up

220191_at -5.96862787 9.308647992 3 84E‐09 1 61E‐08 GKN1 Down

238222_at -5.882742555 9.145683068 1 24E‐10 6 32E‐10 GKN2 Down

208138_at -5.451885409 6.962448568 1 26E‐23 3 58E‐22 GAST Down

205979_at -5.275111089 5.955695606 4 36E‐23 1 15E‐21 SCGB2A1 Down

213921_at -5.271075203 7.443574371 2 61E‐15 2 43E‐14 SST Down

231646_at -5.100492447 7.808510962 2 43E‐14 2 00E‐13 DPCR1 Down

210065_s_at -4.868614646 7.11555797 3 38E‐22 7 86E‐21 UPK1B Down

213953_at -4.865974875 8.113243682 3 58E‐11 1 97E‐10 KRT20 Down

221122_at -4.85342997 6.729619568 3 70E‐24 1 13E‐22 HRASLS2 Down

241137_at -4.717247165 7.873223023 1 58E‐13 1 17E‐12 DPCR1 Down

243764_at -4.688944304 8.296975061 2 35E‐12 1 49E‐11 VSIG1 Down

204260_at -4.65753578 5.269594917 6 42E‐25 2 18E‐23 CHGB Down

207033_at -4.657105699 6.371562909 2 44E‐09 1 06E‐08 GIF Down

234780_at -4.632035685 4.37024875 2 54E‐51 2 28E‐48 Down

207249_s_at -4.5518883 6.956546129 6 48E‐17 7 49E‐16 SLC28A2 Down

214046_at -4.478426687 5.933183333 3 66E‐14 2 94E‐13 FUT9 Down

234632_x_at -4.460705311 5.982485447 2 22E‐20 4 07E‐19 Down

210641_at -4.440274593 6.507433205 1 54E‐25 5 58E‐24 CAPN9 Down

227306_at -4.421510073 6.865494508 3 82E‐24 1 17E‐22 RP11-363E7.4 Down

214385_s_at -4.329929907 8.909946864 6 51E‐11 3 46E‐10 MUC5AC Down

209875_s_at 4.055061344 8.400801758 3 12E‐15 2 87E‐14 SPP1 Up

210764_s_at 4.074797407 8.451531992 1 01E‐30 7 06E‐29 CYR61 Up

203649_s_at 4.079081377 8.611325803 4 83E‐16 4 96E‐15 PLA2G2A Up

209156_s_at 4.11512948 9.774724742 1 31E‐33 1 31E‐31 COL6A2 Up

202859_x_at 4.117296435 8.163282288 3 98E‐15 3 62E‐14 CXCL8 Up

218469_at 4.168860215 9.899021644 2 25E‐21 4 68E‐20 GREM1 Up

224646_x_at 4.199296712 7.476765447 1 15E‐15 1 12E‐14 H19 Up

204051_s_at 4.252115166 7.362223727 1 71E‐18 2 45E‐17 SFRP4 Up

202310_s_at 4.300071432 11.33718549 9 54E‐36 1 28E‐33 COL1A1 Up

201289_at 4.344681412 9.535824144 9 94E‐36 1 33E‐33 CYR61 Up

1555229_a_at 4.398480865 8.495294055 5 14E‐39 1 15E‐36 C1S Up

209395_at 4.412985552 7.207506621 4 45E‐17 5 27E‐16 CHI3L1 Up

223121_s_at 4.462926494 8.277239652 1 74E‐19 2 83E‐18 SFRP2 Up

201058_s_at 4.469669609 10.22080471 1 82E‐24 5 81E‐23 MYL9 Up

218468_s_at 4.580281615 9.473598068 6 43E‐24 1 90E‐22 GREM1 Up

227140_at 4.681301515 7.462719811 8 61E‐27 3 71E‐25 INHBA Up

226237_at 4.766250328 7.943784326 2 30E‐26 9 38E‐25 COL8A1 Up

238320_at 4.893182068 8.962860189 5 35E‐50 4 31E‐47 MIR612 Up

223122_s_at 5.876935726 9.798533583 1 31E‐26 5 49E‐25 SFRP2 Up

227404_s_at 5.901635278 10.46172328 3 38E‐60 8 45E‐57 EGR1 Up
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microRNAs and mRNAs was carried out by miRWalk (http://
mirwalk.umm.uni-heidelberg.de/) [24–26]. The top miRNAs
with the following criteria were selected: binding probabil-
ity, 1; position, 3′UTR (seed region); and lowest binding
energy. Sampe size was calculated using the following for-
mula: n = σ2A + σ2B Z1−α/2 + Z1−β

2 /δ2. σ2A + σ2B is the var-
iance of control and tumor samples, and Z1−α/2 and Z1−β are
the statistical power of samples (numeric values: 1.96 and
0.84, respectively).

2.4. Clinical Characteristics of Tissue Samples. All patients
signed written consent forms, and all methods for the
research in this study involving human samples were
approved by the Al-Zahra Hospital Ethics Committee, Isfa-
han University of Medical Science. Samples of normal gas-
tric tissue and gastric cancer from 25 individuals with
gastric cancer were compared in a case-control study. Nor-
mal gastric tissues are adjacent to tumor samples. None of
the patients had ever received radiation or chemotherapy.
Tissue samples were rinsed in distilled water and promptly
frozen in liquid nitrogen for RNA Later solution (Invitrogen,
USA) immersion for pathologist assessment. The clinico-
pathological characteristics of patients with breast and stom-
ach cancer are listed in Table 1.

2.5. RNA Extraction, cDNA Synthesis, and qRT-PCR
Experiment. TRIzol was employed to extract the RNA from
both tumorous and normal tissues (Invitrogen, Carlsbad,
CA, USA). Following the RNA extraction steps, cDNA synthe-
sis was performed using the TaKaRa cDNA synthesis kit
according to the manufacturer’s instructions (TaKaRa, Tokyo,
Japan). SYBR green, an Amplicon Company product from
Denmark, was utilized to do real-time PCR, and a MIC real-
time PCR instrument was used to perform reverse
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Figure 2: Volcano plot showing the DEGs in the GSE54129. Red
color indicates the upregulated genes and green color indicates
the downregulated genes. THBS2 is indicated by a black point in
the plot as a significantly upregulated gene. Further analyses were
performed on THBS2 as a significant high-expressed mRNA.
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Figure 1: Heatmap of top 50 differentially expressed genes in GSE54129. Genes are categorized into different clusters, based on the
expression level. Samples also are categorized into two main clusters based on group (control or tumor). The first 21 columns in the left
side of heatmap represent normal samples and other 111 columns in the right side of heatmap are showing the tumor samples.
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Figure 4: Heatmap of upregulated genes, involved in ECM-receptor signaling pathway. Yellow color indicates normal samples, and the gray
color indicates tumor samples. Red color indicates higher expression level of genes in related sample, and the blue color indicates lower
expression level. THBS2 has the most change in the expression level, as a significant high-expressed gene in the GC samples.
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transcription quantitative polymerase chain reaction (RT-
qPCR) experiment. Following conducting, the following
parameters for the PCR reactions were set: initial denatur-
ation, 95°C for 15 minutes; secondary, 95°C for 15 seconds;
60°C for 20 seconds; and 72°C for 20 seconds. There were 40
cycles in total. The sequences of the primers, which were
created by TAQ Copenhagen Company (Denmark), are
displayed in Table 1. As an internal control, the related expres-
sion was normalized using the quantity of GAPDH. In
Table 2, the primer sequence is displayed.

The GraphPad Prism application was used to statistically
evaluate the real-time PCR data and related visualizations
(version 8). The qRT-PCR data were compared using the
CT method to determine the expression levels between the
tumor and control samples [27]. The Shapiro-Wilk test
was used to the expression data in order to ascertain whether
the data were normal. Using paired t-test and Wilcoxon test
on the CT data, the expression levels in tumor and control
samples were compared. The DEG analysis of the microar-
ray data was performed in RStudio (4.1.2). Based on

Table 4: List of significant upregulated genes in the ECM-receptor interaction pathway.

Symbol Rank in gene list Rank metric score Running ES

THBS2 13 1.38 0.0489

SPP1 17 1.317 0.0962

COL6A2 28 1.222 0.1396

ITGA5 54 1.079 0.1771

THBS4 62 1.045 0.2143

THBS1 130 0.86 0.2417

COMP 166 0.811 0.269

COL11A1 204 0.764 0.2945

ITGA7 212 0.753 0.3212

FN1 224 0.739 0.3472

TNC 256 0.703 0.3709

COL4A4 315 0.663 0.3917

COL6A3 367 0.629 0.4116

COL4A1 561 0.537 0.4208

COL1A2 741 0.481 0.4287

ITGA11 751 0.479 0.4455

COL5A3 765 0.476 0.4619

COL4A2 842 0.457 0.4743

COL5A1 863 0.451 0.4895

VWF 907 0.443 0.5032

SV2A 909 0.443 0.5191

COL5A2 1021 0.421 0.5284

LAMA5 1058 0.414 0.5414

SDC3 1162 0.396 0.5502

COL6A1 1174 0.393 0.5638

LAMA4 1290 0.374 0.5712

HSPG2 1382 0.361 0.5793

LAMC1 1600 0.332 0.5799

ITGA1 1713 0.319 0.5855

SV2B 1770 0.313 0.5938

TNR 1793 0.31 0.6038

COL1A1 1813 0.307 0.6138

COL3A1 1995 0.285 0.6146

LAMA2 2304 0.257 0.6076

THBS3 2416 0.248 0.6107

RELN 2423 0.248 0.6193

CD44 2458 0.245 0.6264

IBSP 2731 0.225 0.6202

TNN 2747 0.225 0.6275
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sensitivity and specificity, the recipient operating character-
istic (ROC) analysis was carried out by the GraphPad Prism
for the real-time PCR datasets. A p value of less than 0.05
was selected as the significance threshold for this study.
AUC values between 0.7 and 0.8 in the ROC analysis are
regarded as acceptable, 0.8 and 0.9 as good (signifying a
good biomarker), and 0.9 and 1 as excellent (indicating an
outstanding biomarker).

3. Results

3.1. Microarray Data Analysis. Microarray data analysis
revealed 37 upregulated genes and 60 low-expressed genes
in the GSE54129 dataset. List of top 20 up- and downregu-
lated genes is provided in Table 3. Figure 1 shows the heat-
map of top 50 DEGs. Correlation clustering method was
performed on samples and genes in this heatmap. Control
and tumor samples are completely separated in different
clusters. Also, upregulated and downregulated genes are
completely clustered. Volcano plot of all genes in GSE54129
revealed up- and downregulated genes in the dataset
(Figure 2).

3.2. GSEA. Based on GSEA, upregulated genes of GSE54129
regulate the ECM-receptor interaction signaling pathway
(Figures 3 and 4). Based on mentioned analysis, THBS2 is
the most significant upregulated gene in the ECM-receptor

LINC01215
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THBS2

BAIAP2-AS1

Figure 5: miRNA and lncRNA interaction analysis of THBS2. Based on the miRWalk database, miRNA interaction analysis was performed.
miR-4677-5p has the strongest interaction with the 3′UTR area of THBS2. In addition, lncRNAs LINC01215, TSIX, and BAIAP2-AS1 have
direct interaction with THBS2 mRNA, based on the lncRNA interaction analysis using lncRRIsearch database. However, there is no
interaction between miRNAs and lncRNAs in this network.

Figure 6: Protein-protein interaction analysis of THBS2 by
STRING online database.
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Table 5: Gene ontology analysis of THBS2 and related proteins, based on enrichr database.

Gene ontology

Term
Adjusted
p value

Genes

Cellular component

Collagen-containing extracellular matrix (GO:0062023) 0.028067617 ADAMTS1, MMP2, THBS2

Molecular function

Metalloendopeptidase activity (GO:0004222) 4 30E‐11 ADAMTSL1, ADAMTS5, ADAMTS2, ADAMTS1,
MMP2, ADAMTS12

Metallopeptidase activity (GO:0008237) 2 34E‐10 ADAMTSL1, ADAMTS5, ADAMTS2, ADAMTS1,
MMP2, ADAMTS12

Endopeptidase activity (GO:0004175) 5 03E‐08 ADAMTSL1, ADAMTS5, ADAMTS2, ADAMTS1,
MMP2, ADAMTS12

C-X3-C chemokine binding (GO:0019960) 0.013186586 ITGB1

Collagen binding involved in cell-matrix adhesion
(GO:0098639)

0.013186586 ITGB1

Cell-matrix adhesion mediator activity (GO:0098634) 0.015376688 ITGB1

Clathrin heavy chain binding (GO:0032050) 0.016462703 LRP1

Protein binding involved in heterotypic cell-cell adhesion
(GO:0086080)

0.016462703 CD47

Cell adhesion mediator activity (GO:0098631) 0.034997935 CD47

Lipoprotein particle receptor binding (GO:0070325) 0.036711163 LRP1

Chemokine binding (GO:0019956) 0.038103413 ITGB1

Cell-cell adhesion mediator activity (GO:0098632) 0.045728931 CD47

Biological process

Extracellular structure organization (GO:0043062) 3 00E‐12 ITGB1, ADAMTSL1, ADAMTS5, ADAMTS2, ADAMTS1,
MMP2, CD47, ADAMTS12

External encapsulating structure organization (GO:0045229) 3 00E‐12 ITGB1, ADAMTSL1, ADAMTS5, ADAMTS2, ADAMTS1,
MMP2, CD47, ADAMTS12

Extracellular matrix organization (GO:0030198) 2 74E‐11 ITGB1, ADAMTSL1, ADAMTS5, ADAMTS2, ADAMTS1,
MMP2, CD47, ADAMTS12

Integrin-mediated signaling pathway (GO:0007229) 4 54E‐04 ITGB1, ADAMTS1, CD47

Positive regulation of vascular-associated smooth muscle cell
proliferation (GO:1904707)

0.002549534 ADAMTS1, MMP2

Cellular response to cytokine stimulus (GO:0071345) 0.003555608 ITGB1, MMP2, CD47, ADAMTS12

Regulation of angiogenesis (GO:0045765) 0.005029385 ITGB1, ADAMTS1, THBS2

Regulation of vascular-associated smooth muscle cell
proliferation (GO:1904705)

0.005029385 ADAMTS1, MMP2

Table 6: Pathway enrichment analysis of THBS2 and correlated proteins.

Term Adjusted p value Genes

ECM-receptor interaction 4 63E‐04 ITGB1, CD47, THBS2

Malaria 0.005811118 LRP1, THBS2

Leukocyte transendothelial migration 0.019982511 ITGB1, MMP2

Phagosome 0.02639964 ITGB1, THBS2

Focal adhesion 0.031562049 ITGB1, THBS2

Proteoglycans in cancer 0.031562049 ITGB1, MMP2
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interaction pathway (FWER p value < 0.0001, rank metric
score: 1.38). THBS2 was selected for further investigation.
List of significant upregulated genes in mentioned signaling
pathway is provided in Table 4.

3.3. RNA and Protein Interaction Analysis. lncRNA-mRNA
interaction analysis by lncRRIsearch database revealed that
THBS2 has significant interaction with LINC01215, lncRNA
TSIX, and lncRNA BAIAP2-AS1. lncRRIsearch finds physi-
cal interaction of lncRNAs and mRNAs. Based on this result,
three mentioned lncRNAs could regulate the activity and
expression level of THBS2 through physical interaction with
mRNA THBS2. Also, miRNA interaction analysis revealed
that THBS2 has a significant interaction with miR-4677-5p
(score (binding probability): 1, energy: -22.5, Figure 5).
Based on this information, miR-4677-5p could suppress
the expression level of THBS2 through direct interaction
with the 3′UTR region of mRNA THBS2. Protein-protein
interaction analysis revealed that THBS2 protein has significant
protein interaction with following proteins: ADAMTS1,
ADAMTS12, ADAMTS2, ADAMTS5, ADAMTSL1, B3GALTL,
CD47, ITGB1, LRP1, and MMP2 (Figure 6).

3.4. GO and Pathway Enrichment Analyses. Pathway enrich-
ment and GO analyses were performed on mentioned pro-

teins to find the biological processes, molecular functions,
and cellular component, related to THBS2 and its interac-
tome. Based on mentioned analyses, THBS2 and its interac-
tome are located in collagen-containing extracellular matrix
(GO:0062023). Also, mentioned proteins (Figure 6) mostly
regulate metalloendopeptidase activity (GO:0004222). Fur-
thermore, mentioned genes are significantly involved in
extracellular structure organization (GO:0043062) process
(Table 5). Pathway enrichment analysis revealed that THBS2
is significantly regulated following signaling pathways:
ECM-receptor interaction, malaria, leukocyte transendothe-
lial migration, phagosome, focal adhesion, and proteogly-
cans in cancer (Table 6).

3.5. Coexpression Analysis of THBS2 with lncRNAs. Coex-
pression analysis of THBS2 and lncRNAs with ENCORI
revealed that THBS2 has no significant coexpression with
lncRNA BAIAP2-AS1 (r: 0.063, p value: 2 23E‐01), LINC01215
(r: 0.000, p value: 9 94E‐01), and TSIX (r: -0.046, p value:
3 76E‐01). However, same analyses by GEPIA2 revealed that
THBS2 expression has a significant slight positive correlation
with BAIAP2-AS1 (r: 0.11, p value: 0.03, Figure 7). However,
due to the low r-value of this correlation, demonstrated corre-
lation result needs more validations.
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Figure 7: Coexpression analysis of THBS2 and lncRNAs, based on ENCORI and GEPIA2 online databases. (a) Coexpression analysis based
on ENCORI revealed that THBS2 has no significant coexpression with BAIAP-AS1, TSIX, and LINC01215. (b) Coexpression analysis based
on GEPIA2 revealed that THBS2 has a significant coexpression with BAIAP2-AS1.
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3.6. THBS2 and lncRNAs Have Significant Upregulation in
the GC Samples. Expression analysis of THBS2 and selected
lncRNAs was performed by GEPIA2 and ENCORI online
databases. Based on mentioned analyses, THBS2 (FC: 7.14,
FDR < 0 0001), BAIAP2-AS1 (FC: 1.44, FDR: 0.018), TSIX
(FC: 1.34, FDR: 0.038), and LINC01215 (FC: 1.19, FDR:
0.046) have significant upregulation in GC samples, compared
to control (Figures 8 and 9). Furthermore, survival analysis
revealed that high expression of THBS2, LINC01215, TSIX,
and BAIAP2-AS1 has a nonsignificant correlation with low
survival rate of GC patients (HR: 0.28, logrank p: 0.28,
Figure 10).

3.7. qRT-PCR Data Analysis. For the validation of men-
tioned results, qRT-PCR experiment was performed. Based
on mentioned analysis, THBS2 (logFC: 1.719, p value:
0.0033), BAIAP2-AS1 (logFC: 3.495, p value: 0.0422), TSIX
(logFC: 2.821, p value: 0.0039), and LINC01215 (logFC:
3.119, p value: 0.0014) have significant high expression in
human GC samples, compared to control (Figure 11). Based

on the Spearman correlation analysis, THBS2 has significant
positive coexpression with LINC01215 (r: 0.5576, p value:
0.0038), TSIX (r: 0.5030, p value: 0.0104), and BAIAP2-AS1
(r: 0.6227, p value: 0.0009, Figure 12). ROC analysis revealed
that BAIAP2-AS1 (AUC: 0.7136, p value: 0.0096), TSIX
(AUC: 0.7456, p value: 0.0029), and LINC01215 (AUC:
0.7872, p value: 0.0005) could be acceptable diagnostic bio-
markers of GC (Figure 13).

4. Discussion

Our study demonstrates comprehensive novel results about
the possible roles of coding and noncoding RNAs in GC devel-
opment. Based on our investigation, lncRNAs BAIAP2-AS1,
LINC01215, and TSIX could be considered novel potential
diagnostic biomarkers of GC. Based on our bioinformatics
and experimental analyses, mentioned lncRNAs might regu-
late the expression level of THBS2, a high-expressed mRNA,
in GC patients. THBS2 and its interactome regulate the
ECM-receptor interaction signaling pathway. Previous studies
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Figure 8: Relative expression analysis of THBS2 and selected lncRNAs, based on ENCORI online database. Based on expression analysis by
ENCORI, THBS2, LINC01215, BAIAP2-AS1, and TSIX have significant high expression in GC samples, compared to control.
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approved the possible role of the ECM-receptor signaling path-
way in the regulation of progression, survival rate, and tumor-
igenesis of GC [28]. Based on our investigation, BAIAP2-AS1,

LINC01215, andTSIXmight regulate the ECM-receptor signal-
ing pathway via regulation of the THBS2 signaling pathway.
There was no previous study about the possible regulatory role
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Figure 9: Relative expression analysis of THBS2 (a), TSIX (b), LINC01215 (c), and BAIAP2-AS1 (d). Based on GEPIA2 online database,
THBS2 has a significant high expression in GC samples. Based on this database, LINC01215, BAIAP2-AS1, and TSIX have no significant
change in the GC samples.
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of mentioned lncRNAs in the ECM-receptor signaling path-
way. High expression of mentioned lncRNAs might disturb
normal processes of the ECM-receptor signaling pathway. This
disturbance may lead the normal gastric cells to malignancy.
Furthermore, based on our analyses, the expression level of
THBS2, BAIAP2-AS1, TSIX, and LINC01215 has a nonsignifi-
cant negative correlation with the survival rate of GC patients.
ROC analysis revealed that BAIAP2-AS1, LINC01215, and
TSIX could have a significant role as potential diagnostic bio-
markers of GC.

Furthermore, we demonstrate that the expression level of
THBS2 has a significant positive correlation with the expres-
sion of BAIAP2-AS1, TSIX, and LINC01215, based on the
qRT-PCR experiment. This result could validate our bioin-
formatics coexpression analyses. Also, based on our bioin-
formatics analyses, miR-4677-5p has a potential interaction
with THBS2 mRNA. Low expression of THBS2 via miR-
4677-5p could be considered a potential therapeutic method
for GC patients.

Previous studies demonstrated possible roles of noncod-
ing RNAs in different patients, including multiple sclerosis
[29], breast cancer [30, 31], and gastric cancer [32]. Previous
studies revealed some novel information about the possible
roles of BAIAP2-AS1 in different cancer types. For example,
Yang et al. in 2021 revealed that BAIAP2-AS1 might have a
regulatory role in the miR-361-3p/SOX4 competitive endog-
enous RNA (ceRNA) axis. Based on this study, mentioned
ceRNA axis could regulate the malignant progression of

hepatocellular carcinoma (HCC). The mentioned study sug-
gests that BAIAP2-AS1 has a significantly high expression in
HCC samples in the TCGA RNAseq datasets, qRT-PCR
experiment, and HCC cell lines [33]. Mao et al. in 2018
revealed that BAIAP2-AS1 could have a significant role in
the prediction of cervical cancer survival. In the mentioned
study, a high-throughput TCGA data analysis was per-
formed to evaluate the expression level of lncRNAs and the
relation of selected DEGs with the survival rate of cervical
cancer patients. Based on ROC analysis, BAIAP2-AS1 could
act as a diagnostic biomarker of cervical cancer [34]. Gong
et al. in 2016 revealed that BAIAP2-AS1 has a significant
upregulation in the hepatitis B virus-related HCC. Also,
by silencing BAIAP2-AS1 (using small interfering RNAs
(siRNAs)), it is demonstrated that BAIAP2-AS1 has a signifi-
cant role in the regulation of MAPKAP1 and RAF1, and this
lncRNA could act as a ceRNA in the HCC patients [35]. There
was no study about the possible role of BAIAP2-AS1 in GC,
and we performed this study of BAIAP2-AS1 for the first time.

Previous studies revealed the possible roles of LINC01215
in the progression of different cancers. For example, according
to Liu et al. in 2020, LINC01215 has a significant role in the sur-
vival rate of breast cancer patients (HR: 0.84, p value: 0.0001).
Furthermore, based on the mentioned study, LINC01215 has
a significant association with immune-related functions (the
result of the Pearson correlation method) [36]. Liu et al. in
2021 revealed that LINC01215 could promote lymph node
metastasis and epithelial-mesenchymal transition in ovarian
cancer. Based on this study, the downregulation of LINC01215
increases the expression level of RUNX3 through methylation
of the RUNX3 promoter [37].

Furthermore, the downregulation of LINC01215 sup-
presses tumor growth, migration, and cell proliferation of
ovarian cancer [37]. Xu et al. in 2020 revealed that
LINC01215 suppresses the growth of clear cell renal cell car-
cinoma tumors through reducing SLC2A3 expression level
via miR-184 [38]. There was no previous study about the
possible role of LINC01215 in the development of gastric
cancer. About the possible role of lncRNA TSIX in the devel-
opment of GC, Sun et al. in 2021 revealed that TSIX might
regulate the GC development via miR-320a/RAD51 ceRNA
axis. Furthermore, this study revealed that the low expres-
sion of TSIX is one of the possible causes of RAD51 down-
regulation in the mentioned ceRNA axis. This ceRNA
network simultaneously triggered the ATF6 signaling path-
way following endoplasmic reticulum stress to encourage
the death of GC cells and stop the illness. The TSIX/miR-
320a/Rad51 network offers a novel method for treating
GAC disease and may be a possible biological target of the
GC [39].

Our study demonstrates comprehensive novel results
about the possible roles of different coding and noncoding
RNAs in GC development. Based on our investigation,
lncRNAs BAIAP2-AS1, LINC01215, and TSIX could be con-
sidered novel potential diagnostic biomarkers of GC. Based
on our bioinformatics and experimental analyses, mentioned
lncRNAs might regulate the expression level of THBS2, a
high-expressed mRNA, in GC patients. THBS2 and its inter-
actome regulate the ECM-receptor interaction signaling
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pathway. Previous studies approved the possible role of the
ECM-receptor signaling pathway in the regulation of pro-
gression, survival rate, and tumorigenesis of GC [28].

In our study, we introduced a potential signature model
for gastric cancer survival prediction, including THBS2,
BAIAP2-AS1, LINC01215, and TSIX. However, our result
was not statistically significant. Based on the obtained gene
score, we suggest that same investigation through different
methods be evaluated on our 4 evaluated genes. Previous
studies revealed some potential signature models in GC.
For example, Cheong et al. at 2020 demonstrated a predictive
32-gene signaturemodel for GC using a predictive model based
on support vector machine (SVM) [40]. Another study at 2023
found a 7-gene signature model including the following genes:
CCDC91, DYNC1I1, FAM83D, LBH, SLITRK5, WTIP, and
NAP1L3. Through a similar approach to our investigation, they
demonstrated that their suggested signature model modulated

the TGF-beta signaling pathway [41]. Zhang et al. at 2021
introduced a 4-gene prognostic model for GC through a multi-
variable Cox regression analysis. Based on this article, the fol-
lowing four genes could have potential implications for the
prediction of GC: UTRN, MUC16, CCDC178, and HYDIN
[42]. However, there is no certain prediction model for GC,
and more studies and validations are needed. It is highly rec-
ommended that the expression level of miR-4677-5p be evalu-
ated by different experimental methods, like qRT-PCR.
lncRNA-mRNA and miRNA-mRNA interactions in this study
should be validated using different methods, like luciferase
assay. A possible correlation of SNPs in the THBS2 sequence
with the binding affinity of miR-4677-5p might be a perfect
method to find more accurate information about the reasons
for the high or low expression of THBS2. Since the result of
our survival analysis was not significant, we highly recom-
mend that the possible correlation of mentioned RNAs with
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Figure 11: qRT-PCR data analysis was performed using GraphPad Prism software. All statistical tests and graphs of qRT-PCR experiment
were performed and visualized using that software. Relative expression analysis of qRT-PCR data revealed that THBS2, BAIAP2-AS1, TSIX,
and LINC01215 have significant upregulation in GC samples, compared to control.
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the survival rate of GC patients be evaluated through a bigger
sample size.

5. Conclusion

In this study, we demonstrate that upregulation of THBS2,
lncRNAs BAIAP2-AS1, LINC01215, and TSIX has a signifi-
cant correlation with GC. Furthermore, for the first time,
we show that lncRNAs BAIAP2-AS1, LINC01215, TSIX,
and miR-4677-5p might regulate the expression level of
THBS2, and any disturbance in this regulatory network
might disturb the ECM-receptor interaction signaling
pathway and lead the normal gastric cells to malignancy.
Mentioned lncRNAs could be considered as the potential
diagnostic biomarkers of GC. Also, the expression level of
THBS2, lncRNAs BAIAP2-AS1, LINC01215, and TSIXmight
have a meaningful negative correlation with the survival rate
of GC patients.
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