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Background. Primary liver cancer, dominated by hepatocellular carcinoma (HCC), is one of the most common cancer types and
the third leading cause of cancer death in 2020. Previous studies have shown that liquid–liquid phase separation (LLPS) plays an
important role in the occurrence and development of cancer including HCC, but its influence on the patient prognosis is still
unknown. It is necessary to explore the effect of LLPS genes on prognosis to accurately forecast the prognosis of HCC patients
and identify relevant targeted therapeutic sites. Methods. Using The Cancer Genome Atlas dataset and PhaSepDB dataset, we
identified LLPS genes linked to the overall survival (OS) of HCC patients. We applied Least Absolute Shrinkage and Selection
Operator (LASSO) Cox penalized regression analysis to choose the best genes for the risk score prognostic signature. We then
analysed the validation dataset and evaluated the effectiveness of the risk score prognostic signature. Finally, we performed
quantitative real-time PCR experiments to validate the genes in the prognostic signature. Results. We identified 43 differentially
expressed LLPS genes that were associated with the OS of HCC patients. Five of these genes (BMX, FYN, KPNA2, PFKFB4,
and SPP1) were selected to generate a prognostic risk score signature. Patients in the low-risk group were associated with
better OS than those in the high-risk group in both the training dataset and the validation dataset. We found that BMX and
FYN had lower expression levels in HCC tumour tissues, whereas KPNA2, PFKFB4, and SPP1 had higher expression levels in
HCC tumour tissues. The validation demonstrated that the five-LLPS gene risk score signature has the capability of predicting
the OS of HCC patients. Conclusion. Our study constructed a five-LLPS gene risk score signature that can be applied as an
effective and convenient prognostic tool. These five genes might serve as potential targets for therapy and the treatment of HCC.

1. Introduction

Primary liver cancer is one of the most common cancer
types. In 2020, there were approximately 906,000 new cases
and 830,000 deaths worldwide, making it the third leading
cause of cancer death. Hepatocellular carcinoma (HCC) rep-
resents approximately 80% of all primary liver cancer cases
[1]. Many factors contribute to the development and pro-
gression of HCC, including hepatitis B virus (HBV) [2], hep-
atitis C virus (HCV) [3], alcohol addiction, and metabolic
liver disease [4]. Currently, the main treatments for HCC

include radiotherapy, chemotherapy, surgical resection, and
liver transplantation [5, 6]. Unfortunately, the prognosis of
HCC patients remains poor, due to the high heterogeneity
of HCC despite great advances in treatment over the past
decades [7]. Conventional signatures utilizing clinical
tumour-node-metastasis staging, vascular invasion, and
other parameters aid the prediction of HCC prognosis [8].
However, in the era of precision medicine, it has been diffi-
cult to adopt personalized treatment with a single indicator
or biomarker for HCC patients, since HCC is a multifacto-
rial disease. Therefore, it is necessary to develop a multi-
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indicator tool to assist clinicians in optimizing treatments
for HCC patients, thus improving their prognosis.

Eukaryotic cells coordinate numerous biochemical reac-
tions spatially and temporally. Key to such coordination is
functional compartmentalization of intracellular space.
Compartmentalization can be achieved by intracellular
membranes, which wrap around organelles and act as phys-
ical barriers [9]. However, recent reports have revealed that
the majority of cellular processes are compartmentalized in
biomolecular condensates formed by liquid–liquid phase
separation (LLPS) [10, 11]. LLPS involves different densities,
which are composed of intracellular biological macromole-
cules similar to a liquid drop, making contact and forming
a relatively closed environment under the action of driving
force to allow certain molecules in the cell to come together
and perform a certain physiological function within the cell
[12, 13]. Most research on LLPS are fairly new, but accumu-
lating evidence suggests that it is closely linked to the occur-
rence and development of cancer. It can induce the
occurrence and development of cancer in a variety of ways,
such as transcription, cell signalling, and DNA repair [14].
Chen et al. reported that circVAMP3 negatively regulates
the proliferation and metastasis of HCC cells in vitro and
in vivo by driving phase separation of CAPRIN1 [15]. Gaglia
et al. found that biomolecular condensates and LLPS of heat-
shock factor 1, a transcriptional regulator of chaperones,
affect the development of cancer [16]. Huang et al. showed
that the guanine nucleotide exchange factor Son of Sevenless
takes part in the occurrence and development of cancer
through regulating RAS signalling [17]. Others demon-
strated that LLPS of 53BP1 determines the behaviour of
DNA repair compartments and that disrupting 53BP1 phase
separation impairs 53BP1-dependent induction of p53 and
diminishes p53 target gene expression [18]. The newly
emerging principles of LLPS are expected to help people
understand the life process of cells from a new perspective.

Previous studies have shown that LLPS plays an impor-
tant role in the occurrence and development of HCC; how-
ever, its effect on the prognosis of HCC patients is still
unknown. In this study, we aimed to investigate the prog-
nostic role of the special mechanism in HCC patients and
identify relevant targeted therapeutic sites; therefore, as to
assist clinicians in personalized treatment for HCC patients
to improve their prognosis. Finally, we developed a five-
LLPS gene risk score prognostic signature to predict survival
in HCC using the The Cancer Genome Atlas-liver hepato-
cellular carcinoma (TCGA-LIHC) dataset and PhaSepDB
dataset.

2. Materials and Methods

2.1. The HCC Patient Dataset and PhaSepDB Dataset. We
obtained the RNA-seq data and clinical information of
patients with HCC from the TCGA-LIHC dataset (https://
cancergenome.nih.gov/). The following patient cases were
excluded: first, cases with no follow-up time or survival sta-
tus, and second, patients who had clinical information, but
no corresponding RNA-seq data. A total of 343 HCC
patients and 50 controls were enrolled in the study. The

343 tumour cohort were randomly divided into a training
dataset (n = 240) and a validation dataset (n = 103) in a ratio
of 7 to 3. The LLPS gene data were obtained from the Pha-
SepDB dataset (http://db.phasep.pro/). The workflow of the
analysis conducted in this study was shown in Figure 1.

2.2. Enrichment Analysis of GO Functions and KEGG
Pathways. Within the LLPS genes from the PhaSepDB data-
set, Gene Ontology (GO) functions and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis were con-
ducted using WebGestalt (WebGestalt: WEB-based GEne
SeT AnaLysis Toolkit, RRID:SCR_006786). A gene set with
P < 0:05 and false discovery rate <0.05 was classified as sig-
nificantly enriched.

2.3. Analysis of Differentially Expressed Genes Associated
with Overall Survival in HCC Patients. We first performed
log2 transformation for the expression profiles, which were
then used for differentially expressed analyses with the
“Limma” version 4.0.3 R package [19]. Genes with
|log2FC|> 2 and P < 0:05 were categorized as differentially
expressed genes (DEGs). We next performed univariate Cox
proportional hazards regression analysis to assess the rela-
tionship between the DEG expression and the overall survival
(OS) of HCC patients.

2.4. Prognostic Signature Construction. We performed the
intersection of DEGs associated with the OS of HCC
patients and LLPS genes from the PhaSepDB dataset to
obtain the best LLPS genes for the prognostic signature.
Next, we performed LASSO Cox penalized regression analy-
sis using the R package “glmnet” [20], and we selected the
genes with non-zero coefficients to build a risk score prog-
nostic signature. We calculated the risk score for each
HCC patient in the training dataset, based on the results of
LASSO Cox penalized regression analysis. Then, we divided
HCC patients into high- and low-risk groups based on the
median risk score and performed Kaplan–Meier survival
analysis.

2.5. Prognostic Signature Validation. After the risk score
prognostic signature was generated, a dataset from the
TCGA-LIHC dataset including 103 patients with complete
OS information was used as the validation dataset. First,
we performed time-dependent receiver operating character-
istic (ROC) curve analysis for the 12-, 36-, and 60-month
survival predictions using the R package “survivalROC”
[21]. Subsequently, we divided HCC patients into high-
and low-risk groups in the same way and conducted
Kaplan–Meier survival analysis to analyse the association
between the risk score prognostic signature and the OS of
HCC patients. We determined the significance of differences
in survival between the two groups with the log-rank test. All
statistical analyses were performed using the R 4.0.3, and a
two-sided P < 0:05 was considered statistically significant.

2.6. Clinical Samples Validation. To explore the biological
functions and characteristics of the genes in the prognostic
signature that we constructed, we performed quantitative
real-time PCR (qRT-PCR) experiments to validate our
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results. We collected eight pairs of tumour tissue samples
and their corresponding adjacent normal tissue samples of
patients with HCC from the First Affiliated Hospital of Nan-
chang University, Jiangxi, China. All patients included in
our study were definitively diagnosed with HCC and had
not undergone radiotherapy or chemotherapy before surgi-
cal resection treatment. When a patient after surgical resec-
tion treatment, we obtained the fresh tumour tissue sample
and corresponding adjacent normal tissue sample. The
information of patients was shown in Table 1. Total RNA
of clinical samples was extracted by using TRIzol® Reagent
(Life Technologies™, USA) and 1μg total RNA was reversed
to cDNA in 20μl reaction system with PrimeScript® RT
reagent Kit with gDNA Eraser (Takara, Japan, DRR047A).
qRT-PCR was performed by using SYBR® Premix Ex
Taq™ Tli RnaseH Plus (Takara, Japan, DRR820A) with the

QuantStudio™ 3 Real-Time PCR Instrument (Applied Bio-
systems, USA). The primer concentration used for the
qRT-PCR is 10μM. Relative messenger ribonucleic acid
(mRNA) expression levels of target genes were normalized
to GAPDH using the 2−△△CT algorithm. Every qRT-PCR
experiment was performed in triplicate and repeated three
times independently. The primers used were listed in
Table 2. This study was approved by the Ethics Committee
of the First Affiliated Hospital of Nanchang University.

3. Results

3.1. Enrichment Analysis of GO Functions and KEGG
Pathways. To understand the biological implications of
5207 LLPS genes from the PhaSepDB dataset, we performed
GO functions and KEGG pathway analyses. As shown in
Figure 2, in the KEGG analysis, we found that these genes
were enriched in signalling pathways, including RNA degra-
dation, spliceosome, mRNA surveillance pathway, and ribo-
some biogenesis in eukaryotes.

3.2. DEGs Are Associated with the Overall Survival of HCC
Patients. TCGA-LIHC contained 421 samples, including
371 patients with HCC and 50 adjacent normal liver tissues.
Of the 371 patients with HCC, enrolled in our study were
the 343 patients who had clinical information with corre-
sponding RNA-seq data. We randomly divided the 343
patients into a training dataset (n = 240) and a validation
dataset (n = 103) according to a ratio of 7 to 3. We prelimi-
narily identified 2,364 DEGs at |log2FC|> 2 and P < 0:05.
Then, we performed univariate Cox proportional hazards

Validation dataset

Validation dataset

Training dataset

2364 DEGs

433 DEGs associated
with OS

PhaSepDB Enrichment analysis of
GO and KEGG

43 liquid-liquid separation
DEGs associated with OS 

5-liquid-liquid separation
gene prognostic signature Clinical samples validation 

Figure 1: The process of constructing the five-LLPS gene risk score signature. First, 43 differentially expressed LLPS genes associated with
OS in HCC patients were identified by differential expression analysis and univariate Cox proportional hazards regression analysis. Next,
Least Absolute Shrinkage and Selection Operator (LASSO) Cox penalized regression analysis was applied to construct a gene risk score
signature for prognosis prediction. Then, the gene risk score signature was generated based on five LLPS genes (BMX, FYN, KPNA2,
PFKFB4, and SPP1). Finally, the five-LLPS gene risk score signature was validated by the validation dataset and clinical samples using
experiments.

Table 1: Information of patients included in the study.

Patient ID Histological type Gender
Age

(years)
Grade

1 Hepatocellular carcinoma Male 59 G3

2 Hepatocellular carcinoma Male 62 G2

3 Hepatocellular carcinoma Male 54 G2

4 Hepatocellular carcinoma Female 66 G2

5 Hepatocellular carcinoma Male 40 G1

6 Hepatocellular carcinoma Male 83 G2

7 Hepatocellular carcinoma Female 74 G1

8 Hepatocellular carcinoma Male 44 G2
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regression analysis for DEGs to obtain 433 DEGs associated
with the OS of HCC patients.

3.3. Construction of the Prognostic Signature. There were 43
genes in the overlapping DEGs associated with the OS of
HCC patients and LLPS genes from the PhaSepDB dataset.
We constructed a five-LLPS gene (BMX, FYN, KPNA2,
PFKFB4, and SPP1)-based risk score prognostic signature using
LASSOCox penalized regression analysis in the training dataset
(Figure 3). The risk score = −0.01833 × expression of BMX
−0.10197 × expression of FYN + 0.22152 × expression of
KPNA2+0.02634 × expression of PFKFB4 + 0.00718 × expres-
sion of SPP1. We performed time-dependent ROC curve anal-
ysis for the 12-, 36-, and 60-month survival predictions, and the
area under the curve (AUCs) for 12-, 36-, and 60-month OS
were 0.789, 0.714, and 0.704, respectively (Figure 4(a)). In addi-
tion, according to the results in Figure 5(a), the survival curve
revealed that the high-risk group exhibited a worse prognosis
than the low-risk group (P < 0:001).

3.4. The Validation of the Prognostic Signature. We used a
dataset from the TCGA-LIHC dataset including 103 patients
with complete OS information to evaluate the robustness and
effectiveness of the risk score prognostic signature. We also
performed time-dependent ROC curve analysis for the 12-,
36-, and 60-month survival predictions. The AUCs for 12-,
36-, and 60-month OS were 0.777, 0.773, and 0.705, respec-
tively (Figure 4(b)). In addition, according to the results in
Figure 5(b), the survival curve revealed that the high-risk group
exhibited aworse prognosis than the low-risk group (P < 0:001).
In summary, these results suggested a moderate sensitivity and
specificity of the risk score prognostic signature.

3.5. Clinical Samples Validation Using Experiments. Subse-
quently, we experimentally validated the genes in the risk
score prognostic signature by using eight pairs of HCC clin-
ical tissue samples. qRT-PCR results showed that the expres-
sion levels of BMX and FYN in HCC tumour tissues were
significantly lower than those in adjacent normal tissues
(Figures 6(a) and 6(b)). Moreover, the expression levels of
KPNA2, PFKFB4, and SPP1 in HCC tumour tissues were sig-
nificantly higher than those in adjacent normal tissues
(Figures 6(c), 6(d), and 6(e)). These experimental results
are consistent with the content of the risk score prognostic
signature we constructed. These results indicate that the
prognostic signature we constructed has credibility and these

genes in the prognostic signature may have corresponding
biological functions.

4. Discussion

As a new biological mechanism, the study of LLPS can be
traced back to 2009 [22]. Previous studies have suggested
that LLPS plays an important role in the emergence and
development of cancer, including HCC [23, 24]. For exam-
ple, LLPS of RIα, a PKA regulatory subunit, controls cAMP
compartmentation as well as oncogenic signalling. The loss
of RIα LLPS in cells promotes cell proliferation and induces
cell transformation in liver cancer [25]. Additionally, it is
suggested that biomolecular condensates formed by LLPS
may serve as novel therapeutic approach for cancer, since
recent evidence showed that these biomolecular condensates
influence the pharmacodynamic behaviour of small-
molecule drugs [26]. However, the effect of LLPS on the
prognosis of HCC patients is currently poorly known.

Notably, previous studies have mainly focused on life
activities within or between organelles to predict the progno-
sis of HCC patients. It seems that the influence of membra-
neless intracellular biomolecular condensates on cell life
activities and patient prognosis has been ignored. To further
investigate the prognostic role of the special mechanism in
HCC patients and identify relevant targeted therapeutic
sites, in this study, we constructed a five-LLPS gene risk
score prognostic signature of HCC patients using the
TCGA-LIHC dataset and PhaSepDB dataset to discover the
effect of LLPS genes on the prognosis of HCC patients.

The result of KEGG analysis showed that these LLPS
genes were enriched in signalling pathways, such as RNA
degradation, spliceosome, mRNA surveillance pathway,
and ribosome biogenesis in eukaryotes. A previous study
showed RNA degradation pathway plays an important role
in HCC pathogenesis [27]. Another research also demon-
strated that genes in spliceosome pathway are up-regulated
in HCC by bioinformatic analysis [28]. Our finding suggests
that the five-LLPS gene risk score signature might affect the
OS of HCC patients through these pathways.

In the training dataset, we constructed a five-LLPS gene
(BMX, FYN, KPNA2, PFKFB4, and SPP1)-based risk score
prognostic signature. BMX has been demonstrated to show
association with the progression of multiple cancers. Guo
demonstrated that BMX plays a critical role in the regulation
of hepatocyte differentiation by c-Fos activation, which

Table 2: Primers used for qRT-PCR.

Genes Forward primer (5′ to 3′) Reverse primer (5′ to 3′)
GAPDH 5′-CACCAGGGCTGCTTTTAACTCTG-3′ 5′-GATTTTGGAGGGATCTCGCTCCTG-3′
BMX 5′-CCCAGACAGAGTGCTGAAGA-3′ 5′-TTGAAGATGGTGGCTGGGAG-3′
FYN 5′-ACGAGAGGAGGAACAGGAGT-3′ 5′-CCCACCAATCTCCTTCCGAG-3′
KPNA2 5′-AATCTGCTTGGGCACTCACT-3′ 5′-AACACTGAGCCATCACCTGC-3′
PFKFB4 5′-CCTACCTCAAGTGTCCGCTG-3′ 5′-GAGATGTCCACGTTCTGAGGC-3′
SPP1 5′-ACCTGACATCCAGTACCCTGA-3′ 5′-ACGGCTGTCCCAATCAGAAG-3′
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contributes to poor survival in some cases of HCC [29]. In
addition, other studies have demonstrated that BMX can
promote the progression of prostate cancer [30] and breast
cancer [31]. FYN, a nonreceptor tyrosine kinase that belongs
to the Src family kinases [32], promotes the development
and progression of tumours and is closely related to the
prognosis of patients with various tumours [33, 34]. Jiang
demonstrated that KPNA2 is associated with early recur-
rence and poor prognosis in patients with small HCC [35].
Meanwhile, others studies demonstrated that KPNA2 knock-

down reduced the migration and proliferation capacities of
HCC cells [36]. PFKFB4 was shown to be associated with a
poor prognosis in many cancers, such as glioblastoma [37]
and bladder cancer [38]. SPP1 is concerned not only with
the occurrence and development of HCC, but also with its
poor survival [39–41]. In addition, SPP1 could promote the
progression of ovarian cancer [42] and cause poor survival
outcomes in colorectal cancer [43].

In the validation dataset, the AUCs for 12-, 36-, and 60-
month OS were 0.777, 0.773, and 0.705, respectively. In
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Figure 2: GO functional and KEGG pathway analyses. (a) Summary of the DEG and GO pathway enrichment. Red, blue, and green bars
represent the biological process, cellular component, and molecular function categories, respectively. The height of the bar represents the
number of DEGs observed in each category. (b) The top 10 pathways of the LLPS genes associated with the OS of HCC patients.
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addition, the survival curve revealed that the high-risk group
exhibited a worse prognosis than the low-risk group
(P < 0:01). These above results indicated a moderate sensi-
tivity and specificity of the risk score prognostic signature.

In addition, we validated the expression levels of these five
genes in tumour tissues and corresponding adjacent normal
tissues by qPT-PCR. We found that BMX and FYN had
lower expression levels in HCC tumour tissues, whereas
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Figure 3: Risk score prognostic signature construction using LASSO Cox penalized regression analysis along with 10-fold cross validation.
(a) LASSO coefficient profiles of the LLPS genes associated with the OS of HCC patients. (b) Partial likelihood deviance plotted versus
log(lambda). The vertical dotted line indicates the lambda value with the minimum error and the largest lambda value where the
deviance is within one standard error (SE) of the minimum.
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Figure 4: Prediction efficiency of the five-LLPS gene risk score signature evaluated using ROC curves. (a) The ROC curves are shown for the
risk score signature in the training dataset. (b) The ROC curves are shown for the risk score signature in the validation dataset.
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high-risk groups in the validation dataset.
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Figure 6: qRT-PCR of eight pairs of tumour tissues and adjacent normal tissues from patients with HCC. (a) Relative gene expression of
BMX. (b) Relative gene expression of FYN. (c) Relative gene expression of KPNA2; (d) Relative gene expression of PFKFB4. (e) Relative
gene expression of SPP1. *P < 0:05; **P < 0:01; ***P < 0:001; and ****P < 0:0001.
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KPNA2, PFKFB4, and SPP1 had higher expression levels in
HCC tumour tissues. These results reveal meaningful biolog-
ical functions of these genes in HCC, and suggest that these
genes play an important role in the development and pro-
gression of HCC. All these validation results indicated that
the risk score prognostic signature we constructed had good
accuracy and credibility.

We constructed risk score prognostic signature using
LLPS genes, different from the previous prognostic sig-
natures. To our knowledge, this is the first time that
LLPS genes have been used to construct the prognostic
signature of HCC patients. Our prognostic signature
suggests the potential of targeting LLPS therapeutically
for cancer intervention. Meanwhile, with increasing
studies on the mechanism of LLPS, the effect of LLPS
genes on the prognosis of HCC patients will be more
clearly understood.

In a word, our study constructed a novel five-LLPS
gene risk score signature for HCC prognosis prediction
based on the TAGA-LIHC dataset and PhaSepDB dataset.
Our signature might reflect the effect of LLPS genes on the
prognosis of HCC patients and suggest the possibility that
LLPS genes may serve as a new therapeutic target for can-
cer intervention.

There are some limitations in our study. First, our study
is a retrospective study, and its conclusions are not as pow-
erful as those of prospective studies. Additionally, the sam-
ple size of the training dataset and validation dataset in
this study was small, which may have led to some unavoid-
able deviations. Finally, we only analysed the LLPS genes
from the PhaSepDB dataset without other LLPS gene data-
sets in our study, which might contribute to our conclusions
not being sufficient. To make the conclusions more reliable,
it is necessary to include more LLPS gene datasets for further
analysis.
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