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Mesenchymal–epithelial transition (MET) factor is a proto-oncogene encoding tyrosine kinase receptor with hepatocyte growth
factor (HGF) or scatter factor (SF). It is found on the human chromosome number 7 and regulates the diverse cellular
mechanisms of the human body. The impact of mutations occurring in the MET gene is demonstrated by their detrimental
effects on normal cellular functions. These mutations can change the structure and function of MET leading to different
diseases such as lung cancer, neck cancer, colorectal cancer, and many other complex syndromes. Hence, the current study
focused on finding deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) and their subsequent impact on
the protein’s structure and functions, which may contribute to the emergence of cancers. These nsSNPs were first identified
utilizing computational tools like SIFT, PROVEAN, PANTHER-PSEP, PolyPhen-2, I-Mutant 2.0, and MUpro. A total of 45359
SNPs of MET gene were accumulated from the database of dbSNP, and among them, 1306 SNPs were identified as non-
synonymous or missense variants. Out of all 1306 nsSNPs, 18 were found to be the most deleterious. Moreover, these nsSNPs
exhibited substantial effects on structure, binding affinity with ligand, phylogenetic conservation, secondary structure, and post-
translational modification sites of MET, which were evaluated using MutPred2, RaptorX, ConSurf, PSIPRED, and MusiteDeep,
respectively. Also, these deleterious nsSNPs were accompanied by changes in properties of MET like residue charge, size, and
hydrophobicity. These findings along with the docking results are indicating the potency of the identified SNPs to alter the
structure and function of the protein, which may lead to the development of cancers. Nonetheless, Genome-wide association
study (GWAS) studies and experimental research are required to confirm the analysis of these nsSNPs.

1. Introduction

Mesenchymal–epithelial transition (MET) factor gene, which
is also called c-MET, is a proto-oncogene that encodes a
receptor tyrosine kinase for hepatocyte growth factor (HGF)
or scatter factor (SF). It belongs to the MNNG HOS (N-
methyl-N′-nitroso-guanidine human osteosarcoma) trans-
forming gene family and is situated on human chromosome
number 7 (7q21–q31) [1, 2]. The MET gene is 125kb long,
which comprises 21 exons and 20 introns, encoding a protein

whose size is around 120kDa [2]. The MET protein encoded
by this gene is a single chain precursor of 1390 amino acid
residues. Following the translation process, the MET protein
is transferred to the cell apparatus, i.e., the Golgi reticulum,
and goes through the glycosylation process [3].

The extracellular and intracellular portions of MET pro-
tein contain several domains. HGF binding to MET protein
has an effect on receptor dimerization and phosphorylation
of tyrosine residues of the protein, which eventually leads
to the phosphorylation of intracellular docking sites [4].
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MET gene stimulation prompts composite signaling pro-
cesses that rely on the cellular environment and generates
a range of responses related to cells [5]. This signaling path-
way aids in various biological mechanisms like wound heal-
ing, hepatic regeneration, embryonic, neuronal, and muscle
development. Still, disturbance in MET signaling pathways,
due to any kind of alterations or mutations, intervenes cell
proliferation, cell death, and migration and is involved in
several malignancies [4]. The overexpression or activation
of MET receptor, due to mutations, has been associated with
the expansion of several human cancers, comprising carci-
nomas, sarcomas, hematopoietic malignancies, melanomas,
and also central nervous system tumors [5].

Single-nucleotide polymorphisms (SNPs) are the most
prevalent type of genetic alteration or mutation, affecting a
single base pair in alleles in one or more individuals [6]. A
subgroup of SNPs occurs in protein coding regions of the
genome, and the non-synonymous single nucleotide poly-
morphisms (nsSNPs) or missense variants, which result in
an amino acid change at the protein level, are particularly
relevant from a medical perspective [7]. Thus, nsSNPs are
of specific interest as candidates for further evaluation [6].
A major challenge in modern sequencing studies is high-
lighting missense variants for further experimental analysis
[8]. The ability to computationally distinguish between path-
ogenic and benign variants could assist in the selection of
prospective contenders from a group of data for targeting
disease-causing mutations [7].

A concentrated comprehension of how MET gene acti-
vation manages tumor development will need additional
investigation utilizing 3D molecular configurations, cell cul-
ture systems, human tumors, and also animal prototypes.
With the help of these combined techniques, and also with
novel medications targeting MET gene, shortly, the impact
of MET on tumorigenesis will be recognized and may be
controlled in a better way [5]. Correlating the various
nsSNPs with their phenotypic features utilizing wet labora-
tory techniques can be perplexing. Identifying the functional
nsSNPs from the large pool of data using wet laboratory
techniques could be awkward. Most of the bioinformatics
algorithms make their calculations based on sequence, struc-
ture, physicochemical, and evolutionary conservation to
identify the deleterious nsSNP. These in silico-based model-
ing help to clarify the different properties of the protein mol-
ecules, for detailed information on the conformational
changes of the protein [9]. They can control many more var-
iables much more specifically within a short time than wet
laboratory experiments, which enable researchers to explore
the different components in various ways within the shortest
possible time. Moreover, large datasets, which would be dif-
ficult or impossible for people to manually analyze by hand,
may include patterns that bioinformatics has the ability to
identify. In the case of SNPs analysis, more than 2 million
SNPs have been documented by the SNP consortium [10,
11], and the total number is estimated to be >10 million
[12], which is quite impossible to test the subsequent effects
of those SNPs on their corresponding genes in a web lab set-
ting. Thus, bioinformatics will allow us to screen the potentially
damaging ones and then confirm their effects in vivo conditions,

which will eventually lead to the saving of time and money.
Moreover, it can be time-consuming to figure out where a test
went wrong in the wet lab setting. Even if a failed test may not
be the fault of a specific technician, it nonetheless adds to every-
one’s effort. Trying to figure out when, where, or how exactly
went wrong can be quite irritating.

This study aims to determine and evaluate the effects of
deleterious nsSNPs on the structure, function, and other var-
ious properties of MET gene, which can eventually lead to
oncogenesis. The major intents of this research work are to
identify and analyze the most deleterious nsSNPs of MET
gene. Earlier the effects of oncogenic mutation on isocitrate
dehydrogenase 1 [13], the impact of point mutation P29S
in RAS-related C3 botulinum toxin substrate 1 [14], the role
of T315I in BCR-ABL1 protein [15], effects of point muta-
tion (R482W) in lamin A/C protein for laminopathy [16],
and the impact of deleterious nsSNPs on human POLD1
gene [17] have been revealed using computational analysis.
Bioinformatics analysis is not merely utilized in the deleteri-
ous mutation prediction rather it can further be expanded to
the screening of suitable anticancer drugs [18, 19].

In the present study, the nsSNPs or missense variants
were acquired from the SNP dataset of MET gene for ana-
lyzing their functional and structural effects of them. The
most deleterious nsSNPs were identified and analyzed their
impacts on normal properties of MET. Different types of
computational tools, which are now broadly involved with
identifying missense mutations, were utilized for the ample
identification and analysis of damaging nsSNPs in this
research work. In previous different studies, these tools were
utilized, which helped us in selecting a research workflow
synchronized with these tools. They were widely used for
the first inspection of prospective candidates in many other
research experiments related to mutation analysis [20, 21].
Each tool used in this study has the ability to provide a
score-based outcomes, which can ultimately point out dele-
terious mutations with better prediction efficiency than
other available computational tools.

2. Materials and Methods

The damaging effect of non-synonymous mutations in the
structure and function of the MET protein was predicted
and evaluated using various bioinformatics tools. An outline
of the computational approaches used in this study is illus-
trated in Figure 1.

2.1. Data Collection. All data about the MET gene were col-
lected from a web-based source, National Centre for Bio-
technology Information (NCBI) (https://www.ncbi.nlm.nih
.gov/). The comprehensive dataset of SNP mutations of the
MET gene was retrieved from the dbSNP database of NCBI
(https://www.ncbi.nlm.nih.gov/snp/). The protein sequence
(P08581) of MET gene was retrieved from UniProtKB data-
base (https://www.uniprot.org/).

2.2. Functional Analysis

2.2.1. Screening of Deleterious nsSNPs. Only the missense
mutations or nsSNPs from the total SNPs of the MET gene
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Figure 1: Schematic outline of the protocol.
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were retrieved from the dataset of SNP mutations of the
MET gene for screening tolerated and deleterious nsSNPs,
among which tolerated nsSNPs were excluded from the
analysis. This screening was done by the following computa-
tional tools.

(1) Sorting Intolerant from Tolerant. Sorting Intolerant from
Tolerant (SIFT) is a web-based tool (https://sift.bii.a-star.edu
.sg/) [22] that analyzes the effect of an amino acid substitu-
tion on the protein function. It evaluates the data based on
the physical properties of amino acids and sequence homol-
ogies of the protein sequence [21]. SIFT server aids in link-
ing the divergence between mutations and phenotypic
alterations [22]. This program can also be able to differenti-
ate between neutral and deleterious mutations, which can
have an effect on protein function [23]. The estimated out-
put values of SIFT server are normally in the range between
0 and 1, while “0” indicates damaging and “1” indicates neu-
trality. The reference sequence identities (rsIDs) of nsSNPs
were submitted in this server for the prediction of functional
changes of amino acids.

(2) Protein Variation Effect Analyzer. Protein Variation
Effect Analyzer (PROVEAN) is an online tool (http://
provean.jcvi.org/) [24] for the prediction of the functional
outcomes of amino acid alternatives [21]. It can make estima-
tions for numerous amino acid changes such as substitutions,
insertions, and deletions, along with single amino acid
changes by means of a similar fundamental estimation pattern
[24]. The PROVEAN server is centered on a cut-off value
which is −2.5. The PROVEAN server includes three primary
tools and these are PROVEAN protein, PROVEAN protein
batch, and PROVEAN genome variants [25]. The input
(FASTA sequence of protein and amino acid variations) was
submitted in the PROVEAN protein tool of this server.

2.2.2. Predicting Functional Effects of nsSNPs. The functional
consequences of these nsSNPs of MET gene accumulated
from dbSNP–NCBI database were analyzed by two in silico
tools, i.e., PolyPhen-2 and PANTHER-PSEP server.

These tools will determine the damaging effects of non-
synonymous mutations.

(1) Polymorphism Phenotyping v2. Polymorphism Phenotyp-
ing v2 (PolyPhen-2) server is an acclaimed bioinformatics
tool (http://genetics.bwh.harvard.edu./pph2/) [26], which is
used for determining the damaging effect of missense or
non-synonymous mutations. An iterative greedy algorithm
nominated eight sequences and three structure-based analyt-
ical attributes routinely, which were then utilized by the
PolyPhen-2 server [26]. The FASTA sequence of protein or
protein identifier of the MET gene was submitted in this
server followed by the submission of the position of the
amino acid substitution. The particular amino acid residues
were put in apposite boxes, whereas wild type residue in
AA1 and mutant residue in AA2.

(2) PANTHER-PSEP. PATHER-position-specific evolution-
ary preservation, version 17.0 (PANTHER-PSEP) is a

web-based tool (http://www.pantherdb.org/tools/csnpScoreForm
.jsp) [27], which is used for the prediction of damaging mis-
sense or non-synonymous mutations [27]. The prediction
of this server is based on the position of amino acid varia-
tions with a particular value of evolutionary conservation,
which is estimated from the sequence alignment of various
evolutionary-linked proteins [28]. FASTA sequence of pro-
tein and amino acid substitutions was submitted in the
PANTHER-PSEP server for the prediction of the damaging
effect of substitutions.

2.3. Protein Stability Analysis. The missense or nsSNPs can
change the stability of the protein, which directly has an
effect on protein function. So, it is essential to evaluate the
effects of changing the stability of deleterious mutations
[20]. Hence, to analyze the protein stability change, two
web-based tools were used in this study and these are
I-Mutant 2.0 and MUpro.

2.3.1. I-Mutant 2.0. I-Mutant 2.0 web server (https://folding
.biofold.org/i-mutant/i-mutant2.0.html) is a standard pro-
grammed tool that is developed on the basis of support vec-
tor machine (SVM) and used for the evaluation of effects of
protein stability changes for missense or non-synonymous
mutations [29]. This online tool is usually applied to analyze
the insignia of stability alterations of protein and the
involvement of ΔΔG values upon missense mutation [20].
To predict the protein stability changes, the protein
sequence (P08581) of the MET gene was submitted in this
server followed by position and new amino acid residue after
mutation.

2.3.2. MUpro.MUpro (http://mupro.proteomics.ics.uci.edu/,
MUpro 1.1) is an online tool that is used for predicting sta-
bility changes of protein upon mutations [30]. It is an SVM
tool that can able to predict protein stability changes for sin-
gle site amino acid mutations contingent on protein
sequence and/or structural attributes based on ΔΔG values
[21]. The protein sequence of MET gene was acquiesced
followed by submission of substitution position with wild
residue and mutant residue in apposite boxes.

2.4. Predicting Effects of nsSNPs on Structure and Function of
Protein. Primarily, for characterizing mutations to analyze
complex diseases, bioinformatics methods have been devel-
oped, which can identify the impact of pathogenicity of
mutations by predicting statistical effects of nsSNPs on
structure and function of protein. MutPred2 (MutPred 2.0)
is a computational tool (http://mutpred.mutdb.org/) that
advances the positioning of pathogenic nsSNPs over prevail-
ing approaches, can generate mechanisms involved with
potentially causative of ailment, and proceeds pathogenicity
score on specific genomes [31]. The FASTA sequence of
MET gene with 18 deleterious amino acid substitutions
was submitted to the MutPred2 server.

2.5. Phylogenetic Conservation Analysis. The phylogenetic or
evolutionary conservational score of an amino acid
extremely influences the structure and function of a protein.
This type of attribute of proteins is essential for interpreting
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the mutations that have a deleterious effect [21]. Hence, for
the analysis of phylogenetic conservation, an in silico tool
ConSurf was used. ConSurf server (https://consurf.tau.ac.il/
) [32] is an online tool that is broadly used tool for exhibiting
functional regions in macromolecules through the scrutiny
of evolutionary conservation of amino acids or nucleotides
substitutions based on the phylogenetic relationship among
homologous sequences [32]. It estimates the conservation
score within the range of 1–9 on the basis of the evolutionary
proportion of sites by means of the empirical Bayesian or
maximum likelihood (ML) approach [20]. To analyze the
phylogenetic conservational scale of the deleterious nsSNPs
within MET protein, the FASTA sequence of the protein
was submitted to the ConSurf server.

2.6. Detecting the Presence of Deleterious nsSNPs in
Secondary Structure. Secondary structures of proteins are
considered native structural attributes that are alleviated
through hydrogen bonds on the backbone and are also
regarded as the linking networks between primary sequences
and tertiary structures of proteins [33]. The two-phase neu-
ral network has been utilized to analyze secondary structures
of proteins on the basis of position-specific scoring system
formed by Position-Specific Iterated BLAST (PSI-BLAST)
[34]. Hence, to predict the secondary structure of a protein,
a web server PSIPRED or PSI-BLAST-based secondary
structure prediction (http://bioinf.cs.ucl.ac.uk/psipred/)
[34] is usually used. This server assimilates two feed-
forward neural networks, which can carry out an investiga-
tion on predicted results acquired from PSI-BLAST [35].
The FASTA sequence of the protein was entered on the
server to predict the secondary structure of MET protein.

2.7. Presence in Functional Domain. Functional domains of a
protein can be predicted using a database named Pfam
(https://pfam.xfam.org/) [36]. Pfam is a vast database that
includes families and domains of proteins that are generally
utilized to evaluate novel genomes and to monitor investiga-
tional operation on certain proteins [36]. It comprises mul-
tiple sequence alignments, along with profile hidden
Markov models (profile HMMs), for uncovering these func-
tional domains in new sequences of proteins [37]. The acces-
sion or protein ID was entered in this server for revealing the
functional domains of the protein.

2.8. Prediction of Post-Translational Modification Sites. Post-
translational modifications (PTMs) imply amino acid
change with the addition of various side chains in proteins.
These changes or modifications occur because of essential
governing procedures to manage various cellular activities.
Hence, PTMs have a major influence on the structure and
function of proteins. Interference in these PTM sites can
direct the disturbance of important biological mechanisms,
which can cause several diseases [38]. In this study, Musite-
Deep server (https://www.musite.net/) [39] was used for
predicting PTM sites. MusiteDeep is an online tool that
can generate a conventional deep-learning framework for
the prediction and visualization of PTM site of protein
[39]. The FASTA sequence of MET protein was submitted

to the server for predicting the various PTM sites of MET
protein.

2.9. Analyzing Effects of nsSNPs on Ligand Binding Sites. The
interfaces between proteins and ligands ensue through
amino acid residues at particular sites of the protein, which
are generally positioned in pocket-like regions. These
regions are known as ligand binding sites. The ligand bind-
ing sites have enormous importance in the fields of molecu-
lar dynamics, molecular docking, and drug designing. That’s
why the prediction of binding sites is essential for discover-
ing the intermolecular procedures as well as for understand-
ing the pathogenicity of diseases [40]. In this research work,
RaptorX-Binding web server (http://raptorx.uchicago.edu/
BindingSite/) [41] was used for predicting ligand binding
sites. RaptorX server is an online platform for the prediction
of secondary structure, structure modeling, quality evalua-
tion, and also alignment sampling [41]. On the other hand,
RaptorX-Binding, a version of RaptorX, is a bioinformatics
tool that can predict the ligand binding sites of a protein
based on a 3D model structure with multiplicity value con-
figured by RaptorX [42]. The sequence of MET protein
was entered on the server as input for predicting ligand
binding sites.

2.10. Analyzing Impacts of nsSNPs on Protein Properties. To
predict the effects of deleterious nsSNPs on the properties of
protein such as residue size, charge, hydrophobicity, structure,
etc., HOPE (https://www3.cmbi.umcn.nl/hope/, version 1.1.1)
server was used [43]. HOPE server can construct an instinc-
tive mutant scrutiny platform, which can give a conception
of the structural effects of a mutation [42]. The protein
sequence or accession number was entered followed by the
submission of mutant residue with the position.

2.11. Homology Modeling. PyMOL software (PyMOL 2.5)
was used for the homology modeling of variants of MET
protein. For modeling of the variants, the structure of the
MET protein (Figure 2) (PDB ID 6GCU) was acquired from
Protein Data Bank (PDB) database (https://www.rcsb.org/)
[44].

2.12. Predicting Effects of MET Mutant Complexes on
Binding Affinity. Molecular docking is used to demonstrate
the interaction between receptor and ligand molecules to
analyze the effects of mutant complexes on binding affinity
with their ligands. In this study, PatchDock (https://
bioinfo3d.cs.tau.ac.il/PatchDock/) [45] server was used for
docking purposes. This server intends to find docking alter-
ations, which can acquire superior molecular shape comple-
mentarity [45]. For molecular docking, MET protein and its’
mutant variants were entered as receptor molecules, and
NK1 and NK2 dimer of HGF [46] were entered as ligand
molecules in the PatchDock server. Clustering Root-mean-
square deviation (RMSD) was set at 4.0, and complex type
was set as default. After docking, FireDock (Fast Interac-
tion Refinement) (https://bioinfo3d.cs.tau.ac.il/FireDock/)
server was used for refinement. It marks the flexibility
problem and solutions scoring generated by rigid body
docking systems [47].
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2.13. Analyzing Networking of MET with Other Genes. Gene
Multiple Association Network Integration Algorithm (Gene-
MANIA) is a web tool (https://genemania.org/) that uncovers
other genes associated with a set of genes that are submit-
ted as input, expending a very large set of functional asso-
ciation data. These data comprise protein and genetic
interactions, pathways, co-expression, co-localization, and
also protein domain similarity [48]. It is an adaptable,
accessible web platform for producing assumptions about
gene function, scrutinizing gene lists, and arranging genes
for functional tests [49]. The related gene name (MET)
was entered into this server as input.

2.14. Predicting Interactions of MET with Other Proteins.
Search Tool for the Retrieval of Interacting Genes (STRING)
is an online database (https://string-db.org/, version 11.5)
that combines gene–gene and/or protein–protein interac-
tions into a network frame, with interfaces has their score
of confidence [50]. The protein network encompasses high
confidence interactors with scores ≥0.700 to avoid false neg-
atives and false positives. Protein sequences were submitted,
and the “minimum required interaction score” was set at
“High confidence” (0.700).

2.15. Predicting Effects of MET Deregulation on the Survival
Rate of Different Cancer Patients. The Kaplan–Meier Plot
(https://kmplot.com/analysis/) [51] is an online tool that

estimates the time of death, and this event may have a sub-
stantial inference while using these analytics for clinical deci-
sions, medical policies, and also resource provision [52].
This plot is able to perform proportional survival analysis
utilizing the data produced by genomic, transcriptomic, or
proteomic investigations [51]. The prediction of the compre-
hensive survival rate of various types of cancer patients, i.e.,
lung, breast, ovarian, and gastric cancer, was done with MET
gene dysregulation. The survival analyses of cancer patients
were run against 1925, 4929, 1435, and 875 lung, breast,
ovarian, and gastric cancer patients, respectively. The affy-
metrix ID was 217828_at for plot analysis.

3. Results

3.1. Retrieval of nsSNPs from dbSNP Database. A total of
45359 SNPs were obtained from the dbSNP database of
NCBI. The obtained SNPs contain different variations.
Among the 45359 nsSNPs, 1306 missense or non-synony-
mous, 571 synonymous, 2672 non-coding transcripts, 2956
coding transcripts, 520 3-prime UTR regions (Untranslated
region), 478 5-prime UTR regions, 43163 intron, 5768 genic
downstream transcript, 8653 genic upstream transcript, and
other variants were found (Figure 3; Supplementary File 1).

3.2. Analyzing Functional Impacts of nsSNPs

3.2.1. Prediction of Deleterious nsSNPs in MET

(1) Sorting Intolerant from Tolerant. The SIFT server postu-
lates that the amino acids that are significant for protein
function will be conserved and so then modifies at specific
positions that are likely to be determined as deleterious
mutations [23]. It estimates the possibility of an amino acid
substitution at a specific position of the protein sequence.
The estimated output values are normally in the range
between 0 and 1, while “0” indicates a highly damaging
mutation, and “1” indicates neutrality of mutation. If the
values are less than 0.05, then the mutation is predicted to
be deleterious but if the values are greater than 0.05, then
the mutation is predicted to be tolerated [53]. The predicted
deleterious nsSNPs usually have SIFT score of ≤0.05, and
tolerated nsSNPs have SIFT score of ≥0.05. A total of
1306 missense or non-synonymous mutations were ana-
lyzed for the prediction of functional consequences using
the SIFT server. Among the 1306 mutations, 164 nsSNPs
gave the result. According to the result, 55 and 109 nsSNPs
were predicted as “deleterious” and “tolerated”, respectively
(Figure 4; Supplementary File 2). These 164 nsSNPs were
determined by the tolerating index of SIFT server that
ranges between 0 and 1, which indicates damaging and tol-
erated nsSNPs. But the other nsSNPs did not give values of
the tolerating index of SIFT, which prevent them from
showing prediction.

(2) Protein Variation Effect Analyzer. PROVEAN server uti-
lizes the principal sequence of the protein and its sequence
homologies, which are investigated by dint of BLAST in
NCBI database. The prediction of PROVEAN is based on a
scoring system where the cut-off value is −2.5 [54]. On the

Figure 2: 3D Structure of MET protein (PDB ID: 6GCU).
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basis of this scoring system, amino acid substitution with
PROVEAN score less than −2.5 will be determined as a del-
eterious mutation, while PROVEAN score greater than −2.5
will be determined as a neutral mutation [25]. Deleterious
mutations have a ≤−2.5 score, and neutral mutations have
a ≥−2.5 score in the prediction by PROVEAN server.
According to this PROVEAN scoring scale, 39 and 125
nsSNPs were found as deleterious and neutral, respectively,
among the 1306 missense mutations (Figure 4; Supplemen-
tary File 2).

3.2.2. Prediction of Functional Consequences of nsSNPs

(1) Polymorphism Phenotyping v2. The PolyPhen-2 server
accomplishes the prediction on the basis of a number of pro-
tein sequences, phylogenetic, and structural characteristics
distinguishing amino acid substitutions. It extricates several
sequences and structural attributes of amino acid substitu-
tions and analyzes the probability of their damaging effect
[55]. PolyPhen-2 server includes HumVar and HumDiv
datasets that are based on naïve Bayes classifier administered
by machine learning, where mutations are sorted as “proba-
bly damaging”, “possibly damaging”, or “benign” [42]. The
predictive result of this server consists of a score ranging
from zero to a positive number, while zero indicates the neu-
trality of amino acid substitutions, and a positive number
indicates the damaging effect of mutations [56]. After the
analysis of 164 amino acid substitutions in this server, two
datasets (HumDiv and HumVar) with different mutations
were found. In HumDiv dataset, 98 “damaging” (75 proba-
bly damaging and 23 possibly damaging) and 66 “benign”
mutations were found, while, in HumVar dataset, 80 “dam-
aging” (63 probably damaging and 17 possibly damaging)

and 84 “benign” mutations were found (Figure 4; Supple-
mentary File 3).

(2) PANTHER-PSEP. PANTHER-PSEP utilizes a metric-
related arrangement, which is distinct from evolutionary
preservation, whereas the potential sequences of proteins
from the ancestral source at joints of a phylogenetic tree
are restructured on the basis of homologous proteins [42].
It can construct a range of outcomes, while the most expedi-
ent being the possibility of a particular variant with a delete-
rious effect [56]. The PSEP result was generally categorized
as “probably damaging”, “possibly damaging”, and “proba-
bly benign”, consequent to a false positive rate. After the
exploration of 164 amino acid substitutions in this web
server, three types of outcomes were found, i.e., 126 “damag-
ing” (73 probably damaging and 53 possibly damaging) and
38 “probably benign” mutations (Figure 4; Supplementary
File 4).

These two datasets of outcomes of PolyPhe-2 and
PATHER-PSEP servers are distinguishable on the basis of
their possible outcomes. PolyPhen-2 produces two different
datasets based on a scoring system with sequences and struc-
tural attributes, whereas PATHER-PSEP constructs a range
of outcomes on the basis of homologous proteins of a phylo-
genetic tree.

3.3. Prediction of Deleterious nsSNPs Based on
Protein Stability

3.3.1. I-Mutant 2.0. The functionality of I-Mutant 2.0
depends on Gibbs free energy value (ΔΔG) of the protein
[57]. I-Mutant 2.0 web server estimates the stability of the
protein upon amino acid mutation by scrutinizing the Gibbs
free energy or ΔΔG value, whereas ΔG (mutant pro-
tein)—ΔG (wild protein) in kcal/mol, which is evaluated at
pH −7 and 25°C temperature [20]. The predicted positive
value determines that the mutant protein has higher stabil-
ity, while the negative value denotes that the mutant protein
has lower stability. The outcomes of I-Mutant 2.0 are usually
to be either increased or decreased value of Gibbs free energy
upon amino acid mutations [57]. After analyzing 164 amino
acid substitutions in this server, 147 nsSNPs were found
with decreased stability, where ΔΔG value is negative or less
than “0” and 17 nsSNPs were with increased stability, where
ΔΔG value is positive or greater than “0” (Figure 5; Supple-
mentary File 5).

3.3.2. MUpro.MUpro server can evaluate stability changes of
protein by utilizing information related to sequence or com-
bined information of sequence and tertiary structure. The pre-
dicted value of Gibbs free energy or ΔΔG is similar to I-Mutant
2.0 server [42]. If the score acquired from MUpro server is less
than “0” or negative, then the substitution decreases the struc-
tural stability of the protein, but if the score is greater than “0”
or positive, then the substitution increases the structure stability
[21]. In this analysis, among 164 nsSNPs, 159 nsSNPs were
found with decreased stability (ΔΔG value less than “0”), and
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Figure 3: SNP types in MET.
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5 nsSNPs were found with increased stability (ΔΔG value
greater than “0”) (Figure 5; Supplementary File 5).

Among 1306 nsSNPs, only 164 nsSNPs gave prediction.
After analyzing these 164 nsSNPs with the above six servers
(SIFT, PROVEAN, PolyPhen-2, PANTHER-PSEP, MutPred2,
I-Mutant 2.0, MUpro), only 18 nsSNPs were identified as the
most deleterious mutations (Supplementary File 6) because
they were predicted to decrease the protein stability and alter
the function and thus can induce a deleterious effect on the
encoded protein.

These 18 deleterious nsSNPs then went through structural
analysis by utilizing the prominent in silico tools (ConSurf,
PSIPRED, Pfam, MusiteDeep, RaptorX, and Project HOPE).

3.4. Prediction of Structural and Functional Effects of nsSNPs.
MutPred2 server predicts molecular pathways associated
with a pathogenic amino acid substitution [58]. It groups a
mutation as pathogenic or neutral using a machine-
learning-based technique. The MutPred2 prediction is based

on the scoring system where the cutoff value of probability is
0.5. When the MutPred2 score of probability is greater than
0.5, the mutation will be determined as pathogenic, but
when the MutPred2 score of probability is less than 0.5,
the mutation will be determined as neutral [59]. Here,
MutPred2 predicted the effects of the 18 selected nSNPs on
the structure and function of the protein that includes loss
of helix, loss of phosphorylation, gain of strand, gain of allo-
steric site, gain/loss of N-linked glycosylation and sulfation,
altered transmembrane protein, altered metal binding and
DNA binding, gain of relative solvent accessibility, and
altered ordered interface (Supplementary File 7).

3.5. Assessment of Phylogenetic Conservation of Deleterious
nsSNPs. The phylogenetic conservation analysis of amino
acids imparts a better interpretation of the importance of
a specific amino acid residue and its evolutionary struc-
ture [60]. The conservation score on a scale of 7–9 is
deemed to be conserved, but scores on a scale of 4–6
and 1–3 are contemplated to be average and variable,
correspondingly [21]. Conservational analysis of the
MET protein has been accomplished by means of the
ConSurf tool, and the estimated conservational score
revealed that the maximum amino acids of the MET pro-
tein are located in the highly conserved region. The pre-
dicted result of 18 deleterious nsSNPs showed that 11
residues were on the scale of “9”, 2 residues were on
the scale of “8”, 2 residues were on the scale of “7”, 2 res-
idues were on the scale of “6”, and 1 residue was on the
scale of “5”. Since the highly damaging mutations are
usually found in highly conserved regions, then the 11
residues with the score of “9” were perceived to be highly
conserved with extreme damaging effects (Figure 6; Sup-
plementary File 8).

3.6. Predicting Effects of nsSNPs on the Secondary Structure of
MET. Secondary structures of MET protein were predicted
using the PSIPRED server based on PSI-BLAST. The predicted
sequence outline revealed the arrangement of alpha helix,
beta sheet, extracellular, and coil structures. After the
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analysis of 18 amino acid substitutions by PSIPRED server,
three different types of secondary structures were found.
Among the 18 residues, 6 (33.33%) were predicted as “coil”,

6 (33.33%) were predicted as “helix”, and 6 (33.33%) were
predicted as “extracellular” structures (Figure 7; Supple-
mentary File 9).

Figure 6: Phylogenetic conservation analysis by ConSurf server.
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3.7. Effects of Deleterious nsSNPs on Functional Domains of
MET. Pfam database revealed the domains of MET protein
upon the submission of the protein ID of MET. Six domains
of MET protein were found and these domains were
arranged between 317–493, 519–562, 563–654, 657–738,
742–833, and 1078–1337 amino acid residues, correspond-
ingly (Table 1). Among the 18 deleterious mutations, 14
nsSNPs were uncovered in these predicted functional
domains.

3.8. Predicting Impacts of nsSNPs on PTM Sites. The Musite-
Deep server predicts PTM sites by using only protein
sequences as input material and it results from a real time
estimation for several proteins. The outcome is displayed
at the level of amino acid residue for the various selected
PTM sites [39]. This server predicts the PTM sites that have
the possibility of transpiring due to the occurrence of highly
damaging mutations in the MET protein. Phosphorylation is
one of the fundamental forms of PTM sites and also the
mostly analyzed PTM, which occurs usually in serine (S),
threonine (T), and tyrosine (Y) residues [38]. Since phos-
phorylation is the most important PTM, the phosphoryla-
tion sites of the MET protein were analyzed in this server.
In this PTM analysis, 21 amino acid residues were found
in phosphorylation sites with a score greater than 0.5. But
only one amino acid residue (Y1230) was found with phos-
phorylation, which was associated with highly deleterious
nsSNPs among these 21 residues (Supplementary File 10).

3.9. Predicting Effects of Deleterious nsSNPs on Binding Sites
of MET. The RaptorX server is different from other web
servers by the value of the alignment amid a target protein
sequence and distantly linked template proteins and also
by a non-linear scoring system [41]. In this server, the mul-
tiplicity value is used as one of the conditions to predict the
ligand binding sites of the protein. The multiplicity value of
a pocket greater than 40 implies the accuracy of the pre-
dicted pocket [42]. After analyzing MET protein in the
RaptorX-Binding server, four domains were found in total.
The server found a sum of eight binding pockets based on
its binding with different ligands. In the RaptorX-Binding
server, the multiplicity value is used as one of the scoring
systems to predict the ligand binding sites of the protein.
This scoring value helps to determine the accuracy of pre-
dicted binding sites. In this assessment, only one residue
M1131 (M1131T) was found under pocket 3 among the
highly damaging 18 substitutions, and this residue was asso-
ciated with M97 ligand and the multiplicity value was 97
(Table 2).

3.10. Predicting of Effects of Deleterious nsSNPs on Protein
Properties. The HOPE server analyzed the effects of highly
damaging nsSNPs on the properties of MET protein. In this
study, 18 deleterious nsSNPs of MET were analyzed by this
server based on different properties such as size, charge,
hydrophobicity, etc. Among these 18 substitutions, nine
mutants were found bigger than wild residues, while seven
mutants were found smaller than wild residues. Further-
more, seven substitutions were less hydrophobic than wild

types, whereas five substitutions were more hydrophobic
than wild types. Besides, two mutations (P239R, H1094R)
turned neutral to positively charged, while one mutation
(G757E) turned neutral to negatively charged. On the other
hand, three substitutions (D1228N, D340G, and D1180N)
turned negatively charged to neutral (Supplementary
File 11).

3.11. Modeling of Variants of MET Protein. For homology
modeling of proteins, six variants (L238S, A320V, P239R,
A364T, D340G, and T222M) were selected because these var-
iants were among 18 highly damaging residues. None of these
lies in the binding pockets of MET gene as predicted by
RaptorX-Binding site server. However, earlier experiments
confirmed that 25–519 residues of MET protein are sufficient
for binding HGF/SF, while 567–932 residues increase the
binding affinity [61]. All these six SNPs were within the range
of 25–519 residues and thus indicated a high possibility to
affect the binding capacity. These six protein variants were
modeled by creating mutations in the wild-type protein struc-
ture of MET using PyMOL software. The modeled structures
of six mutant proteins were shown in Figure 8.

3.12. Analysis of Binding Affinity of Mutant Complexes. To
analyze the effect of mutations on the structure and functions
of MET protein, molecular docking analysis was carried out
with these two specific NK1 and NK2, which are variants of
HGF. Fourteen complexes were utilized and these are 2 native
complexes (MET-NK1 and MET-NK1) and 12 mutant com-
plexes (L238S-NK1, L238S-NK2, A320V-NK1, A320V-NK2,
P239R-NK1, P239R-NK2, A364T-NK1, A364T-NK1, D340G-
NK1, D340G-NK2, T222M-NK1, and T222M-NK2) for this
analysis. PatchDock server was used for calculating binding
energy and FireDock server for further refinement. Comparing
the binding energy of native between mutant complexes, the
mutant A364T-NK1 complex showed the weakest binding
affinity with a binding energy of 6.31 when assessed with native
and other mutant complexes (Table 3). This analysis confirmed
that the mutant complex can show the least binding interaction
than the native complex on the basis of their deleterious effect.

3.13. Analysis of Effects of Deleterious Mutations on Other
Genes. GeneMANIA is a large collection of interaction net-
works from several data sources which identify genes and
networks that are functionally associated [62]. This server
analyzed the gene–gene interactions of MET by forming net-
working with other related genes. The GeneMANIA predic-
tion of MET gene has shown that MET gene has interaction
with other 20 different genes whose functions may be ham-
pered as a result of mutation (Figure 9), and the detailed
interaction data is provided in Supplementary File 12.

3.14. Analysis of Effects of Deleterious Mutations on Other
Proteins. Protein–protein interactions were investigated to
interpret all functional interactions among cellular proteins
[52]. The STRING database prediction showed that MET
protein has interaction with other 10 proteins (Figure 10,
Table 4) whose functions also might be interrupted by these
mutations. It exhibited that MET protein interacts with 10
different proteins comprising HGF, growth factor receptor-
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bound protein 2 (GRB2), tyrosine–protein phosphatase non-
receptor type 11 (PTPN11), GRB2-associated-binding protein
1 (GAB1), S100 calcium-binding protein A8 (S100A8), SHC-
transforming protein 1 (SHC1), casitas B-lineage lymphoma
(CBL), cell surface adhesion receptor (CD44), catenin beta 1
(CTNNB1), and cadherin 1 (CDH1).

3.15. Correlation of MET Deregulation with Various Types of
Cancers. The clinical analysis discovered several consequences
of MET gene deregulation in various kinds of cancers, i.e., lung,
breast, ovarian, and gastric cancer. According to the results of

the clinical investigation through Kaplan–Meier, MET gene
deregulation was correlated with the survival rate of lung and
gastric cancer patients. The expression curves in the lungs
and gastric cancer plot had significant distances which defined
the association of MET deregulation with the survival rate of
cancer patients. But the expression level of both breast and
ovarian cancer does not affect the survival rate of patients, since
both of the expression curves were overlapped (Figure 11).
Therefore, the deregulation of MET was predicted to be corre-
lated more with lung and gastric cancer patients, which means
they have less survival rate.

Figure 7: PSIPRED sequence plot of MET.

Table 1: Functional domains predicted by Pfam.

Family
name

Family
description

Entry
type

Start
position

End
position

E-value Amino acid substitutions

Sema Semaphorins Domain 317 493 3:9 × 10−15 A320V, D340G, A364T

PSI Plexin repeat Domain 519 562 0.19

TIG Ig-like fold Domain 563 654 3:7 × 10−10

TIG Ig-like fold Domain 657 738 4:2 × 10−10

TIG Ig-like fold Domain 742 833 6:5 × 10−5 G757E

PK Tyr
Ser-Thr

Receptor
tyrosine kinase

Domain 1078 1337 1:6 × 10−89 H1094R, H1094Y, M1131T, S1141L, D1180N, V1188L, L1195V,
D1228N, Y1230H, and T1261A
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Table 2: Ligand binding sites predicted by RaptorX.

Domain Pocket Multiplicity Ligand Binding residues
Deleterious
nsSNPs

1
1 63 ALQ P51 Q53 N54 T67 I116 N117 M118 S135 L180 A182 K248 S487 G507

2 15 UNX H61 V81 H150 T151 A152

2 3 97 M97
I1084 V1092 A1108 K1110 E1127 M1131 L1140 L1157 P1158 Y1159 M1160 K1161

G1163 D1164 R1208 N1209 M1211 A1221 D1222 F1223
M1131T

3

4 77 BMA S663K665

5 76 NAG S663 T676 T678G679 I706

6 72 MAN K665 L674T676 S771

7 17 GAL Y666 G667 G672 T673 L674 D824

4 8 79 DA D866 P867 E868 S889

M97: 1-[(3R,4R)-4-(1H-indol-3-yl)-2,5-dioxopyrrolidin-3-yl]pyrrolo[3,2,1ij]quinolinium; ALQ: 2-METHYL-PROPIONIC ACID; BMA: beta-D-mannopyranose; NAG:
2-acetamido-2-deoxy-beta-D-glucopyranose; MAN: alpha-D-mannopyranose; GAL: beta-D-galactopyranose; DA: 2′-DEOXYADENOSINE-5′-MONOPHOSPHATE.
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Figure 8: Homology modeling of (a) L238S variant, (b) A320V variant, (c) P239R variant, (d) A364T variant, (e) D340G variant, and (f)
T222M variant of MET protein.
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4. Discussion

The tertiary structure of a protein determines its function,
hence any alteration to its amino acid sequence has the
potential to alter the protein’s structure and cause disease.
The MET receptor with its ligand HGF synchronizes a range
of functions of cells, where many cellular functions can be
disturbed in human cancers. Disturbance in the MET signal-
ing pathway can direct cellular movement and scattering,
angiogenesis, proliferation, invasion, and eventually to
metastasis [63]. Using various tools and algorithms, bioin-
formatics analysis enables us to anticipate the structural
and functional impact of SNPs on a protein. In this study,
the main focus was on the determination and evaluation of
the effects of deleterious nsSNPs on the encoded protein of
MET gene.

This analysis commenced with the separation of 1306
missense or nsSNPs from the 45359 SNPs of MET gene col-
lected from the dbSNP database of NCBI. Then the MET pro-
tein sequence, accumulated from the UniProtKB database for
conducting further analysis to identify the deleterious nsSNPs
in MET gene. The functional and structural changes in pro-
tein occurred due to highly damaging nsSNPs, which were
identified from the results acquired from various servers. At
first, functional analysis of nsSNPs was carried out by some
prominent computational tools, i.e., SIFT, PROVEAN, Poly-
Phen-2, and PANTHER-PSEP. In SIFT server, 55 deleterious
and 109 neutral mutations were found among the total 164
amino acid substitutions, which have given the SIFT result.
While in the PROVEAN, 39 and 125 mutations showed a del-
eterious and neutral effect on protein, respectively. On the
other hand, PolyPhen-2 server showed two datasets of results,
these are 98 and 66 damaging and benign mutations, respec-
tively, in HumDiv dataset, whereas 80 and 84 damaging and
benign mutations, respectively, in HumVar dataset. The
PANTHER-PSEP server displayed 126 damaging and 38
benign mutations among 164 substitutions. Afterward, struc-
tural stability changes of MET protein were analyzed because

the protein stability has a significant effect on the function
and activity of proteins. Here, I-Mutant 2.0 and MUpro server
were used for the prediction of stability changes of MET. In
the I-Mutant 2.0 server, 147 mutations with decreased stabil-
ity and 17 mutations with increased stability were found.
While in the MUpro server, 159 and 5 mutations with
decreased and increased stability, respectively, were found.
But cautiousness should be maintained while analyzing the
substitutions on the basis of ΔΔG. Even a substitution with
a ΔΔG value except zero can cause substantial changes in
the protein according to the comparative values of ΔG and
ΔΔG [64]. An amino acid substitution that directs to a small
extent of ΔΔG value may not cause prominent structural
changes in a protein with a large ΔG value. Moreover, a few
damaging mutations can be alleviated, which specifies that
estimating pathogenicity via a particular method is very unre-
liable [65].

Then the results obtained from the above six servers
were analyzed and compared, which eventually assorted 18
potentially deleterious mutations for MET protein. These
18 deleterious mutations went through the remaining six
servers, i.e., MutPred2, ConSurf, PSIPRED, Pfam, Musite-
Deep, RaptorX, and Project HOPE for further structural
scrutiny. The MutPred2 predicted the statistical significance
of nsSNPs on the structure and function of MET protein,
where different characteristics of deleterious nsSNPs were
revealed. The ConSurf server determined the conservational
score of the MET protein for different amino acid residues,
where 11 residues with score 9, 2 residues with score 8, 2 res-
idues with score 7, 2 residues with score 6, and 1 residue
with score 5. In conservation analysis, score 9 denotes highly
conserved amino acid, and score 1 denotes the least con-
served or variable amino acid. The highly conserved residue
is predicted to be a highly damaging residue. The PSIPRED
server estimated three types of secondary structures among
the 18 deleterious substitutions, whereas six residues with
coil structure, six residues with helix, and six residues with
extracellular structure. After that, Pfam database showed
six functional domains of MET protein upon submission
of the protein accession number. The MusiteDeep server is
able to predict the PTM sites, where only one amino acid
residue (Y1230) as phosphorylation site in the prominent
PTM sites among the 18 deleterious nsSNPs, which signifies
the alteration in PTMs of MET protein due to Y1230H sub-
stitution. Then the RaptorX-Binding server determined the
possible ligand binding sites of the MET protein. Any kind
of change or variation at the ligand binding site of the pro-
tein can neutralize or reduce the activity of the protein.
Among the 18 mutations, only one substitution (M1131T)
was found in the binding sites of MET protein.

Since, the mutations can cause alterations in size,
charge, and hydrophobicity of residue, which may lead to
disruption of protein structure and interactions. The
HOPE server can compare the wild and mutant residues
based on different properties of the protein. From the result
of HOPE, nine residues were bigger than the wild and
seven residues smaller than the wild type; two positively
charged, one negatively charged, and three neutral; seven
residues were less hydrophobic; and five residues were

Table 3: Docking analysis of native and mutant complexes.

Protein (receptor) Ligand Global binding energy

Native MET receptor
NK1 −4.00
NK2 −8.41

Mutant A238S
NK1 −4.00
NK2 −8.41

Mutant A320V
NK1 −0.60
NK2 −8.41

Mutant P239R
NK1 −4.00
NK2 −8.41

Mutant A364T
NK1 6.31

NK2 −8.41

Mutant D340G
NK1 −4.00
NK2 −8.41

Mutant T222M
NK1 −4.00
NK2 −11.86
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more hydrophobic than the wild type among 18 deleterious
substitutions.

The first 519 amino acid residues of MET protein are
essential for HGF or SF binding, which comprises the first
212 amino acid residues of the beta (β) chain. Hence, it is
feasible that the HGF or SF binding site is confined within
this protein sequence. Within the longest structures, the
strongest binding affinity was detected, but the binding
affinity of 25–519 residues and 25–567 residues was easily
assessable. On the other hand, 567–932 exhibited no bind-
ing affinity. As a result, the N-terminal portion of the MET
ectodomain (25–519) is adequate for binding with HGF or
SF, while the C-terminal part (567–932) has no binding affinity,
but stimulates the binding affinity to the N-terminal portion
(25–519). Therefore, after the structural analysis, six variants
(L238S, A320V, P239R, A364T, D340G, and T222M) among
18 deleterious variants of MET protein were selected for
homology modeling through PyMOL software, because MET
protein has shown strong binding affinity between 25–519 res-
idues. The modeled mutant variants then went through molec-
ular docking via PatchDock and FireDock servers for analyzing
the binding affinity of native and mutant complexes. The

Physical interactions

Co-expression

Co-localization

Pathway

Genetic interactions

Shared protein domainsPredicted

Figure 9: Interaction of MET gene with other genes.

Figure 10: Protein–protein interaction network of MET protein.
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mutant complex A364T-NK1 with 6.31 binding energy showed
the least binding interaction than native and other mutant
complexes. This assessment showed that the mutant complexes
can show the least binding interactions than native complexes
on the basis of their deleterious effect. On the other hand, sim-
ilar in silico analysis of the HGF gene revealed that five nsSNPs

(D358G, G648R, I550N, N175S, and R220Q) of the HGF are
the most deleterious that hinder MET–HGF interaction [66].

The gene–gene interactions analyzed by GeneMANIA
server showed the networking of MET with other related
genes, whereas the protein–protein interactions by STRING
database revealed connections of MET with other proteins.

Table 4: List of interacting proteins with their corresponding scores.

Interacting proteins Full form of the proteins Interacting scores

HGF Hepatocyte growth factor 0.999

CDH1 Cadherin-1 0.999

CBL E3 ubiquitin–protein ligase CBL 0.999

GRB2 Growth factor receptor-bound protein 2 0.999

GAB1 GRB2-associated-binding protein 1 0.998

SHC1 SHC-transforming protein 1 0.996

CTNNB1 Catenin beta-1 0.994

CD44 CD44 antigen 0.993

PTPN11 Tyrosine–protein phosphatase non-receptor type 11 0.989

S100A8 Protein S100-A8 0.987

Figure 11: Clinical analysis of MET in (a) lungs, (b) breast, (c) ovarian, and (d) gastric cancer.
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These interactions demonstrate the significant alteration in
functions and activity of other different networked proteins
because of these deleterious nsSNPs of MET. However, the
result of Kaplan–Meier Plot investigation specified that the
MET gene deregulation can be regarded as a substantial
diagnostic way in prognostic tool for identifying lung and
gastric cancers patients because the plot showed less survival
rate for them. This also revealed that the sex or gender-
specific cancer’s (such as ovarian and breast cancers that
are common among females) survival percentage is not
influenced by the deregulation of the MET gene. Consider-
ing that the deleterious nsSNPs of MET have a major influ-
ence on the structure and function of MET protein, they can
affect the normal cellular functions in MET dysregulation.
Among the identified 18 deleterious nsSNPs, most nsSNPs
have no existing literature. Only 5 (H1094R, H1094Y,
D1228N, Y1230H, and L1195V) of 18 deleterious nsSNPs
have been found associated with resistance mechanisms to
MET kinase inhibitors, which ultimately affects cancer treat-
ments [67, 68]. The findings of this study showed that 5 of
18 deleterious nsSNPs were associated with cancer develop-
ment and resistance mechanisms of cancer drugs. This com-
parative analysis of the findings of this research validated the
outcomes and justified these nsSNPs being deleterious.

In this research work, the mutations or variations found
in MET gene were explored and screened, which may have
detrimental effects on human normal cellular functions, pre-
ceding different cancers, and other diseases. Since laboratory
experiments on mutations require a huge time and labor,
this computational study was carried out to identify the most
deleterious mutations, for further research purposes. How-
ever, none of these predicted deleterious nsSNPs were found
to be well studied in the broad spectrum. All the computa-
tional tools have shown us simply the predicted results.
Yet, the sophistication of these algorithms solely depends
on raw experimental data. The downstream structural and
functional analysis may be faulty as a result of unreliable
and inaccurate raw data. Hence, it is advised to employ a
number of tools and come to a decision by comparing the
outcomes of these tools. Furthermore, some computational
tools may not be usable over time or developed with newer
versions, which can make the experimental outcomes less
specific. Also, several in vitro and in vivo studies should be
used in the laboratory to validate the outcomes of the bioin-
formatics analysis.

5. Conclusion

Since the alterations due to non-synonymous mutations in
MET gene have a negative effect on human cellular func-
tions and can cause diverse types of cancers in humans,
the whole screening of these mutations was required. The
present study focused on the analysis of the detrimental
effects of deleterious nsSNPs or mutations in MET. Eighteen
most deleterious nsSNPs were detected in MET among
45359 SNPs for further practical field application in research
intent. The effects on binding affinity also imply that muta-
tion prompts changes in wild type proteins. The altered struc-
ture and function of MET protein can lead to dysregulated

activities of the MET gene, which was further supported
by the docking results that may induce complex diseases.
Along with this, changes in structural stability can alter
the conformation and other properties of proteins con-
cerning cancer. These nsSNPs may have implications for
treatment approaches and personalized medicine, and
they may be employed in future experimental research
to examine how they contribute to the pathophysiology
of associated diseases.
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