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Objective. This study aimed to explore the genes regulating lymph node metastasis in colorectal cancer (CRC) and to clarify their
relationship with tumor immune cell infiltration and patient prognoses. Methods. The data sets of CRC patients were collected
through the Cancer Gene Atlas database; the differentially expressed genes (DEGs) associated with CRC lymph node
metastasis were screened; a protein–protein interaction (PPI) network was constructed; the top 20 hub genes were selected; the
Gene Ontology functions and the Kyoto Encyclopedia of Genes and Genomes pathways were enriched and analyzed. The Least
Absolute Shrinkage and Selection Operator (LASSO) regression method was employed to further screen the characteristic
genes associated with CRC lymph node metastasis in 20 hub genes, exploring the correlation between the characteristic genes
and immune cell infiltration, conducting a univariate COX analysis on the characteristic genes, obtaining survival-related
genes, constructing a risk score formula, conducting a Kaplan–Meier analysis based on the risk score formula, and performing
a multivariate COX regression analysis on the clinical factors and risk scores. Results. A total of 62 DEGs associated with CRC
lymph node metastasis were obtained. Among the 20 hub genes identified via PPI, only calcium-activated chloride channel
regulator 1 (CLCA1) expression was down-regulated in lymph node metastasis, and the rest were up-regulated. A total of nine
characteristic genes associated with CRC lymph node metastasis (KIF1A, TMEM59L, CLCA1, COL9A3, GDF5, TUBB2B,
STMN2, FOXN1, and SCN5A) were screened using the LASSO regression method. The nine characteristic genes were
significantly related to different kinds of immune cell infiltration, from which three survival-related genes (TMEM59L, CLCA1,
and TUBB2B) were screened. A multi-factor COX regression showed that the risk scores obtained from TMEM59L, CLCA1,
and TUBB2B were independent prognostic factors. Immunohistochemical validation was performed in tissue samples from
patients with rectal and colon cancer. Conclusion. TMEM59L, CLCA1, and TUBB2B were independent prognostic factors
associated with lymphatic metastasis of CRC.

1. Introduction

Colorectal cancer (CRC) is one of the most common diges-
tive system tumors in the world. It is estimated that there

would be 1.93 million new cases of CRC worldwide,
accounting for 10.0% of the total cancer incidence and rank-
ing third in the order of cancer incidence [1]. Its incidence
rate also suggests an upward trend among patients under
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the age of 50 years [2]. The postoperative disease-free survival
(DFS) of patients under the age of 40 years is significantly
lower than that of patients over the age of 40 years [3]. It
has been shown that cancer cells of CRC can enter lymphatic
vessels, migrate to tumor-draining lymph nodes, grow into
lesions in the lymph nodes, and even escape the lymph nodes
to spread to other organs [3]. In CRC, the presence of cancer
cells in tumor-draining lymph nodes defines stage III disease
[4, 5]. For colon cancer, the 5-year survival for patients with
stage II (no lymph node metastases) is 79.2–82.5%, in con-
trast to 59.5–65.4% for patients with stage III disease [6, 7].
The lymph node metastasis of CRC is related to tumor recur-
rence and overall survival (OS) [8], which is an important
marker of tumor progression. Appropriate biomarkers asso-
ciated with lymph node metastasis may help identify CRC
patients at a high risk of recurrence [9]. The incidence of
lymph node metastasis in CRC is influenced by many factors,
including the stage and location of the tumor, the patient’s
age, and the presence of lymphatic, venous, and perineural
invasion [10, 11]. Whether the tumor features lymph node
metastasis connected with the activation of the “metastasis
genes” or the inhibition of the “metastasis suppressor genes”
of the primary lesion. The signal pathway involved in metas-
tasis is expected to become a therapeutic target for anti-tumor
metastasis [12]. In recent years, with molecular tumor target-
ing and biotherapy as the starting point, it is possible to find
target proteins and regulated signal pathways that can be
related to the occurrence and development of tumors to
achieve better therapeutic effects [13]. Qin et al. [14] discov-
ered that the drug anlotinib can inhibit lymphangiogenesis
and lymph node metastasis in patients with lung cancer by
inhibiting the phosphorylation of VEGFR-3. Shifting our
attention to CRC, Yang et al. [15] identified FSTL3 as a bio-
marker associated with extracellular matrix (ECM) remodel-
ing and poorer clinical outcomes in CRC. They also suggested
FSTL3 as a potential immunotherapeutic target for prevent-
ing lymph node metastasis in CRC. Furthermore, Yinhang
et al. [16] uncovered an intriguing link between CRC lymph
node metastasis and intestinal bacteria, proposing a predic-
tion model based on intestinal bacteria as a new evaluation
method. Despite these breakthroughs, the complex mecha-
nisms underlying lymph node metastasis in CRC remain
largely unclear. Identifying the genes and signal pathways
linked to lymph node metastasis will help provide new thera-
peutic targets for CRC treatment and provide effective bio-
markers for predicting the prognosis of patients. Through a
bioinformatics analysis, this study looks for the genes that
may lead to lymph node metastasis in CRC patients and dis-
cusses the relationship between them and immune cell infil-
tration, in a bid to provide new ideas regarding the clinical
treatment of CRC lymph node metastasis.

2. Materials and Methods

2.1. Data Sources. The gene expression and clinical data
analyzed in this study were sourced from The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/),
which included 476 CRC patients consisting of 281 patients

without lymph node metastasis and 195 patients with
lymph node metastasis.

2.2. Acquisition of Differentially Expressed Genes in Lymph
Node Metastasis. The patients were divided into the lymph
node metastasis group and the non-lymph node metastasis
group. The differentially expressed genes (DEGs) in the
lymph node metastasis group and non-lymph node metasta-
sis group were analyzed using the R language limma package
[17]. The filter conditions were set as logFCfilter = 1 and
fdrFilter = 0.05, and the heatmap and volcano map of the
DEGs were plotted.

2.3. Protein–Protein Interaction Network Construction and
Hub Gene Screening. To define the role of DEGs proteins
at the level of the biological network system, the obtained
DEGs were imported into the String protein–protein inter-
action (PPI) database (String, https://cn.string-db.org/) to
carry out a PPI analysis, the medium confidence= 0.400 sets
to hide the isolated nodes and the protein data exported to
build a global network of component target-disease target
PPI; PPI data with an interaction score ≥0.40 was taken for
network visualization, and the Cytohubba plug-in in the
Cytoscape 3.8.0 software was employed to obtain the top
20 genes as hub genes to analyze the expression differences
of the hub gene between the lymph node metastasis group
and the non-lymph node metastasis group.

2.4. Enrichment Analysis. The ClusterProfiler [18] and
DOSE [19] package in the R language were utilized to per-
form Gene Ontology (GO) functions and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway enrichment
analysis on DEGs to obtain the signal pathways related to
CRC lymph node metastasis hub genes.

2.5. Screening of the Characteristic Genes Associated with
Lymph Node Metastasis and the Relationship between
Characteristic Genes and Immune Cell Infiltration. Following
the approach used by Wu et al. in their research [20], we uti-
lized the Least Absolute Shrinkage and Selection Operator
(LASSO), a regression analysis algorithm that leverages reg-
ularization to select characteristic genes from the 20 hub
genes. The features related to the classification results may
be selected, and the R language glmnet package [21] is used
for a LASSO regression analysis to further screen the charac-
teristic genes associated with lymph node metastasis from
the 20 hub genes. The proportions of each type of immune
cell in each sample were estimated using the CIBERSORT
algorithm, a robust computational method that employs a
deconvolution approach to infer cell type proportions from
bulk tissue gene expression profiles. This process involves
utilizing the characteristic gene expression levels in each
sample and applying a signature matrix of gene expression
for 22 immune cell subtypes, as provided by Newman et al.
[22]. Following the estimation of immune cell proportions,
Spearman’s correlation analysis was utilized to determine
the relationship between the characteristic genes of lymph
node metastasis and immune cell infiltration. The correla-
tion matrix was plotted with the abscissa for genes and the
ordinate for immune cells, and the range of the correlation
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coefficient is set to [−1, 1] with the negative values for negative
correlations and the positive values for positive correlations.
When p < 0:05, the differences are statistically significant.

2.6. Construction and Validation of the Prognosis Prediction
Model. A uni-factor COX analysis was performed on the
characteristic genes of lymph node metastasis. The genes
with p < 0:05 were used as the survival-related genes; a risk
score formula was constructed based on those survival-
related genes. The patients were divided into a high-risk
group and a low-risk group according to the median risk
scores for a Kaplan–Meier analysis. The metric used to
assess survival was OS. A Log-Rank test was utilized to com-
pare the differences in the survival curves between the two
groups. The SurvivalROC package [23, 24] in the R language
was adopted to verify the predictive efficacy of the survival-
related genes on OS through the area under the curve (AUC)
value of the receiver operating characteristic curve (ROC).

2.7. Immunohistochemical Staining. Formalin-fixed, paraffin-
embedded (FFPE) sections (5μm thickness) from rectal can-
cer and colon cancer were used for immunohistochemical
staining experiments. Sections were stained with TMEM59L
antibody (ab105417, 2.5μg/ml, Abcam, Cambridge, UK),
calcium-activated chloride channel regulator 1 (CLCA1)
antibody (MAB10766, 5μg/ml, R&D systems, Minneapolis,
MN, USA), TUBB2B antibody (sc-47751, 5μg/ml, Santa
Cruz, Dallas, TX, USA). A digital camera was used to cap-
ture images of stained sections. The expression of CLCA1,
TUBB2B, and TMEM59L in the tissue samples was evalu-
ated and quantified based on the percentage of positive
cells. The number of positive cells was visually evaluated
as follows: 0 (negative), <5% positive cells; 1 (weak), 6–
25% positive cells; 2 (moderate), 26–50% positive cells; 3
(above moderate), 51–75%; and 4 (strong), >76% positive
cells [25, 26].

2.8. Ethics Statement. Experiments using patient specimens
(provided by the Department of Colorectal Surgery, Tianjin
Union Medical Center, Nankai University, Tianjin, China),
were approved by the Institutional Ethics Committee. Writ-
ten informed consent was obtained from all patients.

2.9. Statistical Analysis. Statistical analysis was performed
with the SPSS 20.0 or GraphPad Prism version 8.0. All
values were represented as the mean± SD. The unpaired
two-tailed t-test was used for the in vitro study and one-
way analysis of variance was used for in immunohistochem-
istry (IHC) study. A two-sided p < 0:05 was considered sta-
tistically significant (*p < 0:05; N.S. p > 0:05).

3. Results

3.1. Analysis of the DEGs of CRC Lymph Node Metastasis
and Non-Lymph Node Metastasis. A total of 62 DEGs were
obtained between the CRC lymph node metastasis and non-
lymph node metastasis, including 4 down-regulated genes
(green points) and 58 up-regulated genes (red points;
Figure 1(a)). We grouped according to lymph node metastasis

(N0 and N1–N3) and performed the heatmap analysis show-
ing different expression genes (Figure 1(b)).

3.2. PPI Network Construction. A PPI network was con-
structed based on 4 down-regulated genes and 58 up-
regulated genes. The medium confidence =0.400 was set to
hide isolated nodes, and a total of 30 nodes were obtained
(Figure 2(a)). The top 20 hub genes were obtained using
the Cytohubba plug-in in the Cytoscape 3.8.0 software
(Figure 2(b)).

3.3. Expression of the Hub Gene in the CRC Tissues with and
without Lymph Node Metastasis. According to the presence
of lymph node metastasis, TCGA samples were divided into
a lymph node metastasis group and a non-lymph node
metastasis group. The expression of the 20 hub genes
between the two groups was observed. The results indicated
that among the 20 hub genes, only CLCAI expression was
down-regulated in lymph node metastasis, whereas the rest
were up-regulated (Figure 3).

3.4. GO Analysis and KEGG Analysis of the Hub Genes. GO
analysis results (Figures 4(a), 4(b), and 4(c)) showed that these
20 hub genes play an important role in the formation of the sar-
coplasmic reticulum, the regulation of postsynapse organization
and transmembrane transporter binding. The KEGG analysis
results (Figure 4(d)) suggested that these 20 hub genes play
important roles in the “Circadian entrainment,” “ECM–recep-
tor interaction,” and “Protein digestion and absorption”.

3.5. Screening of the Characteristic Genes of Lymph Node
Metastasis and Analysis of the Relationship between the
Characteristic Genes and Immune Cell Infiltration. A LASSO
regression analysis was performed on the 20 hub genes from
the CRC patient cohort, and 9 characteristic genes associated
with lymph node metastasis were screened, including
KIF1A, TMEM59L, CLCA1, COL9A3, GDF5, TUBB2B,
STMN2, FOXN1, and SCN5A (Figure 5(a)). The analysis
showed that the nine characteristic genes were linked to
immune cell infiltration (Figure 5(b)).

3.6. Prediction Model. A uni-factor COX analysis was per-
formed on the characteristic genes of lymph node metastasis,
and three survival-related genes (p < 0:05) were obtained,
including TMEM59L, CLCA1, and TUBB2B (Figure 6(a)).
The risk score formula score = (0.3110)×TMEM59L
+ (−0.0886)×CLCA1+ (0.1521)×TUBB2B was obtained.
The patients were divided into a high-risk group and a
low-risk group according to the median risk score for the
Kaplan–Meier survival analysis. The results showed that
the survival time of the high-risk patients was significantly
lower than that of the low-risk patients (p < 0:001;
Figure 6(b)). The AUC values of the 1-, 3-, and 5-year sur-
vival times predicted by the model were 0.600, 0.628, and
0.737 (Figure 6(c)). Risk score, survival time, and survival
status were shown in the TCGA dataset, the risk scores from
low to high, the survival time and survival status corre-
sponding to the risk scores of different samples; and the gene
expression in the prognostic model (Figure 6(d)). Further-
more, a multi-factor COX regression analysis of the risk

3International Journal of Genomics



Down
Not
Up

0

2

4

−5.0 −2.5 0.0 2.5 5.0

logFC

−l
og

10
 (f

dr
)

(a)

UGT2B7
KIR2DL4
CLCA1
PTGDR
TCHH
HEPHL1
FGF3
FOXN1
TNNC1
WNT7A
C6orf15
UPK2
CDK5R2
FEV
USH1G
SFTA2
ALPP
ACP7
NTSR1
SLC13A5
GALNT14
IGLON5
WIF1
COL9A3
COL2A1
GABRA3
ISM2
KRT40
VWA5B1
AIRE
STMN2
SLC27A6
PCP4L1
RPRM
TUBB2B
THSD7B
PRL
PCDHB6
TCEAL5
PCSK2
PHOX2B
NOS1
SEMA3E
SLITRK3
STUM
GDF5
ATP1A2
LDB3
SYNM
MYH11
HAND1
GPM6A
TCEAL2
ECRG4
TMEM59L
NPTX1
STXBP5L
EEF1A2
RIMS4
KIF1A
SCN5A
CAMK2B

Type

Type

N0

N1−3

−10

−5

0

5

10

(b)

Figure 1: DEGs analysis of whether CRC is involved in lymph node metastasis. (a) Volcano map of mRNA differential expression between
CRC lymph node metastasis and non-lymph node metastasis in the TCGA dataset. (b) Heatmap of differentially expressed mRNA in the
TCGA dataset (red: up-regulation; blue: down-regulation).
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score, tumor stage, age, and gender indicated that the risk
score could be used as a prognostic factor independent of
other clinical factors (Figure 6(e)).

3.7. TMEM59L, CLCA1, and TUBB2B Predicting Lymph
Node Metastasis of CRC. In light of these observations and
analysis in TCGA data, we hypothesized that TMEM59L,

CLCA1, and TUBB2B may be the disease markers for lymph
node metastasis of CRC. To test our hypothesis, we per-
formed immunohistochemical staining on FFPE tissue sec-
tions from rectal cancer (Figure 7(a)) non-lymph node
metastasis group (n = 15), lymph node metastasis group
(n = 15), and colon cancer (Figure 7(b)) non-lymph node
metastasis group (n = 15), lymph node metastasis group
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Figure 2: PPI network construction. (a) PPI network of DEGs whether lymph node metastasis occurs. (b) Top 20 hub genes.

5International Journal of Genomics



(n = 15). CLCA1 protein expression was lower in the lymph
node metastasis group, while the TMEM59L and TUBB2B
were higher in the lymph node metastasis group. These
results were all statistically significant. Notably, these expres-
sion trends were consistent in both colon and rectal cancer.

4. Discussion

The lymph node metastasis of CRC is highly correlated with
postoperative cancer recurrence and survival time [27].
Therefore, it is of great significance to find biomarkers that
can predict early CRC lymph node metastasis. In this study,
a total of 62 DEGs associated with CRC lymph node metas-
tasis were discovered, of which 4 genes were down-regulated
and 58 genes were up-regulated. A PPI network was con-
structed based on these DEGs, and the 20 hub genes were
screened, among which only CLCA1 expression was down-
regulated in patients with CRC lymph node metastasis, and
the rest were up-regulated. Nine characteristic genes associ-
ated with lymph node metastasis were screened from the 20
hub genes using LASSO regression: KIF1A, TMEM59L,
CLCA1, COL9A3, GDF5, TUBB2B, STMN2, FOXN1, and
SCN5A.

KIF1A encodes a microtubule-dependent motor protein,
which is responsible for the rapid anterograde transport of
synaptic vesicle precursors in neurons [28]. KIF1A expres-
sion is significantly increased in ovarian cancer tissues. High
KIF1A expression predicts poor prognosis. KIF1A may play

a crucial role in biological processes, including positive reg-
ulation of T cell proliferation, primary immunodeficiency,
pathways in cancer, the Wnt signaling pathway, and
immune infiltrating cells [29]. Similarly, our research in
CRC found that KIF1A is positively correlated with macro-
phages M0, B cells naive, and T cells CD4 memory activated.
These findings suggest a potential role of KIF1A in modulat-
ing immune cell infiltration across different cancer types.
TMEM59 is a recently discovered brain-specific high-
expression protein that produces the effect of promoting
apoptosis; nevertheless, the specific mechanisms of its apo-
ptosis are still unclear [30]. TMEM59 deletion promotes
the infiltration of inflammatory cells, macrophages, microg-
lia cells, and neutrophils into the olfactory epithelium and
lamina propria [31]. While downregulation of TMEM59
promoted anti-inflammatory factor expression and attenu-
ated lipopolysaccharide treatment-induced inflammation
[32]. CLCA1 is the first member of the CLCA family to be
studied. This channel regulator family participates in a vari-
ety of cellular and molecular signal transduction pathways
and plays a role in regulating cell proliferation, tumor inva-
sion, and metastasis potential. It was discovered through
study that its expression is decreased in the tumor tissues
and serum of CRC patients [33], the OS rate of patients with
low CLCA1 expression was significantly lower than that of
patients with high CLCA1 expression, and the recurrence
rate in patients with low CLCA1 expression was higher than
that of patients with high CLCA1 expression [34]. COL9A3
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encodes the collagen alpha-3 (IX) chain, which is a struc-
tural component of the hyaline cartilage and vitreous body
of the eye [35]. In our study, we found that in CRC, COL9A3
is positively correlated with naive B cells and M0 macro-
phages, and negatively correlated with CD8 T cells and acti-
vated NK cells. This is somewhat parallel to the findings of
Liu et al. [36] in esophageal squamous cell carcinoma, where
the risk score, including COL9A3, was positively correlated
with M1 and M2 macrophages. These findings suggest that
COL9A3 may play a complex role in the tumor microenvi-
ronment across different types of cancer, influencing various
immune cells’ behavior. GDF5 encodes growth differentia-
tion factor 5, which is a growth factor involved in bone
and cartilage formation and regulates the differentiation of
cartilage-forming tissues during cartilage development [37].
The absence of GDF5 may have consequences for immune
responses and macrophage function in general and for
arthritis in particular [38]. In our study, we found a positive
correlation between KIF1A and macrophages M0 in CRC.
TUBB2B encodes a tubulin beta-2b chain, where tubulin is
the main component of the microtubules and plays a role
in the correct axonal guidance of the central and peripheral
axon bundles [39]. TUBB2B regulated the expression of
TNF-a, IL-6, and PD-1/PD-L1 through the inhibit tumor
invasion gene PER1 [40]. STMN2 encodes a microtubule
stability regulator, which can regulate the assembly and
decomposition of tubulin, stabilize microtubules, and thus
control the lengths of the neurites in cortical neurons [41].
FOXN1 is a transcription regulator that regulates the devel-
opment differentiation and function of thymic epithelial
cells in the thymus [42]. FOXN1 mutation-mediated
immune deficiency is typically associated with severe com-
bined immunodeficiency [43]. FOXN1 has emerged as fun-
damental for thymus development, function, and
homeostasis, representing the master regulator of thymic
epithelial and T cell development [44]. We found that

FOXN1 exhibited a positive correlation with T cells CD4
memory resting and a negative correlation with T cells follic-
ular helper and T cells CD8. SCN5A encodes sodium chan-
nel protein 1.5 subtype α subunits, which are the major
sodium channels in the heart tissue α subunits and form
the main channels for sodium ion flow [45]. In this study,
prognosis analysis showed that TMEM59L, CLCA1, and
TUBB2B were survival-related genes in CRC, of which
CLCA1 was a positive survival-related gene and TMEM59L
and TUBB2B were negative survival-related genes.

Based on the KEGG analysis results provided, significant
roles are suggested for the “ECM–receptor interaction,”
“Circadian entrainment,” and “Protein digestion and
absorption” pathways in lymph node metastasis of CRC.
The interaction between the ECM and its receptors plays a
pivotal role in various biological processes, including cell
adhesion, migration, and signal transduction. Alterations
in the ECM can influence the invasiveness and metastasis
of tumor cells [46]. Circadian entrainment, or the regulation
of biological clocks, has also been implicated in tumor devel-
opment and progression [47]. Furthermore, the basic physi-
ological process of protein digestion and absorption, which
may change cancer, can impact tumor growth and develop-
ment [48]. Recent research has identified a correlation
between the expression of the GABRD gene in CRC and
patient prognosis, suggesting potential involvement with
pathways such as protein digestion and absorption, and
ECM-receptor interaction [49]. These findings lend further
support to our KEGG analysis results, although the precise
mechanisms warrant further experimental validation.

Many studies have found that immune cells play an
important role in tumorigenesis and the development of
CRC, and tumor cells escape and inhibit the human immune
system through a variety ofmeans [50]. The lymphnodes are a
kind of lymphoid tissue found throughout the body that can
make immune cells resident and conduct immune
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surveillance on human tissues. Meanwhile, lymph node
metastasis is also a common part of tumors. Cancer cells in
lymph nodes can form their interactions with the host
immune system by controlling the infiltration of the immune
cells, suggesting that lymph node metastasis may be related to
the infiltration of the immune cells [51]. This study indicated
that the nine characteristic genes associated with lymph node
metastasis were significantly correlated with immune cell
infiltration, suggesting that tumor cells in CRC patients regu-
late immune cell infiltration through the characteristic genes
of lymph node metastasis to form lymph node metastasis.

In this study, nine lymph node metastasis genes were
analyzed via uni-factor COX regression, and three survival-
related genes (TMEM59L, CLCA1, and TUBB2B) were ulti-

mately identified. The risk score constructed from the
expression levels of these three genes is an independent prog-
nostic factor for CRC, suggesting that TMEM59L, CLCA1,
and TUBB2B are closely related to the prognosis of CRC
lymph node metastasis. We have verified this by immunohis-
tochemical experiments in patient tissues. Up-regulation of
CLCA1 and down-regulation of TMEM59L and TUBB2B
may be effective methods of preventing the progression of
CRC and prolonging the survival time of patients.

5. Conclusion

CRC tumor cells may regulate tumor immune cell infiltra-
tion through lymph node metastasis-related characteristic
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analysis. (b) Nine characteristic genes and immune cell infiltration level matrix.
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genes (KIF1A, TMEM59L, CLCA1, COL9A3, GDF5,
TUBB2B, STMN2, FOXN1, and SCN5A) to form lymph
node metastasis. Three survival-related genes (TMEM59L,
CLCA1, and TUBB2B) were associated with the lymph node
metastasis and survival time of patients.
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