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Most of the wavefield downward continuation migration approaches are relying on one-way wave equations, which move the
seismic energy always in one direction along depth. The one-way downward continuation migrations only use the primaries for
imaging and do not treat secondary reflections recorded on the surface correctly. In this paper, we investigate wavefield depth
extrapolators based on the full acoustic wave equations, which can propagate wave components to opposite directions. Several
two-way wavefield downward continuation propagators are numerically tested in this study. Recursively implementing of the
depth extrapolator makes it necessary and important to eliminate the unstable wave modes, that is, evanescent waves. For the
laterally varying velocity media, distinction between the propagating and evanescent wave mode is less clear. We demonstrate
that the spatially localized two-way beamlet propagator is an effective way to remove the evanescent waves while maintain the
propagating mode in laterally inhomogeneous media.

1. Introduction

Downward continuation migration calculates the wavefield
at greater depth based on the existing wavefield at the shal-
lower depth. For each frequency component, the wavefield
can be downward continued recursively from surface to tar-
get depth. These algorithms have the flexibility of migrating
the seismic data sequentially in depth and frequency, which
leads to substantial reduction of both computational and
memory requirements. It is particularly advantageous in a
migration-velocity-analysis procedure, since one can analyze
one layer for each iteration (layer stripping). It also leads to
the definition of another useful family of seismic imaging
methods—survey-sinking migration [1].

Although many different downward continuation algo-
rithms have been proposed, most of them are based on
solving the one-way wave equation. The common ground
for those methods is splitting the full wave equation into two
one-way wave equations that allow for downward or upward

wave propagation separately. The directional splitting of the
operator suppresses the up-going propagating waves, thus
making it difficult, if not impossible, to use the secondary
reflections correctly for imaging [2]. The wavefield down-
ward continuation scheme based on the full acoustic wave
equation was first introduced by Kosloff and Baysal [3].
For a background with depth-dependent velocity and zero
offset source-receiver configuration, the full wave partial
differential equation is changed to a second-order ordinary
differential equation, and they solved the equation by the
fourth-order Runge-Kutta method. Sandberg and Beylkin
[4] extended this method to laterally varying media and mig-
rated the prestack seismic data in the source-receiver survey-
sinking style. Sandberg et al. [2] modified the algorithm
in Sandberg and Beylkin [4] to take a proper account of
secondary reflections recorded at the surface for imaging.

The recursively implementation of wavefield depth extra-
polators makes operator stability a critical issue. In physical
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reality, only solutions with harmonical oscillations (propa-
gating wave) or exponentially decay (evanescent wave) with
depth are present. However, in numerical algorithms, the
artificial evanescent waves, which exponentially grow can
also be generated and make the extrapolated wavefield grow
out of bounds quickly. Usually, the evanescent waves are
eliminated to secure the operator stability. For a laterally
uniform medium with depth-dependent velocity, the evanes-
cent waves can be suppressed in the frequency wavenumber
domain by using the Fourier transform along space and
a simple cutoff filter [5]. For the laterally varying velocity
field, the identification of the evanescent wave is less clear.
To assure the numerical stability, Kosloff and Baysal sug-
gested using the cutoff filter adjusted to the maximum
velocity at each depth [3]. However, such a strategy also dis-
carded certain propagating waves generated by the steeply
dipping events, resulting in poor imaging of these structures.
Sandberg and Beylkin [4] introduced spectral projectors to
remove the evanescent wave modes and leave all propagating
modes intact in a variable background.

We observe that, in the laterally varying velocity field,
the propagating and evanescent waves are in fact precisely
defined by the velocity at each spatial point. It is difficult to
identify different wave modes in the wavenumber domain by
using the global Fourier transform assuming one reference
velocity at each depth. It leads us to consider the spatially
localized wave propagator with reference velocities for differ-
ent locations. Beamlet propagator [6] provides an alternative
approach for seismic wave propagation and imaging based
on local velocity perturbation. Wavelet transform is applied
along space to shuffle the wavefield between space and local
space-wavenumber domain (beamlet domain). Each beamlet
is propagated to next depth with local reference velocity.
Beamlet propagators have been developed successfully with
the Local Cosine Basis (LCB) [7] for the orthogonal and
Gabor-Daubechies Frame (GDF) [8] for the nonorthogonal
decomposition. The unwanted waves can be removed by an
ideal low-pass filter defined by the local reference velocities,
leaving the portion of propagating waves increased.

In this study, we first test solving the two-way propagator
by the 4th-order Rung-Kutta method, the two-way phase-
shift method and the implicit two-way phase-shift method,
which avoids splitting of the full wave propagator. In the
second tests, we see that the two hyperbolas in the surface
wavefield are downward continued by the two-way propaga-
tors, with each hyperbola moving in opposite direction in the
time space seismogram panel. We derive the two-way beam-
let propagator for the local background velocity by using LCB
transform and test wave propagation and post stack imaging
in the lateral high contrast velocity surroundings.

2. Full-Wave Downward Continuation Operator
in Frequency Wavenumber Domain

2.1. Ordinary Differential Two-Way Wave Equation. In a two-
dimensional acoustic medium with constant density, the full
way wave equation reads

∂2u

∂x2
+
∂2u

∂z2
= 1

V 2

∂2u

∂t2
, (1)

where x and z are the horizontal and vertical coordinates,
u(x, z, t) is the pressure field at time t, and V(x, z) is the
acoustic velocity. In a lateral homogenous velocity model,
equation (1) can be double transformed in x and t to give

∂2û

∂z2
= −

(

ω2

V 2
− K2

x

)

û(Kx, z,ω), (2)

whereKx is the horizontal wavenumber andω is the temporal
frequency.

For the migration along depth axis, the second order
equation to z can be written as two coupled one order differ-
ential wave equations in the depth variable z:

∂û

∂z
= q,

∂q

∂z
= −

(

ω2

V 2
− K2

x

)

û,
(3)

where q represents the vertical pressure gradient. Equation
(3) can be solved with standard numerical techniques for
ordinary differential equations.

The full wave equation is of second order on depth and
therefore requires two boundary conditions on the surface
to initiate the depth extrapolation: the pressure wavefield
and its normal derivative. Usually, only the pressure field is
recorded on the surface, the other field must be generated
with certain assumptions. We estimate the normal derivative
of the wavefield ûz(Kx, z = 0,ω) using the same approach
as in Kosloff and Baysal [3]. Assuming a constant velocity
near the surface, the gradient of the wavefield can be obtained
from û(Kx, z = 0,ω) as

ûz(Kx, z = 0,ω) = ikzû(Kx, z = 0,ω), (4)

where kz =
√

ω2/V 2 − K2
x is the vertical wavenumber. Given

û and ûz at surface, equation (3) can be downward continued
recursively to any depth.

2.2. Phase-Shift Two-Way Depth Extrapolator. The solution
to the second-order wave equation (2) can also be written as

ûz(kx,Δz) = 1
2

[

(ikzû(kx, 0) + ûz(kx, 0))eikzΔz

+(−ikzû(kx, 0) + ûz(kx, 0))e−ikzΔz
]

,

û(kx,Δz) = 1
2

[(

û(kx, 0) +
1
ikz

ûz(kx, 0)
)

eikzΔz

+
(

û(kx, 0)− 1
ikz

ûz(kx, 0)
)

e−ikzΔz
]

.

(5)

Equation (5) is more easily to be understood as two-way wave
equation, and we can pick up the up- and down-going terms
without difficulty. When downward continue the up- or
down-going wave separately, one of the exponential terms
can be set to zero. The wavefield gradient is also not needed
to decide the wave propagation direction. Equation (5) then
reduces to the phase-shift method of Stolt [9].
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Figure 1: Impulse responses for a homogeneous medium with velocity of 2 km/s from source Ricker wavelet with dominant frequency
15 Hz. (a) Rung-Kutta method; (b) two-way phase-shift method (5); (c) implicit two-way phase-shift depth extrapolation by (7); (d) one-
way phase-shift propagator eikzΔz.

2.3. Implicit Two-Way Phase-Shift Depth Extrapolation.
Equation (5) still explicitly splits the two-way wave equa-
tion to up- and down-going waves. The phase-shift terms
exp(ikzΔz) and exp(−ikzΔz) propagate the up- and down-
going components separately.

The exponential and the trigonometric functions have the
following relations:

cos(kzΔz) = eikzΔz + e−ikzΔz

2
,

sin(kzΔz) = eikzΔz − e−ikzΔz

2i
.

(6)

Substitute the exponential terms by the trigonometric func-
tions in (5), we obtain

ûz(kx,Δz) = û(kx, 0)(−kz sin(kzΔz)) + ûz(kx, 0) cos(kzΔz),

û(kx,Δz) = û(kx, 0) cos(kzΔz) + ûz(kx, 0)
sin(kzΔz)

kz
.

(7)

Equation (7) avoids splitting the wave equation into the up-
and down-going propagators. In practical implementation,
(7) is more stable than (5). If kz approaches to zero, kz in
denominator of (5) may cause numerical instability. How-
ever, in (7), kz and sin(kzΔz) form a sinc function, which
eliminates the singularities caused by kz = 0.

3. Two-Way Beamlet Propagators for
Local Background Reference Velocities

If the velocity is a function only of depth, the migration in
frequency wavenumber domain is accurate and efficient
since the Fast Fourier Transform can be used. For a later-
ally varying medium, the selection of reference velocities is

required for the phase-shift operator. To improve the accu-
racy, part of the computation needs to be performed in
the space domain. These approaches can be categorized as
mixed domain or dual domain methods. Beamlet migration
is a one-way wave equation-based dual domain imaging
method. The wave fields are spatially partitioned with local
windows and propagated with beamlet propagators (in
beamlet domain) followed by local perturbation corrections
(in space domain). In local phase space, the evanescent and
propagating modes are defined by the local reference veloci-
ties and can be processed separately.

3.1. Local Cosine Basis and Wavefield Decomposition. The
seismic wavefield and its normal derivative can be repre-
sented by local Fourier frame, such as the Gabor-Daubechies
frame, or the local trigonometric basis (local cosine/sine
basis). The local cosine bases are localized version of cosine
bases, using overlapped bell functions to decompose signals
in separable blocks by fast algorithm [10]. The basis element
is characterized by position xn, the nominal length of the
window Ln = xn+1 − xn, and local wavenumber index m,
(m = 0 · · ·M− 1, M denotes the total sample points of the
interval) as follows:

bmn(x) =
√

2
Ln

Bn(x) cos
(

π
(

m +
1
2

)

x − xn
Ln

)

, (8)

where Bn(x) is a bell function, which is smooth and
supported in the compact interval [xn − ε, xn+1 + ε′] for
xn−ε ≤ xn+1 +ε′, where ε, ε′ are the left and right overlapping
radius.
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Figure 2: Impulse responses of the two-way phase shift extrapolator in (7) in two-layer models. Left column is for the−50% contrast velocity
model (from 2 km/s to 1 km/s); right column is for the +50% contrast velocity model (from 2 km/s to 3 km/s). Rows from top to bottom are
for successive of time sequences.

Wavefield û(x) and its derivative ûz(x) at depth z can be
decomposed into beamlets with windows along the x-axis

ûz(x) =
∑

n

∑

m

〈

ûz(x), bmn(x)
〉

bmn(x)

=
∑

n

∑

m

Uz

(

xn, ξm
)

bmn(x),

û(x) =
∑

n

∑

m

〈

û(x), bmn(x)
〉

bmn(x)

=
∑

n

∑

m

U
(

xn, ξm
)

bmn(x).

(9)

Here ξm = π(m + 1/2)/Ln, U(xn, ξm) and Uz(xn, ξm) are
beamlet coefficients. 〈, 〉 stands for inner product.

Local cosine bases are real functions. In case of complex
wavefield, LCB decomposition is applied to both the real and
imaginary parts of the wavefield [7].

3.2. LCB Beamlet Domain Two-Way Downward Propagator.
For easy implementation, we derive the two-way beamlet
propagator starting from (5); we have

ûz(kx,Δz) = 1
2

[

ikze
ikzΔzû(kx, 0) + eikzΔzûz(kx, 0)

+
(

−ikze−ikzΔz
)

û(kx, 0) + e−ikzΔzûz(kx, 0)
]

= 1
2

[

P+
10û(kx, 0) + P+

00ûz(kx, 0)

+P−10û(kx, 0) + P−00ûz(kx, 0)
]

,

û(kx,Δz) = 1
2

[

eikzΔzû(kx, 0) +
eikzΔz

ikz
ûz(kx, 0)

+e−ikzΔzû(kx, 0) +
e−ikzΔz

−ikz ûz(kx, 0)

]

= 1
2

[

P+
11û(kx, 0) + P+

01ûz(kx, 0)

+P−11û(kx, 0) + P−01ûz(kx, 0)
]

.

(10)

Here P with different sub- and superscripts are the phase-
shift operator to extrapolate the wavefields and their deriva-
tive from depth z to z + Δz. Next, we derive the wave
propagator in the LCB beamlet domain following [7]. We
define

amn(x) = 1
2π

∫

dξeiξxPbmn(ξ), (11)

as the evolved LCB beamlet by background propagation
using the reference velocity V0(xn, z) in window Bn(x).
bmn(ξ) is the wavenumber domain beamlet basis. For each
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Figure 3: Seismograms at depths before (a, b) and after (c, d) pass through the −50% (a, c) and +50% (b, d) contrast velocity interface.

exponential term in (10), the evanescent waves are discarded
based on the following judgment:

exp

⎛

⎝±i
√

(

ω

V0(xn, z)

)2

− k2
xΔz

⎞

⎠

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

exp

(

±i
√

(

ω

V0(xn, z)

)2

− k2
xΔz

)

, k2
x <

(

ω

V0(xn, z)

)2

,

0, k2
x ≥

(

ω

V0(xn, z)

)2

.

(12)

The redecomposition of the propagated beamlets amn(x) into
new beamlets formulates the beamlet propagator, written as

P
(

ξ j , xl; ξm, xn
)

=
〈

amn(x), bjl(ξ)
〉

. (13)

Thus we obtain the exact expression of the two-way beamlet
background propagator components

P+
10

(

ξ j , xl; ξm, xn
)

= 1
2π

∫

dξb∗jl(ξ)bmn(ξ)ikzeikzΔz,

P+
00

(

ξ j , xl; ξm, xn
)

= 1
2π

∫

dξb∗jl(ξ)bmn(ξ)eikzΔz,

P−10

(

ξ j , xl; ξm, xn
)

= 1
2π

∫

dξb∗jl(ξ)bmn(ξ)
(

−ikze−ikzΔz
)

,

P−00

(

ξ j , xl; ξm, xn
)

= 1
2π

∫

dξb∗jl(ξ)bmn(ξ)e−ikzΔz,

P+
11

(

ξ j , xl; ξm, xn
)

= P+
00

(

ξ j , xl; ξm, xn
)

,

P+
01

(

ξ j , xl; ξm, xn
)

= 1
2π

∫

dξb∗jl(ξ)bmn(ξ)
eikzΔz

ikz
,
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Figure 4: Seismograms with two hyperbolas on the surface (a) and its derivative (b); (c) seismogram downward continued to depth 0.55 km;
(d) seismogram downward continued to depth 1 km.

P−11

(

ξ j , xl; ξm, xn
)

= P−00

(

ξ j , xl; ξm, xn
)

,

P−01

(

ξ j , xl; ξm, xn
)

= 1
2π

∫

dξb∗jl(ξ)bmn(ξ)
e−ikzΔz

−ikz .

(14)

Here the propagator elements P(ξ j , xl; ξm, xn) represent the

coupling factors from the beamlet coefficient (ξm, xn) to
beamlet (ξ j , xl) at new depth level. Due to the propagation
of up- and down-going waves and their derivatives, the
two-way beamlet propagator elements are eight times more
than that of the one-way propagator. In this algorithm, the
computation of two-way wavefield downward extrapolation
is approximately 8 times more intensive than the one-way
beamlet methods.

4. Numerical Experiments

4.1. Impulse Responses in Homogenous Media. The impulse
responses are computed by different depth extrapolation
propagators mentioned above. Considering a domain of
3.75 km deep and 12 km wide, with a constant velocity of
2 km/s, we position a point Ricker wavelet source with
dominat-frequency 15 Hz at x = 6.4 km and z = 0 km. The
space and depth sampling intervals are 25 m.

The impulse responses by different depth propagators are
shown in Figure 1 with Figure 1(a) from (3) by the 4th-order
Runge-Kutta method, Figure 1(b) two-way phase-shift
method (5) and Figure 1(c) the implicit two-way phase-shift
method (7), respectively. Figure 1(d) is from the one-way
phase-shift method [9]. All the responses look much
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Figure 5: Impulse responses of the two-way beamlet propagator in two-layer models. Left column is for the −50% contrast velocity model
(from 2 km/s to 1 km/s); right column is for the +50% contrast velocity model (from 2 km/s to 3 km/s). Rows from top to bottom are for
successive of time sequences.
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Figure 6: Local reference velocities for beamlet depth extrapolation.

the same. From these tests, we see that the two-way depth
downward continuation methods have the same accuracy as
the phase-shift method in the homogenous media as expect-
ed.

During migration, when ω2/V 2 − K2
x < 0, all the wave

fields extrapolating by the two-way wave equation blow up
rapidly, making it necessary to suppress these unstable modes
(evanescent waves) in downward extrapolation algorithms.
For a laterally uniform medium, Kosloff and Baysal [3] pro-
posed suppressing the evanescent waves in the wavenumber
domain by using a simple cutoff filter (same as used here).

4.2. Impulse Responses in Two-Layer Velocity Models. Shown
in Figure 2 are impulse responses at three time moments for

the two-layer models using the implicit two-way phase-shift
extrapolator. The velocity change interfaces are in the middle
of the depth axis. Left column is for the −50% contrast
medium (from 2 km/s to 1 km/s), and the right is for the
+50% contrast medium (from 2 km/s to 3 km/s).

In Figure 2, panels from top to bottom are in order of
time sequence. We see that, with the presence of the vertical
velocity contrast, there are some anticausal waves enter from
the bottoms of the model. In the +50% velocity contrast case,
there are vertical artifacts propagating horizontally in the
high-velocity region.

Figure 3 shows the seismograms at depths above and
below the interface. The left column is for the −50% velocity
contrast and the right column for the +50%. The top panels
are seismograms before passing through the interface and
the bottom panels, below the interface. We see the hyperbola
splits into two after passing the interface and one of which
propagates in the opposite direction in the time space panel.

Kosloff and Baysal described the appearance of the up-
going energy as the inherent nonuniqueness in the concep-
tual model on which the migration was based. With the
exploding reflector model, a surface recording alone cannot
determine the amount of down-going energy at zero time.
To do this, a set of geophones need to be placed beneath the
structure [3]. To our understanding, the anticasual event
appeared after passing through the interfaces because the
mathematical downward continuation algorithms do not
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Figure 7: Impulse responses in a piecewise homogenous media with left and right columns for the one-way and two-way beamlet
propagators. From top to bottom are snapshots at times 0.456 s, 0.912 s, and 1.368 s.

obey the nature of the wave propagation. The reflected waves
are generated when the downward continuation procedure
encounters the velocity interface. Physically, the reflected
wave should go upward; however, the downward continu-
ation procedure carries it to the future depth by the two-
way extrapolator. On the snapshots in Figure 2, the two-way
propagators can propagate the up-going wave reflecting by
the interface but put it in the wrong spatial location.

Seismic imaging based on the two-way depth migration,
when high velocity contrast exists, the migrated image will
contain low-frequency artifacts similar to the RTM-migrated
data. Techniques like smoothing the migration velocity
model [2, 4] or applying a Laplacian filter to the final stacked
image can effectively dampen the artifacts.

4.3. Propagating Wavefield Components in Two Directions in
Seismogram. In this section, we test the downward continu-
ation algorithms by the two-way extrapolator with data con-
taining both down-going and up-going waves. Figure 4(a)
shows a wavefield on the surface containing two hyperbolas,
tagged with A and B. The gradient for each hyperbola
is calculated separately and added together with opposite

signs at the surface, shown in Figure 4(b) (Note the polarity
difference between the two gradient fields). Figures 4(c)
and 4(d) are seismograms for two depths during downward
extrapolation. We see hyperbola A and B moving in opposite
directions during depth extrapolation by the two-way wave
equations. After some depth, hyperbola A focused into a
point, while hyperbola B is continuing to spread. There is
no artifacts or cross coupling between the two events. This
shows that the two-way extrapolator works in the case of
homogeneous or smoothly varying media. For media with
sharp boundaries, we can perform some smoothing oper-
ation to the media before depth extrapolation or do more
study to reduce the artifacts when passing the boundary.

4.4. Two-Way Beamlet Propagation and Imaging in Inho-
mogeneous Media. The beamlet space localization gives the
possibility and flexibility in adapting to the fast varying
lateral heterogeneities for wave propagation. Theoretically,
when there are no lateral velocity variations, the space
localized propagators will produce the same result as the
methods with only one reference velocity at each depth.
However, because the beamlet propagator is the integral of
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Figure 8: (a, c, e) are snapshots of the two-way beamlet propagator on the smoothed version of the SEG velocity model; (b, d, f) are
snapshots on velocity model shown in Figure 6 by finite difference method.

the fine sampling horizontal wavenumbers (14), it is more
stable at the vicinity of transiting from propagating modes
to evanescent modes. Demonstrating on the snapshots of
the impulse responses for the two-layer model, there are less
horizontally propagating vertical events in the high-velocity
region (shown in the right column of Figure 5).

Figure 6 shows the background reference velocity for
the localized beamlet propagators for 2D SEG/EAGE salt
model. The local background velocity reflects the velocity
homogeneity in a great degree, such as the salt body and
some reflectors. Wave propagation in the local background
velocity keeps more propagating waves with high accuracy
comparing with the methods only selecting one reference
velocity for each depth.

Figure 7 shows impulse responses based on one-way and
two-way beamlet propagators in the piecewise local back-
ground velocity shown in Figure 6. Panels in left column are
for the one-way beamlet propagator and the right column,
the two way beamlet propagator. Panels in the same row are
at the same time moments for comparison.

The snapshots demonstrate that the localized propaga-
tors can handle multipath arrivals with smooth wavefronts
amplitude induced by complex velocity functions. We also

see that the sharp velocity discontinuity introduce extra
signal in the two-way beamlet propagation.

In the left column of Figure 8, we present snapshots of
the two-way beamlet propagator in a smoothed version of
the SEG velocity model. Examination of the results in
Figures 7(b), 7(d), and 7(f) and Figures 8(a), 8(b), and 8(c)
shows that the extra signals produced by the sharp velocity
boundaries in the model are greatly suppressed. In Figures
8(b), 8(d), and 8(f), snapshots generated by finite difference
method on the velocity in Figure 6 are displayed for compar-
ison.

Figure 9 illustrates the post stack imaging performance
of the localized propagator on 2D SEG/EAGE synthetic data
sets. Figure 9(a) shows the original velocity model, with min-
imum and maximum velocities are 1500 m/s and 4410 m/s.
Figure 9(b) shows the post stack image of the one-way
beamlet migration with local perturbation correction (for
details of local perturbation correction see reference [7]).

Figures 9(c) and 9(d) display the image based on one-way
and two-way beamlet propagators using the local reference
velocities, without perturbation correction. In Figure 9(c),
the boundary of the salt body and most of the reflectors
are all imaged. Due to the accumulated errors from velocity
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Figure 9: 2D SEG/EAGE post stack imaging by using different propagators. (a) Original velocity model; (b) one-way beamlet migration
with local perturbation correction; (c) one-way beamlet migration with local reference velocity shown in Figure 6; (d) two-way beamlet
migration with local reference velocity shown in Figure 6.
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Figure 10: 2D SEG/EAGE post stack imaging on the smoothed version of the velocity model. (a) Velocity model obtained by blurring the
original model; (b) local background velocity for migration by the two-way beamlet propagator; (c) migrated image using the background
velocity in (b).

perturbations, the image is unsatisfactory in the sub-salt
area. In presence of strong velocity contrasts, the anticausal
artifacts generated by the two-way extrapolator will sig-
nificantly contaminate the final image. Kosloff and Baysal
eliminated the anti-causal energy from the depth section by
filtering out components with negative vertical wavenumbers
[3].

A blurred version of the original velocity model can
also be used as the background velocity to avoid the
migration artifacts. Figure 10(a) is a smoothed SEG velocity
and Figure 10(b) is corresponding local background velocity.
Image in Figure 10(c) shows that some of the artifacts in
Figure 9(d) are removed. For the smoothed velocity, because
the selections constant reference velocities in each window,
the background velocity for the two-way beamlet propa-
gators is still piecewise and there are still some remaining
artifacts in the migrated image.

5. Discussion and Conclusions

The potential of using multiple reflections for imaging is
very attractive for the depth extrapolation based on two-
way wave equations. In this paper, we did some preliminary
tests for wave propagation and imaging based on the two-
way depth extrapolators, which can propagate the wavefield
components in opposite directions. The downward con-
tinuation scheme is equivalent to an initial value problem
and two initial conditions are needed on the surface to
start the propagation. The evanescent waves must be elim-
inated for stable extrapolation. In lateral inhomogeneous
media, the identification and elimination of unwanted waves
directly relate to the wavefield accuracy and imaging quality.
Beamlet propagator extrapolates the wavefield in space-
localized phase space. In laterally inhomogeneous media, the
evanescent and propagating modes are defined by the local
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reference velocity in each window, which provides an effec-
tive way to improve the accuracy of wave mode identification.
The two-way beamlet propagator is computationally more
expensive than the one-way propagator. For migrations in
the models with sharp boundaries, we must take measures to
eliminate anti-casual events generated by the two-way depth
propagators passing through the interfaces. More study is
needed to develop a depth extrapolation procedure, which
can take advantage of the two-way wave propagator.
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