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Abstract. 
The present paper conducts a scientific review on ionospheric absorption, extrapolating the research prospects of a complex eikonal model for one-layer ionosphere. As regards the scientific review, here a quasi-longitudinal (QL) approximation for nondeviative absorption is deduced which is more refined than the corresponding equation reported by Davies (1990). As regards the research prospects, a complex eikonal model for one-layer ionosphere is analyzed in depth here, already discussed by Settimi et al. (2013). A simple formula is deduced for a simplified problem. A flat, layered ionospheric medium is considered, without any horizontal gradient. The authors prove that the QL nondeviative amplitude absorption according to the complex eikonal model is more accurate than Rawer’s theory (1976) in the range of middle critical frequencies.


1. Introductive Review
Absorption is the process by which ordered energy of the radio wave is transformed into heat and electromagnetic (e.m.) noise by electron collisions with neutral molecules and ionized particles [1].
1.1. Ionospheric Absorption
When the absorption is small and spatial diffraction is neglected, absorption is given by the imaginary part 
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							In scientific work, absorption is sometimes expressed in Np (nepers). On the basis of the natural logarithm, 1Np = 8.68 dB. The wave amplitude 
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          In the absence of the geomagnetic field, the Appleton-Hartree formula gives the absorption 
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 is the electron collisional frequency. Equation (2) enables us to define two types of absorption [1]: (i)nondeviative absorption, which occurs in regions where 
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 is large. This is the type of absorption of high frequency (HF) and very high frequency (VHF) waves that occurs in the D region;(ii)deviative absorption, which occurs near the top of the ray-trajectory or anywhere along the path where marked bending takes place, for example, when 
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. Deviative absorption is associated with group retardation.In the presence of the geomagnetic field, the nondeviative absorption coefficient is [1]
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 is the amplitude of magnetic induction field and where the + and − signs refer to the ordinary and extraordinary waves, respectively. From this, we see that the nondeviative absorption of the extraordinary wave is greater than that of the ordinary wave. This is particularly important on frequencies near the gyrofrequency (i.e. 1 to 2 MHz) where the extraordinary wave is heavily absorbed [1].
1.2. Martyn’s Absorption Theorem
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This theorem shows that the additional absorption of the oblique wave, caused by the longer ray path, is more than compensated for by the absorption decrease because of the higher frequency [2].
1.3. Absorption in Some Model Layers
To provide some insight into the dependence of absorption on electron density profiles 
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, and so forth, the total absorptions in some simple layers are given in Table 1 (reproduced from Davies [1]). The wave frequency is much greater than the collision frequency, and the geomagnetic field is ignored. Of particular interest are equations (b) and (d) in Table 1. Equation (b) has been used, as a profile of the E region, to separate D-layer and E-layer absorptions. Equation (d) shows that absorption varies as 
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. In the cases that include both deviative and nondeviative absorption, that is, (b) and (e), the inverse square dependence on wave frequency does not hold.
Table 1: Total absorption in model layers (reproduced from Davies [1]). 
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2. The Quasi-Longitudinal (QL) Approximation for Non-Deviative Absorption
The complete treatise of the propagation for e.m. waves in any magnetoplasma is rather complex; here, we restrict ourselves to a relatively simple discussion, based on common assumptions reported by [3].
As well-known, the phase refractive index 
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For the known birefringence of ionospheric plasma, this relationship allows to derive two refractive indices, for the ordinary ray 
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Referring to a specialized text [3] for the discussion of applicability of the quasi-transverse (QT) and quasi-longitudinal (QL) approximations, here we will limit ourselves to pointing out that, for values ​​of 
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					In the case of nondeviative absorption, occurring far from the reflection level, that is, with real refractive index near unity, 
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Note that the present paper has deduced a QL approximation for nondeviative absorption (9) which is more refined than the corresponding equation reported by Davies [1]. In fact, Davies’ equation is deduced, in the right limit 
	
		
			

				𝑛
			

			

				𝑅
			

			
				→
				1
			

		
	
, only from (7b), and without accounting also (7a).
3. The Variation of Collision Frequency with the Altitude
The average number of collisions 
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 which an electron makes per unit time with the atmosphere molecules depends upon the number density of the molecules and, therefore, on the density and composition of the atmosphere. Then, a decreasing exponential law holds in an atmosphere which is constant in composition [4]:
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It is found that changes of the value of 
	
		
			

				𝜈
			

		
	
 affect the propagation of radio waves far less than changes of the electron density profile 
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. For many purposes, it is, therefore, permissible to treat 
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 as constant over a small range of height 
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. This is especially true at high frequencies (HFs) (greater than 2 MHz), where the wavelength is small compared with the scale height 
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, which is approximately 10 km. Here, more generally, considering a short range of heights 
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					so that the collision frequency 
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The scale height 
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 is defined as [4]
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 is the mean molecular mass, varying with the atmospheric composition and, therefore, with the altitude (on the ground, 
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 is assumed to be about 29 times the mass of a hydrogen atom, which is approximately equal to 4.7·10−26 kg) [3].
The Earth’s gravity acceleration 
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 can be expressed as function of the geographic colatitude angle 
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 and height 
	
		
			

				ℎ
			

		
	
, applying, if necessary, the free air correction (FAC) which accounts for altitudes above sea level, by the International Gravity Formula (IGF) 1967 [6]:
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					and the mean absolute temperature can be calculated as [Appendix A]
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This paper has deduced (15) as mean value 
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4. A Dipole Model of Geomagnetic Field
The Earth, as a whole, is source of a magnetic field, the geomagnetic field, which as a first-order acceptable approximation can be assimilated to the field of a dipole located in the Earth’s centre, with magnetic moment equal to 8.1·1022 A·m2 and tilted of approximately 
	
		
			
				Δ
				𝜃
				=
				1
				1
			

			

				∘
			

		
	
 compared to the Earth’s rotation.
An ionospheric model of the Earth’s magnetic field consists of an eccentric dipole. The magnetic gyrofrequency 
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					The dipole model of the Earth’s magnetic field uses the axis of a computational coordinate system as the axis for dipole field. When using this dipole model, the computational coordinate system is a geomagnetic coordinate system, and the Earth’s magnetic field is defined in geomagnetic coordinates. Reference [8] describes the transformations between the geographic and geomagnetic coordinate systems, respectively, with colatitudes 
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For a one-layer ionosphere between the heights 
	
		
			

				ℎ
			

			

				1
			

		
	
 and 
	
		
			

				ℎ
			

			

				2
			

		
	
, the mean value of magnetic gyrofrequency is
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. Thus, the Earth’s magnetic field is represented by a dipole model, which is eccentric (centred) in the geographic (geomagnetic) coordinate system, and the mean value of magnetic gyrofrequency is calculated as an integral of gyrofrequency referred to the geomagnetic coordinates. At ionospheric heights, that is, 
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The paper has deduced (18) as mean value 
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5. Chapman’s One-Layer Ionosphere and QL Nondeviative Absorption
Reference [10] elaborated a theory on the solar photo-ionization in the Earth’s atmosphere, which still retains a fundamental importance in the field of ionospheric physics. As basis of this theory there are common assumptions reported by [3].
A remarkable simplifying hypothesis is to consider stationary conditions, which approximately occur around the true solar noon, when the zenith angle 
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 of Sun, and hence the electron density 
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, varies slowly in time. In dealing with various issues, stationary condition is approximately extended to all the daylight hours. Under this hypothesis, it results in the following [1]:
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The nondeviative absorption occurs, for all ray-paths, in the D-layer and only for those paths with reflection in the F-layers, also in the E-layer; the Chapman’s theory is a good approximation for nondeviative absorption on all these ray-paths, insomuch that the trend of the electron density 
	
		
			

				𝑁
			

		
	
 with height 
	
		
			

				ℎ
			

		
	
 satisfies a well-known implicit relationship [1] and, in the limit of quasi-stationarity, the explicit relationship (19).
Considering a vertical radio sounding with just one ionospheric reflection, the amplitude absorption 
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 (the reader who would like proving such issue could find an in-depth analysis in Section 4 of Settimi et al. paper [11]). Applying the QL approximation for nondeviative absorption as reported by Davies [1], the variation of collision frequency with the altitude (10), the dipole model of geomagnetic field (18), and Chapman’s one-layer ionosphere (19), after some manipulation [9], this results in the following: 
	
 		
 			
				(
				2
				0
				a
				)
			
 		
	

	
		
			

				𝛽
			

			
				(
				𝑣
				)
				1
				2
			

			
				=
				−
				l
				n
				𝐿
			

			
				(
				𝑣
				)
				1
				2
			

			
				=
				
			

			

				ℎ
			

			

				2
			

			

				ℎ
			

			

				1
			

			
				=
				√
				𝛽
				(
				ℎ
				)
				𝑑
				ℎ
			

			
				
			
			
				2
				𝜋
				𝑒
			

			
				
			
			
				2
				𝑞
			

			
				2
				𝑒
			

			
				/
				𝜀
			

			

				0
			

			
				
			
			

				𝑚
			

			

				𝑒
			

			
				𝑐
				𝑁
			

			
				m
				a
				x
			

			

				𝑣
			

			
				m
				a
				x
			

			
				𝐻
				c
				o
				s
			

			
				3
				/
				2
			

			

				𝜒
			

			
				
			
			
				
				𝜔
				±
				⟨
				𝜔
			

			

				𝐻
			

			
				⟩
				
			

			

				2
			

			
				+
				𝜈
			

			
				2
				m
				a
				x
			

			
				≅
				√
			

			
				
			
			
				2
				𝜋
				𝑒
			

			
				
			
			
				2
				𝑞
			

			
				2
				𝑒
			

			
				/
				𝜀
			

			

				0
			

			
				
			
			

				𝑚
			

			

				𝑒
			

			
				𝑐
				𝑁
			

			
				m
				a
				x
			

			

				𝑣
			

			
				m
				a
				x
			

			

				𝐻
			

			
				
			
			
				
				𝜔
				±
				⟨
				𝜔
			

			

				𝐻
			

			
				⟩
				
			

			

				2
			

			
				+
				𝜈
			

			
				2
				m
				a
				x
			

			
				,
				𝜒
				⟶
				0
				.
			

		
	

					Instead, considering an oblique radio sounding with one ionospheric reflection, the Martyn’s absorption theorem [2] assures that the integral absorption coefficient 
	
		
			

				𝛽
			

			
				(
				𝑜
				𝑏
				)
				1
				2
			

		
	
 of a wave at frequency 
	
		
			

				𝑓
			

		
	
 incident on a flat ionosphere with angle 
	
		
			

				𝜑
			

			

				0
			

		
	
 is further dependent on the secant of 
	
		
			

				𝜑
			

			

				0
			

		
	
 (magnitude order and units correctly revised with respect to Rawer [12]):
						
	
 		
 			
				(
				2
				0
				b
				)
			
 		
	

	
		
			

				𝛽
			

			
				(
				𝑜
				𝑏
				)
				1
				2
			

			
				≅
				1
				.
				3
				4
				4
				⋅
				1
				0
			

			
				−
				4
			

			
				
				m
			

			

				2
			

			
				
				×
				/
				s
				1
				0
			

			

				6
			

			
				⋅
				𝑁
			

			
				m
				a
				x
			

			
				
				c
				m
			

			
				−
				3
			

			
				
				⋅
				𝜈
			

			
				m
				a
				x
			

			
				
				s
			

			
				−
				1
			

			
				
				⋅
				1
				0
			

			

				3
			

			
				[
				]
				⋅
				𝐻
				k
				m
			

			
				
			
			
				
				1
				0
			

			

				6
			

			
				
				𝑓
				±
				⟨
				𝑓
			

			

				𝐻
			

			
				⟩
				
				[
				]
				
				M
				H
				z
			

			

				2
			

			
				+
				
				(
				1
				/
				2
				𝜋
				)
				𝜈
			

			
				m
				a
				x
			

			
				
				s
			

			
				−
				1
			

			
				
				
			

			

				2
			

			
				s
				e
				c
				𝜑
			

			

				0
			

			

				.
			

		
	
Equations (20a)-(20b) shows that, on equal terms, the QL nondeviative amplitude absorption 
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; that is, it increases with the decrease of the elevation angle. Inserting in (20a)-(20b) the typical values ​​for the D and E layers, it follows that, as to be expected, the absorption occurs mainly in the D layer and the amplitude absorption order is a few tens of dB.
6. The Complex Eikonal Model for One-Layer Ionosphere
6.1. The Complex Eikonal Model
A previous paper of Settimi et al. [11] conducted a scientific review on the complex eikonal, extrapolating the research prospects on the ionospheric ray-tracing and absorption.
As regards the scientific review, the eikonal equation is expressed, and some complex-valued solutions are defined corresponding to complex rays and caustics. Moreover, the geometrical optics is compared to the beam tracing method, introducing the limit of the quasi-isotropic and paraxial complex optics approximations. Finally, the quasi-optical beam tracing is defined as the complex eikonal method applied to ray-tracing, discussing the beam propagation in cold magnetized plasma.
As regards the research prospects, the cited paper has proposed to address the following scientific problem: in absence of electromagnetic (e.m.) sources, consider a material medium which is time invariant, linear, optically isotropic, generally dispersive in frequency, and inhomogeneous in space, with the additional condition that the refractive index is assumed varying even strongly in space. The paper continues the topics discussed by [13], proposing a novelty with respect to the other referenced bibliography; indeed, the absorption is assumed nonnegligible, so the medium is dissipative. In mathematical terms, the refractive index belongs to the field of complex numbers. The dissipation plays a significant role, and even the eikonal function belongs to the complex numbers field. Under these conditions, suitable generalized complex eikonal and transport equations are derived.
In fact, if the dissipative absorption is supposed to be not negligible in the 3D space 
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Once assumed the null value to be allowable for the constant 
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, then the two real scalar equations (21a)-(21b) can be collected in just one complex vector equation [11]:
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 to derive the amplitude absorption; in these conditions, the ray-tracing and absorption problems become uncoupled, and the eikonal equation (22) belonging in the complex numbers field 
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The present paper does not include the transfer equation for the field amplitude (see Settimi et al. [11]), from which one can derive a relationship for the refractive attenuation of radio wave [14], valid along a ray tube: 
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 is the cross-section square of a ray tube, and 
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 the field intensity which is proportional to the square amplitude of e.m. field 
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. The transfer equation for the field amplitude states the intensity law of geometrical optics [13], which is an evolution of the expression for the intensity in terms of the flow tubes. The e.m. energy propagates within the flow tube and the intensity varies in inverse proportion to the section of tube. The relationship for the refractive attenuation of radio wave involves just the geometric attenuation due to the enlargement of wave front with the propagation [15]. The intensity carried by each ray may decreases along the distance, even if the medium is loss-free, since, as the wave propagates, the intensity is distributed over an ever-widening surface.
6.2. One-Layer Ionosphere
In order to solve the ionospheric ray-tracing and absorption problems, Settimi et al. [11] have prospected a novel point of view. Equations (21a)-(21b) or (22) for complex eikonal are derived assuming the material medium as optically isotropic. However, there exist suitable conditions in which (21a)-(21b) or (22) can be referred to the Appleton-Hartree equations (5) or (6) for ionospheric magnetoplasma, which becomes anisotropic at the presence of geomagnetic field. Indeed, in agreement with [16–18], the quasi-isotropic approximation (QIA) of geometrical optics can be applied for weakly anisotropic inhomogeneous media, so that the eikonal equations hold alternatively for both the ordinary and extraordinary rays, which propagate independently in the magnetoplasma by experiencing each a different refractive index.
Let us consider a flat, layered ionospheric medium (Figure 1, reproduced from Settimi et al. [11]), without any horizontal gradient, characterized by an electron density profile dependent only on the altitude, as for the complex refractive index,
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. In fact, the refraction law of Snell-Descartes states for the real part of refractive index:
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Figure 1: Flat, layered ionospheric medium described by a linearized profile (25a)-(25b) and (26a)-(26b) (reproduced from Settimi et al. [11]).


The ionosphere, in presence of collisions, is assumed to be weakly interacting with the static geomagnetic field. A linearized analytic profile can be adopted for the complex refractive index [11] (Figure 1):
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.
The linear refractive index (25a), (25b) is sufficient to highlight that the geometrical attenuation is modelled just by the transport equation, and, therefore, the dissipative absorption just by the complex eikonal equations (21a)-(21b); in fact if 
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 [11].
Inserting the refractive index (25a) to solve the real part 
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In this case, the optical rays show, unless vertical shifts, the trend of hyperbolic cosines, known as catenaries, which can be approximated to parabolas.
Inserting the refractive index (25b) to solve the imaginary part 
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Regardless of geometrical attenuation, the amplitude absorption due to dissipation effects can be calculated from the imaginary part of complex eikonal function. In fact, in the ionospheric plasma, recalling that the collision frequency is a function 
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Considering a vertical radio sounding with just one ionospheric reflection, once applied (28), the integral absorption coefficient 
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							Instead, considering an oblique radio sounding with one ionospheric reflection, the Martyn’s absorption theorem [2] assures that the absorption coefficient 
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6.3. A Simple Formula for a Simplified Problem
Settimi et al. [11] proposed (29), useful to calculate the absorption due to the propagation across the ionospheric D-layer, which can be approximately modelled by a linearized complex refractive index (25a), (25b), covering a short range of heights between 
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Thus, the theoretical bases of present paper were laid, where the further expansion of (29) will lead to a formula for the ionospheric absorption more accurate than some theoretical models (20a)-(20b), using the Chapman’s profile reported by Rawer [12].
Indeed, Appendix B, supposing the analytical continuity of complex eikonal model (28) with the QL approximation for nondeviative absorption (9), demonstrates the necessary and sufficient condition to equate the collision frequency deriving from the refractive index (25a), (25b) to the variation of collision frequency with the altitude (11). The QL nondeviative absorption (9), deduced in this paper, is more refined than the corresponding equation reported by Davies [1]; and, linearizing the involved equations, here are obtained the coefficients 
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A reasonable hypothesis should be assumed for (30a)-(30b); the boundary refractive index 
	
		
			

				𝑛
			

			

				0
			

		
	
 is a real number slightly less than 1; that is, 
	
		
			

				𝑛
			

			

				0
			

			
				<
				1
			

		
	
, so that both coefficients 
	
		
			

				𝛼
			

			

				𝑅
			

		
	
 and 
	
		
			

				𝛼
			

			

				𝐼
			

		
	
 are negative; that is, 
	
		
			

				𝛼
			

			

				𝑅
			

			
				<
				0
			

		
	
 and 
	
		
			

				𝛼
			

			

				𝐼
			

			
				<
				0
			

		
	
.
Therefore, the linearized analytic profile for complex refractive index (25b) can be rearranged as
	
 		
 			
				(
				3
				1
				a
				)
			
 			
				(
				3
				1
				b
				)
			
 		
	

	
		
			

				𝑛
			

			

				𝑅
			

			
				(
				ℎ
				)
				≅
				𝑛
			

			

				0
			

			
				−
				1
				−
				𝑛
			

			
				2
				0
			

			
				
			
			
				2
				
				ℎ
				−
				ℎ
			

			

				0
			

			
				
				/
				𝐻
			

			
				
			
			
				
				ℎ
				1
				+
			

			
				m
				a
				x
			

			
				−
				ℎ
			

			

				0
			

			
				
				/
				𝐻
				,
				ℎ
				≥
				ℎ
			

			

				0
			

			
				,
				𝑛
			

			

				𝐼
			

			
				
				=
				−
				1
				−
				𝑛
			

			

				0
			

			

				
			

			

				2
			

			
				
			
			
				𝐻
				𝜈
			

			
				m
				a
				x
			

			
				
			
			
				𝜔
				±
				⟨
				𝜔
			

			

				𝐻
			

			
				⟩
				
				
				𝜈
				1
				+
			

			
				m
				a
				x
			

			
				
			
			
				𝜔
				±
				⟨
				𝜔
			

			

				𝐻
			

			
				⟩
				
			

			

				2
			

			
				
				.
			

		
	
Just the reasonable hypothesis assumed below equations (30a)-(30b) could imply the expected conclusions for (30a)-(30b); the real refractive index 
	
		
			

				𝑛
			

			

				𝑅
			

			
				(
				ℎ
				)
			

		
	
 is a decreasing function of height 
	
		
			

				ℎ
			

		
	
, while the imaginary refractive index 
	
		
			

				𝑛
			

			

				𝐼
			

		
	
 is negative, as substantially correct for any ionospheric profile of the D-layer [4].
Moreover, considering a vertical radio sounding with just one ionospheric reflection, once the optical path is calculated
								
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				Δ
				𝑙
			

			
				(
				𝑣
				)
				1
				2
			

			
				=
				
			

			

				ℎ
			

			

				2
			

			

				ℎ
			

			

				1
			

			

				𝑛
			

			

				𝑅
			

			
				≅
				
				ℎ
				(
				ℎ
				)
				𝑑
				ℎ
			

			

				2
			

			
				−
				ℎ
			

			

				1
			

			
				
				
				𝑛
			

			

				0
			

			
				−
				1
				−
				𝑛
			

			
				2
				0
			

			
				
			
			
				4
				
				ℎ
			

			

				1
			

			
				+
				ℎ
			

			

				2
			

			
				−
				2
				ℎ
			

			

				0
			

			
				
				/
				𝐻
			

			
				
			
			
				
				ℎ
				1
				+
			

			
				m
				a
				x
			

			
				−
				ℎ
			

			

				0
			

			
				
				
				,
				|
				|
				ℎ
				/
				𝐻
			

			

				2
			

			
				−
				ℎ
			

			

				1
			

			
				|
				|
				≪
				ℎ
			

			

				0
			

			
				<
				ℎ
			

			
				m
				a
				x
			

			

				,
			

		
	

							it is proportional to the integral absorption coefficient (29), re-arranged as
								
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				𝛽
			

			
				(
				𝑣
				)
				1
				2
			

			
				≅
				2
				1
				−
				𝑛
			

			

				0
			

			
				
			
			
				1
				+
				𝑛
			

			

				0
			

			
				Δ
				𝑙
			

			
				(
				𝑣
				)
				1
				2
			

			
				
				ℎ
				1
				+
			

			
				m
				a
				x
			

			
				−
				ℎ
			

			

				0
			

			
				
			
			
				𝐻
				
				𝜈
			

			
				m
				a
				x
			

			
				
			
			
				𝑐
				×
				𝜔
			

			
				
			
			
				𝜔
				+
				⟨
				𝜔
			

			

				𝐻
			

			
				⟩
				
				
				𝜈
				1
				+
			

			
				m
				a
				x
			

			
				
			
			
				𝜔
				+
				⟨
				𝜔
			

			

				𝐻
			

			
				⟩
				
			

			

				2
			

			
				
				.
			

		
	

							Note that the refractive index 
	
		
			

				𝑛
			

			

				0
			

			
				=
				𝑛
				(
				ℎ
			

			

				0
			

			

				)
			

		
	
 can be computationally assumed as 
	
		
			

				𝑛
			

			

				0
			

			
				=
				1
				−
				𝜀
			

			
				m
				a
				x
			

		
	
 for any ray-tracing program, where 
	
		
			

				𝜀
			

			
				m
				a
				x
			

		
	
 is defined as the maximum allowable relative error in single step length for any of the equations being integrated [7].
Instead, considering an oblique radio sounding with one ionospheric reflection, the Martyn’s absorption theorem [2] assures that the integral absorption coefficient 
	
		
			

				𝛽
			

			
				(
				𝑜
				𝑏
				)
				1
				2
			

		
	
 of a wave at angular frequency 
	
		
			

				𝜔
			

		
	
 incident on a flat ionosphere with angle 
	
		
			

				𝜑
			

			

				0
			

		
	
 is further dependent on the secant of 
	
		
			

				𝜑
			

			

				0
			

		
	
. A simple formula for a simplified problem results:
								
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				𝛽
			

			
				(
				𝑜
				𝑏
				)
				1
				2
			

			
				|
				|
			

			

				𝜔
			

			
				𝑜
				𝑏
			

			
				=
				𝜔
			

			
				=
				𝛽
			

			
				(
				𝑣
				)
				1
				2
			

			
				|
				|
			

			

				𝜔
			

			

				𝑣
			

			
				=
				𝜔
				c
				o
				s
				𝜑
			

			

				0
			

			
				c
				o
				s
				𝜑
			

			

				0
			

			
				≅
				2
				1
				−
				𝑛
			

			

				0
			

			
				
			
			
				1
				+
				𝑛
			

			

				0
			

			
				Δ
				𝑙
			

			
				(
				𝑣
				)
				1
				2
			

			
				
				ℎ
				1
				+
			

			
				m
				a
				x
			

			
				−
				ℎ
			

			

				0
			

			
				
			
			
				𝐻
				
				𝜈
			

			
				m
				a
				x
			

			
				
			
			
				𝑐
				𝜔
			

			
				
			
			
				𝜔
				+
				⟨
				𝜔
			

			

				𝐻
			

			
				⟩
				×
				c
				o
				s
				𝜑
			

			

				0
			

			
				
			
			
				c
				o
				s
				𝜑
			

			

				0
			

			
				
				
				𝜈
				1
				+
			

			
				m
				a
				x
			

			
				
			
			
				𝜔
				+
				⟨
				𝜔
			

			

				𝐻
			

			
				⟩
				1
			

			
				
			
			
				c
				o
				s
				𝜑
			

			

				0
			

			

				
			

			

				2
			

			
				
				c
				o
				s
				𝜑
			

			

				0
			

			
				=
				2
				1
				−
				𝑛
			

			

				0
			

			
				
			
			
				1
				+
				𝑛
			

			

				0
			

			
				Δ
				𝑙
			

			
				(
				𝑣
				)
				1
				2
			

			
				
				ℎ
				1
				+
			

			
				m
				a
				x
			

			
				−
				ℎ
			

			

				0
			

			
				
			
			
				𝐻
				
				𝜈
			

			
				m
				a
				x
			

			
				
			
			
				𝑐
				𝜔
			

			
				
			
			
				𝜔
				+
				⟨
				𝜔
			

			

				𝐻
			

			
				⟩
				×
				
				1
			

			
				
			
			
				s
				e
				c
				𝜑
			

			

				0
			

			
				+
				
				𝜈
			

			
				m
				a
				x
			

			
				
			
			
				𝜔
				+
				⟨
				𝜔
			

			

				𝐻
			

			
				⟩
				
			

			

				2
			

			
				s
				e
				c
				𝜑
			

			

				0
			

			
				
				.
			

		
	

7. Examples
Figure 2 compares two profiles of electron density modelling the ionospheric D-layer between the heights 
	
		
			

				ℎ
			

			

				1
			

		
	
 and 
	
		
			

				ℎ
			

			

				2
			

			
				>
				ℎ
			

			

				1
			

		
	
; the first profile agrees with the linearized complex refractive index (31a)-(31b), and is defined by a lower limit 
	
		
			
				(
				ℎ
			

			

				0
			

			
				,
				𝑁
			

			

				0
			

			

				)
			

		
	
, such that 
	
		
			

				ℎ
			

			

				0
			

			
				<
				ℎ
			

			

				1
			

		
	
, while the second profile responds to Chapman’s (19) and is specified by a relative maximum 
	
		
			
				(
				ℎ
			

			
				m
				a
				x
			

			
				,
				𝑁
			

			
				m
				a
				x
			

			

				)
			

		
	
, such that 
	
		
			

				ℎ
			

			
				m
				a
				x
			

			
				>
				ℎ
			

			

				2
			

		
	
.












	
		
		
			
		
		
			
		
	






	


	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	


	
	
	
	
	
	
	







	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	





Figure 2: Comparison between two profiles of electron density modelling the ionospheric D-layer between the heights 
	
		
			

				ℎ
			

			

				1
			

		
	
 and 
	
		
			

				ℎ
			

			

				2
			

			
				>
				ℎ
			

			

				1
			

		
	
.


Figures 3 and 4 consider an oblique radio sounding, with just one ionospheric reflection, between the transmitter Rome, Italy (41.89°, 12.49°) and the receiver Chania, Crete (35.52°, 24.02°) stations. The D-layer, represented by a complex eikonal model, covers a short range of heights between 
	
		
			

				ℎ
			

			

				1
			

			
				=
				5
				0
			

		
	
 km and 
	
		
			

				ℎ
			

			

				2
			

			
				=
				8
				0
				-
				-
				9
				0
			

		
	
 km, the absolute temperature decreasing, respectively, from 
	
		
			

				𝑇
			

			

				1
			

			
				=
				2
				7
				3
			

		
	
 K to 
	
		
			

				𝑇
			

			

				2
			

			
				=
				1
				8
				7
			

		
	
 K [3]. The whole ionosphere, represented by a Chapman’s profile, is characterized by a maximum of electron density 
	
		
			

				𝑁
			

			
				m
				a
				x
			

		
	
 which occurs at height 
	
		
			

				ℎ
			

			
				m
				a
				x
			

			
				=
				3
				0
				0
			

		
	
 km, corresponding to a collision frequency 
	
		
			

				𝜈
			

			
				m
				a
				x
			

			
				=
				𝜈
				(
				ℎ
			

			
				m
				a
				x
			

			
				)
				=
				1
				.
				6
				0
				5
				1
				2
			

		
	
 s−1. The linearized profile of complex refractive index (31a)-(31b) defined by a height of the ionosphere bottom 
	
		
			

				ℎ
			

			

				0
			

			
				=
				ℎ
			

			

				1
			

			
				=
				5
				0
			

		
	
 km and a refractive index across the ionosphere-neutral atmosphere boundary 
	
		
			

				𝑛
			

			

				0
			

			
				=
				𝑛
				(
				ℎ
			

			

				0
			

			
				)
				=
				1
				−
				𝜀
			

			
				m
				a
				x
			

		
	
 (
	
		
			

				𝜀
			

			
				m
				a
				x
			

		
	
 being the maximum allowable single step error, that is, 
	
		
			

				𝜀
			

			
				m
				a
				x
			

			
				≤
				1
				0
			

			
				−
				6
			

		
	
) is related to the collision frequency 
	
		
			

				𝜈
			

			
				m
				a
				x
			

		
	
 (11), the atmospheric scale height 
	
		
			

				𝐻
			

		
	
 (12), and the mean value of magnetic angular gyro-frequency 
	
		
			
				⟨
				𝜔
			

			

				𝐻
			

			

				⟩
			

		
	
 (18). The Chapman’s profile (19), specified by a solar zenith angle approximately null 
	
		
			
				𝜒
				=
				0
			

		
	
 and a scale height 
	
		
			
				𝐻
				=
				6
				2
			

		
	
 km [7], is correlated to the mean magnetic gyrofrequency 
	
		
			

				𝑓
			

			

				𝐻
			

			
				=
				1
				.
				2
			

		
	
 MHz. Suppose that the critical frequency at the Earth’s equator 
	
		
			

				𝑓
			

			
				𝑐
				0
			

		
	
, calculated as 
	
		
			

				𝑓
			

			
				2
				𝑐
				0
			

			
				=
				𝐾
				⋅
				𝑁
			

			
				m
				a
				x
			

		
	
 [being 
	
		
			
				𝐾
				=
				(
				𝑞
			

			
				2
				𝑒
			

			
				/
				𝜀
			

			

				0
			

			
				)
				/
				(
				4
				𝜋
			

			

				2
			

			

				𝑚
			

			

				𝑒
			

			
				)
				=
				8
				.
				0
				6
				1
				3
				8
				2
				⋅
				1
				0
			

			
				−
				5
			

		
	
 MHz2·cm3], can assume the following values: 
	
		
			

				𝑓
			

			
				𝑐
				0
			

			
				=
				3
				.
				6
				5
			

		
	
 MHz, 
	
		
			

				𝑓
			

			
				𝑐
				0
			

			
				=
				5
				.
				6
				5
			

		
	
 MHz, 
	
		
			

				𝑓
			

			
				𝑐
				0
			

			
				=
				6
				.
				8
				5
			

		
	
 MHz, 
	
		
			

				𝑓
			

			
				𝑐
				0
			

			
				=
				7
				.
				6
				0
			

		
	
 MHz, 
	
		
			

				𝑓
			

			
				𝑐
				0
			

			
				=
				7
				.
				8
				0
			

		
	
 MHz, 
	
		
			

				𝑓
			

			
				𝑐
				0
			

			
				=
				8
				.
				6
				0
			

		
	
 MHz, 
	
		
			

				𝑓
			

			
				𝑐
				0
			

			
				=
				9
				.
				1
				5
			

		
	
 MHz, and 
	
		
			

				𝑓
			

			
				𝑐
				0
			

			
				=
				1
				0
				.
				4
				5
			

		
	
 MHz.





	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
			
			
		
	


	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
	
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
		
	
		
	
		
	
		
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
		
		
			
		
		
			
			
		
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
			
		
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
			
		
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
			
		
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
			
		
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
			
		
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
			
		
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
			
		
		
			
			
		
		
			
		
		
			
			
			
		
	



(a)















	
		
	
	
		
	
	
		
	


	


	


	
	


	
	


	
	


	
	


	
	


	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	


















	












	
	












	
	
	












	
	
	












	
	
	































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































	
	
	
	
	
	
	
