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The influencing factors of building seismic capacity are analyzed, the basic cause events of the assessment target based on fault tree
analysis (FTA) are determined, the basic cause events in the FTA model are classified and summarized, and a judgment system of
building seismic capacity is built. The weight of each index factor in the Gini index calculation system is used, and the importance
of the index is analyzed. On the basis of the Spearman correlation coefficient calculation of the index, the improved naive Bayesian
algorithm is combined with the importance of the index to build a judgment model for the seismic capacity of housing buildings.
The sample set is constructed based on the judgment system with the basic data of some housing buildings in Huoshan County. In
order to improve the generalization ability and avoid overfitting, the K-SMOTE algorithm for mixed sampling was modified to
improve sample balance, and random k-fold cross validation method was used for sample division and model optimization,
achieving the determination of seismic capacity level of building. The research results indicate the following: (1) the accuracy
of model evaluation is 93%, with model accuracy and recall rates of 0.913 and 0.93, respectively, indicating strong
generalization ability of the model. (2) Selecting some actual examples of a building, the model judgment results are consistent
with the actual results, verifying the correctness of the proposed method for building the model, which can be effectively used
for determining the seismic capacity of building structures. (3) Applying the proposed method to the seismic capacity
assessment of buildings in the Ta-pieh Mountains of Lu’an, it is concluded that the seismic capacity of urban buildings is
common, while that of rural buildings is poor.

1. Introduction

In April 2022, China’s “Fourteenth Five-Year” National Plan
for Earthquake Preparedness and Disaster Reduction
(hereinafter referred to as the “Plan”) was released. The Plan
proposes that by 2025, the level of earthquake disaster pre-
vention will be significantly enhanced, the seismic capacity
will be strengthened, the management of seismic fortifica-
tion requirements will be strengthened according to law,
and the strengthening of housing facilities in earthquake
prone areas will continue. To achieve this goal, the first thing
is to evaluate the seismic capacity of building in earthquake
prone areas and, on this basis, implement targeted seismic
reinforcement measures. The damage to building caused by

earthquake is the main cause of casualties and economic
losses. Using scientific method to evaluate the seismic
capacity of building and determine the seismic capacity level
of regional buildings has guiding significance for govern-
ment department to strengthen the seismic fortification
management of urban building. Domestic and foreign
scholars have conducted relevant research on the evaluation
of seismic capacity of building based on surveys and analy-
sis. Document [1] discusses the construction and failure
characteristics of five common types of buildings in Nepal
and analyzes the seismic performance of different types of
buildings. Document [2] determined the seismic capacity
of buildings through nonlinear static analysis of three-
dimensional numerical models. Document [3] uses a
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trilinear analysis model to evaluate the bearing capacity of
buildings. Document [4] evaluated the seismic capacity of
some building structural models through nonlinear dynamic
simulations. The research on the seismic capacity of building
conducted above is mostly qualitative evaluation analysis,
which effectively reflects the seismic capacity of building.
However, the objective evaluation efficiency of the seismic
capacity of regional building needs to be further considered.
In order to objectively evaluate the seismic capacity of build-
ing structures, quantitative analysis of the properties of the
building itself is necessary. Currently, there is no mature
and complete quantitative indicator system in the seismic
industry for evaluating the seismic capacity of building
structures.

Domestic and foreign scholars have conducted research
in different fields and achieved significant results in the anal-
ysis, establishment, and evaluation of indicator system. Doc-
uments [5–8] combine FTA method with AHP, FPN, ETA,
and other methods to conduct research on railway safety
risk, natural gas fire risk, and oil tank fire and explosion acci-
dent risk assessment. Documents [9–11] carried out safety
assessment on chemical warehouse environment, safety of
steel structural engineering, and risk of power grid tripping
accident caused by typical natural disasters based on BN
method. Documents [12–15] conduct risk assessment
research in multiple fields such as supply chain, occupational
safety, and business environment based on the AHP
method. The above research uses quantitative deductive
analysis to construct an indicator system, and on this basis,
machine learning methods are used to construct an evalua-
tion model, effectively conducting quantitative evaluation
for specific problems. However, there are also certain limita-
tions. The FTA method can trace the cause events based on
the target events but cannot distinguish the overall safety sit-
uation of the target; AHP can analyze and evaluate the over-
all safety risk level of the target, but in the evaluation
process, human subjective factors are heavy, and quantita-
tive data is scarce, resulting in rough comparison, judgment,
and calculation of results; BN is suitable for studying com-
plex uncertainty problems, and the structural modeling pro-
cess is complex.

In recent years, with the development of artificial intelli-
gence, essential methods of AI collection, machine learning
(ML), and computer vision (CV) have become increasingly
popular in the field of building seismic evaluation. Docu-
ment [16] proposes a machine learning-derived two-stage
method for postearthquake building location and damage
assessment considering the data characteristics of satellite
remote sensing (SRS) optical images with dense distribution,
small size, and imbalanced numbers; the multiscale features
were successfully extracted and fused from SRS images of
densely distributed buildings by optimizing the YOLOv4
model toward the network structures, raining hyperpara-
meters, and anchor boxes. The fusion improved multichan-
nel features, and the optimization of network structure and
hyperparameters has significantly enhanced the average
location accuracy of postearthquake buildings. Document
[17] proposes a modified faster R-CNN for the multitype
seismic damage identification and localization of RC col-

umns; the RPN and fast R-CNN modules are merged into
the proposed faster R-CNN by sharing their convolutional
features to identify rectangular bounding boxes for multi-
type damage classification and localization. For the real-
world damaged structural images containing complex back-
ground information, the proposed model autonomously
drives attention to the damaged areas. Document [18] pro-
poses a computer vision and machine learning-based seismic
damage assessment framework for RC structures. A refined
Park-Ang model is built to express the coupled effects of
structural ductility and energy dissipation, which reflects
the nonlinear seismic damage accumulation and generates
a synthetical seismic damage indicator within 0~1 using hys-
teretic curve data.

The structural attributes of buildings are relatively com-
plex, including not only quantitative indicators of specific
values but also variable indicators described through seman-
tic qualitative methods, and there is a certain correlation
between different attributes. Naive Bayesian algorithm is an
emerging classification method that can simultaneously pro-
cess quantitative and qualitative information without being
sensitive to missing data. It is widely used for predicting
classification problems in various fields [19–22]. On the
basis of analyzing the FTA method and taking into account
the characteristics of building properties, this article uses the
FTA method to clarify the target causal structure for
determining the seismic capacity of building structures and
constructs a building seismic capacity judgment system.
The Spearman coefficient is used to calculate the correlation
between indicators, and independent indicators are selected
for AHP importance analysis and new attribute variables
are screened. Design a method for evaluating the seismic
capacity of building structures based on naive Bayesian algo-
rithm. In order to improve the performance of the algorithm
in handling imbalanced data, the K-SMOTE algorithm is
used for mixed sampling to improve the balance of the
sample set, and the random k-fold cross validation method
is used to improve the naive Bayesian model, improving
the accuracy and effectiveness of determining the seismic
capacity of building. The determination method flow is
shown in Figure 1. The method proposed in this article uses
a quantitative approach to accurately determine the seismic
capacity of building, which is more objective and can quickly
determine the distribution of seismic capacity of regional
buildings. It provides a theoretical basis for government
departments to formulate regional disaster prevention and
reduction strategies and implement seismic retrofitting of
regional buildings and also provides reference for the preas-
sessment of moderate to strong earthquake damage in the
Ta-pieh Mountain area of Lu’an.

2. Construction of Evaluation System for
Seismic Capacity of Building Structures

FTA is to select the target risk event as the top event and
search for the direct cause and indirect cause events of the
top event layer by layer from the top down to the basic cause
events. The logical relationship between events is connected
through logical symbols to form a directed fault tree analysis
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model (FTA model) [23]. The FTA model can intuitively
reflect the correlation between target risk events, intermediate
events, and fundamental cause events, understand the causes
of target risk occurrence, and find the best way to reduce risk,
providing reference for developing risk control measures.

The evaluation of seismic capacity of building structures
involves numerous kinds of information such as the struc-
ture of the building, environmental factors, and the degree
of earthquake damage under different intensities. There are
many influencing factors and a wide coverage. Factors at
any level not only directly affect the seismic capacity level
of the building but also have potential correlations with
other factors, jointly determining the seismic capacity of
the building. Therefore, in the process of analyzing the
causes of top-level target events, comprehensive consider-
ation should be given to the structural factors of the
building, comprehensive environmental factors, personnel’s
awareness of earthquake prevention and disaster reduction,
and the situation of building design specifications. The typ-
ical seismic damage characteristics of buildings produced
by historical earthquakes can be used as the basis for the
analysis of elementary event.

In fault tree analysis, the target event can be either an
event that has already occurred or an expected event. The
seismic capacity of building is taken as the target event.
Based on historical earthquake damage data and structural
characteristics of building, factors that affect the seismic
capacity ability of the building are investigated, leading

events and influencing factors are determined, and the anal-
ysis results show that the seismic capacity of the building is
determined by the foundation, basic situation, comprehen-
sive, residents’ seismic awareness, standardization, and
degree of earthquake damage. Each intermediate event is
Logical-And relationship to the target event, and the root
risk factors are gradually derived along the causal chain of
the intermediate events to obtain the basic cause events.
The intermediate event foundation is determined by the
bearing capacity of the subgrade and the surrounding ter-
rain, which are Logical-And relationship. The basic situation
of intermediate events is determined by the foundation bear-
ing capacity, seismic facilities, and column base connection,
which are Logical-And relationship. The intermediate events
are comprehensively determined by the bearing capacity of
the upper structure, the number of floors, the age of the
building, the integrated connection structure, the building
structure, the setting of ring beams and structural columns,
and the construction of the roof system, which are Logical-
And relationship. The residents’ seismic awareness in inter-
mediate events is determined by the intensity of earthquake
prevention and disaster reduction knowledge promotion
and the presence of flammable and explosive materials in
the building, which are Logical-And relationship. The stan-
dardization for intermediate events are determined by
whether to refer to the design specifications for building
foundation, whether to refer to the seismic design specifica-
tions for building, whether to implement the seismic
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Figure 1: Evaluation process for seismic capacity of building.
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evaluation standard for building, and whether to implement
the reliability evaluation standard for civil building, all of
which are Logical-And relationship. The degree of earth-
quake damage caused by intermediate events is determined
by the degree of earthquake damage in the VI degree area,
the degree of earthquake damage in the VII degree area,
and the degree of earthquake damage in the VIII degree area,
which are Logical-And relationship. Based on the causal
chain of events, determine the hierarchical relationship
between the target event, intermediate event, and root node,
and use logical gate to connect to form a fault tree, as shown
in Figure 2. In addition, on-site sampling surveys were con-
ducted to investigate the seismic capacity of some buildings
in certain area, and the rationality of fault tree was checked
from bottom to top.

On the basis of using FTA method to analyze the target
events, follow the principle of systematicness and normaliza-
tion, invite experts in the field of earthquake disaster assess-
ment to evaluate the indicators of each floor, delete the
indicators with low correlation, supplement the missing
indicators, and finally build a set of building seismic capabil-
ity judgment system consisting of 6 level 1 indicators and 21
level 2 indicators, as shown in Table 1.

3. Naive Bayesian Algorithm and Improvement

3.1. Naive Bayesian Algorithm. Naive Bayesian algorithm is a
classification algorithm widely used in machine learning and
data mining. It calculates the conditional probability of the
sample to be judged to belong to each category based on
Bayesian theorem and attribute conditional independence
assumption and then judges it to the category with the larg-
est probability.

Suppose there is a training sample set D, the number of
samples is N , and there are m classes C = C1, C2,⋯,Cm
in total. The data samples are represented by the n-dimen-
sional feature vector X = x1, x2,⋯,xn , and A1, A2,⋯, An
is the attributes of the samples. When there is a data sample
X with an unknown label, the classification algorithm pre-
dicts that X belongs to the category with the highest poste-
rior probability under X conditions. That is to say, the
naive Bayesian classification algorithm assigns unknown
samples to class Ci under the following conditions:

P Ci X > P Cj X , 1 ≤ i, j ≤m, j ≠ i 1

According to the principle that each feature of naive
Bayesian is independent from each other, the conditional
probability of the sample X to be determined to belong to
category Ci is calculated as

P Ci X = P X Ci P Ci

P X
, i = 1, 2,⋯,m, 2

P X Ci =
n

j=1
P xj Ci , j = 1, 2,⋯, n, 3

P Ci =
NCi

N
4

Among them, xj is the value of the pending sample X in
attribute Aj, P X is the joint distribution probability of
X = x1, x2,⋯,xn , P xj Ci is the conditional probability
that the value of the sample X to be determined in attri-
bute Aj is xj on the premise that it belongs to category
Ci, P Ci is the prior probability of class Ci, and NCi

is
the number of samples of class Ci in the sample set.

If Aj is a discrete value attribute, then P xj Ci = Sij/NCi
,

and Sij is the number of samples in category Ci with a value
of xj under the condition of attribute Aj.

If Aj is a continuous value attribute, first assume that the
attribute is subject to normal distribution, that is,

P xj Ci = 1
2πδCi

exp −
xj − uCi

2

2δ2Ci

5

Among them, uCi
and δ2Ci

are the mean and variance,
respectively.

Classify the unknown sample X and calculate the proba-
bility that X belongs to each category as Pi = P Ci X , i = 1,
2,⋯,m, with P = P1, P2,⋯,Pm . If the subscript of the
maximum value in the set P is k, then X is classified as the
k-th category with k ∈ C.

3.2. Algorithm Improvement. Naive Bayesian model has a
solid theoretical foundation in statistics and relatively stable
classification efficiency. The model requires very few esti-
mated parameters and is not very sensitive to missing data,
making the algorithm implementation relatively simple.
The premise of naive Bayesian theory is to assume that attri-
butes are independent of each other, but this assumption is
often not valid in practical application, as there may be a
large amount of redundancy between attributes, which can
affect the classification efficiency of naive Bayesian model.
When the correlation between attributes is small, naive
Bayesian model exhibits better classification performance.

It should be pointed out that when using the naive
Bayesian algorithm to process multidimensional imbalanced
data, there are mainly the following shortcomings: (1) there
are many influencing indicators for the seismic capacity of
buildings, and different indicators contribute to different
degrees of seismic capacity. There is mutual coupling
between each indicator, creating data redundancy and
increasing model complexity, reducing evaluation accuracy.
(2) When dealing with imbalanced data, classification pre-
diction tends to favor the majority class, which reduces the
classification accuracy of the algorithm. (3) Naive Bayesian
only uses the dataset once, and the final evaluation indicator
calculated on the validation set is closely related to the orig-
inal grouping. In some cases, the prediction performance
may be poor due to the assumed prior model. Therefore,
according to the above shortcomings of the current naive
Bayesian model, we should optimize it from three aspects,
the independence of attributes, the balance of sample data,
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and avoiding overfitting of the model, and propose an
improved naive Bayesian algorithm. The specific improve-
ment ideas are as follows:

(1) Considering the impact of attribute correlation on
the performance of naive Bayesian classification,
appropriate improvements are made to the correla-
tion between attributes. The AHP method is used
to calculate the weights of each influencing indicator,
and an appropriate number of indicators are selected
to meet the independence assumption to a certain
extent

(2) Preprocess the multidimensional imbalanced dataset
using the K-SMOTE algorithm to achieve the goal of
balancing the original dataset. Then, use random
crossover validation to divide the balanced dataset
into samples, construct new training and testing sets
for model training, and improve the algorithm’s gen-
eralization ability

(3) In the field of classification, although naive Bayesian
algorithm can make relatively scientific judgments,
some data must use subjective probabilities in the
calculation process, which ultimately leads to devia-
tion in the classification result. By training samples
from multiple classifiers to enhance the learning
ability of the algorithm, it is equivalent to handing
the problem over to multiple classifiers to divide
and conquer. Each classifier produces a result, and
everyone votes together. When voting, the classifica-
tion results of classifiers with low error rates should
account for a larger proportion

3.2.1. AHP Calculation of Indicator Weights. AHP is a sys-
tematic and hierarchical analysis method that combines
qualitative and quantitative analysis. It has practicality and
effectiveness in dealing with complex decision-making prob-
lems [24]. Using the analytic hierarchy process to calculate
the weights of each indicator in Figure 2, the approximate
steps are as follows: (1) construct a judgment matrix, (2)
consistency check of judgment matrix, and (3) calculate
indicator weights.

The judgment matrix is the basis for conducting hierar-
chical analysis, which can be obtained by comparing the
importance of the influence of criteria or indicator layer
factors on the factors in the previous layer.

Let a certain criterion layer or indicator layer X have n
factors, that is, X = x1, x2,⋯,xn . By comparing their
importance in influencing the factors of the previous layer,
the judgment matrix A is obtained as follows:

A = aij m×n 6

In the formula, aij represents the comparison result of
the i factor relative to the j factor.

In the process of comparing the importance of two fac-
tors, the importance of the basic cause event structure
obtained from FTA and the experience of experts in various
professional fields can serve as the basis for decision-making.
The values of aij are shown in Table 2.

Calculate the maximum eigenvalues of each layer of the
judgment matrix and the corresponding eigenvectors of each
factor according to reference [25], and perform consistency
testing on the judgment matrix. After passing the test, the
eigenvectors (normalized) are used as the weight vectors
for the influence of each factor in a certain layer on each fac-
tor in the previous layer. Finally, calculate the weights of
each indicator based on the eigenvectors, and select appro-
priate indicators based on the indicator weights to form a
new attribute dataset.

3.2.2. Hybrid Sampling Based on K-SMOTE Algorithm. The
SMOTE algorithm [26] mainly involves randomly inserting
artificial positive class samples into a few class samples to
balance the distribution between classes and improve the
classification performance of the classifier on the test set.
The general execution process of the SMOTE algorithm is
as follows: when processing positive class sample X, deter-
mine the k nearest neighbor samples closest to positive class
sample X, and then, randomly select m samples from these
k nearest neighbor samples. For each of these m samples Xi

Evaluation of
seismic capacity of
building structures

Comprehensive Residents' seismic
awareness

Standardization Degree of
earthquake damageBasic situationFoundation

A

B1 B2 B3 B4 B5 B6

C6 C7 C8 C9 C10 C11 C12C3 C4 C5C1 C2 C19 C20 C21C13 C14 C15 C16 C17 C18

Target event

Intermediate
cause event

Basic cause
event

Figure 2: FTA model.
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Table 1: Evaluation system for seismic capacity of building.

Target
One-level
indicator

Two-level indicator Quantification of indicator

(A) Evaluation of
seismic capacity of
building

(B1) Foundation
(C1) Subgrade bearing capacity High: 1/medium: 2/low: 3/poor: 4

(C2) Surrounding terrain
Favorable: 1/general: 2/disadvantageous:

3/dangerous: 4

(B2) Basic
situation

(C3) Foundation bearing capacity High: 1/medium: 2/low: 3/poor: 4

(C4) Seismic facilities Yes: 1/no: 2

(C5) Column base connection Reasonable: 1/unreasonable: 2

(B3)
Comprehensive

(C6) Upper structure bearing capacity High: 1/medium: 2/low: 3/poor: 4

(C7) Number of floors
Below 3 floors: 1/4~6 floors: 2/7~11 floors:

3/12 floors above: 4

(C8) Building age
Less than 30 years: 1/greater than or equal

to 30 years: 2

(C9) Integrated connection structure Reasonable: 1/unreasonable: 2

(C10) Building structure
Steel concrete: 1/brick concrete: 2/brick

wood: 3/civil: 4

(C11) Setting of ring beams and structural
columns

Reasonable: 1/unreasonable: 2

(C12) Roof system construction Perfect: 1/general: 2/poor: 3

(B4) Residents’
seismic awareness

(C13) Intensity of publicity on earthquake
prevention and disaster reduction knowledge

High: 1/general: 2/low: 3

(C14) Are there any flammable and explosive
materials inside the building

Yes: 1/no: 2

(B5)
Standardization

(C15) Do you refer to the design specifications
for building foundation

Yes: 1/no: 2

(C16) Do you refer to the seismic design
specifications for buildings

Yes: 1/no: 2

(C17) Is the seismic evaluation standard for
buildings implemented

Yes: 1/no: 2

(C18) Is the reliability evaluation standard for
civil buildings implemented

Yes: 1/no: 2

(B6) Degree of
earthquake
damage

(C19) Degree of seismic damage in the VI
degree area

Collapse: 1/severe damage: 2/moderate
damage: 3/minor damage: 4/basically

intact: 5

(C20) Degree of seismic damage in the seventh
degree area

Collapse: 1/severe damage: 2/moderate
damage: 3/minor damage: 4/basically

intact: 5

(C21) Degree of earthquake damage in the VIII
degree area

Collapse: 1/severe damage: 2/moderate
damage: 3/minor damage: 4/basically

intact: 5

Table 2: Value and significance of aij.

aij value Interpretation

1 The i factor is as important as the j factor

3 The i factor is slightly more important than the j factor

5 The i factor is significantly more important than the j factor

7 The i factor is more important than the j factor

9 The i factor is extremely important than the j factor

2, 4, 6, 8 The corresponding values of the intermediate states mentioned above

Reciprocal The judgment value obtained by comparing the j factor with the i factor is aij = 1/aji
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i = 1, 2,⋯,m , generate new artificial sample points according
to the following:

Xnew = X + rand 0, 1 ∗ Xi − X 7

In the formula, Xnew represents the newly interpolated
sample, rand 0, 1 represents the generation of a random
number from 0 to 1, and the balanced dataset after mixed
sampling using the SMOTE algorithm is Dnew.

In response to the problem of boundary ambiguity in
traditional SMOTE algorithm random sampling [27], in this
paper, a clustering algorithm [28] was introduced to improve
the SMOTE algorithm. The approximate implementation
process is as follows: k-means is used to perform clustering
operations on the entire sample space to determine the dis-
tribution status of each cluster in a minority class, and then,
the clustering centers of each cluster are calculated. Interpo-
lation is performed on the line between the cluster center
and the sample within the cluster according to equation
(8) to increase artificial sample data.

Xnew = ti + rand 0, 1 ∗ X − ti , i = 1, 2,⋯,N 8

Among them, X ∈ ti and Xnew are the newly interpolated

samples, ti is the cluster center, and X is the original sample
in the cluster with ti as the cluster center.

3.2.3. Random k-Fold Cross Validation Improvement. The
random k-fold cross validation improved the prediction per-
formance of the model obtained only by training the known
dataset to the unknown data, which is called “overfitting.”
The appearance of overfitting shows that the model did
not learn the essential laws in the data. In the random forest
algorithm, simple cross validation is used to avoid overfit-
ting; for example, the samples are divided into two parts in
proportion: 70% of the samples are used to train the model,
and 30% of the samples are used for model validation, which
to some extent improves the generalization ability of the
algorithm. To address the shortcomings of simple cross val-
idation, this paper proposes random fold cross validation to
improve the algorithm. The steps are as follows:

(1) Firstly, the order of Dnew in the balanced dataset is
randomly disrupted, and then, the sample set is
divided into k different combinations of training
and testing sets

(2) The k sample sets are traversed in turn. Each time,
the test set samples are used as the verification set,
and all the other samples are used as the training

Sample set

Training set Test set

1

2

3

k

E1

E2

E3

Ek

Eik
E = 1 ∑

k

i=1

Figure 3: Random k-fold cross validation process.

Table 3: Standard for seismic capacity level of building.

Seismic
capacity level

Seismic capacity Description

1
Estimated seismic capacity

meets the standard

When reaching VIII degree impact, the house is at a moderate degree of damage or below;
when reaching level VII impact, the house is slightly damaged or below; after reaching VI

degree impact, the house is basically intact

2
Suspected insufficient seismic

capacity
When reaching level VII impact, the house is at a moderate level of damage or below; when

reaching VI degree impact, the house is slightly damaged or below

3
Suspected severe lack of

seismic capacity
When reaching VI degree impact, the house is at a moderate level of damage or below
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set. The naive Bayesian algorithm is used to train
and evaluate the model

(3) Finally, use the average of k evaluation indicators as
the final evaluation indicator

By setting a random number seed to ensure the same
number of samples for each data split, the consistency of
cross validation is ensured. The sample set splitting and
training process is shown in Figure 3.

This method uses a random approach to construct a
sample set, with the model calculation results obtained from
each sample set represented by Ei, and the average of k eval-
uation indicators was used as the final evaluation value after
cross validation. Random k-fold cross validation can encour-
age the model to learn samples from multiple aspects and
avoid falling into local extremum.

4. Evaluation of Seismic Capacity of Building

4.1. Source of Sample Data. The data source of this paper is
the basic database of housing construction in Huoshan
County, and a dataset is constructed based on the seismic
capacity evaluation system of housing buildings in this
paper. Organize a research team to select urban and rural
areas in Huoshan to conduct a sampling survey on the prop-
erties of houses and buildings, and complete the missing
data of indicator C1 ~ C12. Update indicator C13 ~ C18 data

by inquiring with the housing and construction department
and street communities, filling out questionnaires, and other
forms to form basic data on the seismic capacity status of
houses in villages/towns/counties. Invite three experts with
rich experience in earthquake damage to evaluate the seismic
damage situation of sampled buildings under different inten-
sities on site, and determine the seismic capacity of the
buildings. Based on the results of averaging the three experts,
the seismic capacity level of the buildings was obtained, and
the indicator C19 ~ C21 was supplemented. Finally, 326 data
samples were formed. The seismic capacity level standards
for building structures are shown in Table 3.

There are a total of 326 training and testing samples,
each containing 22 attributes (secondary indicators and seis-
mic fortification level), classified by seismic fortification level
labels. The specific number of samples is as follows:

(1) Estimated seismic capacity meets the standard, includ-
ing 29 cases (8.9%)

(2) Suspected insufficient seismic capacity, including 97
cases (29.7%)

(3) Suspected severe insufficient seismic capacity, includ-
ing 200 cases (61.4%)

To ensure the balance of various samples in the sam-
ple set, the K-SMOTE algorithm is used to perform mixed

Table 4: Index weight of the evaluation system for seismic capacity of building.

One-level indicator Weight Two-level indicator Local weight Global weight Sort

Evaluation of seismic
capacity of building

Foundation 0.0613
Subgrade bearing capacity 0.8 0.0490 5

Surrounding terrain 0.2 0.0123 17

Basic situation 0.1719

Foundation bearing capacity 0.1570 0.0270 12

Seismic facilities 0.5936 0.1020 3

Column base connection 0.2494 0.0429 6

Comprehensive 0.6199

Upper structure bearing capacity 0.0971 0.0602 4

Number of layers 0.0450 0.0279 11

Building age 0.0293 0.0181 15

Integrated connection structure 0.2212 0.1371 2

Building structure 0.5330 0.3304 1

Setting of ring beams and structural columns 0.0293 0.0181 14

Roof system construction 0.0451 0.0279 10

Residents’ seismic
awareness

0.0286

Intensity of publicity on earthquake
prevention and disaster reduction knowledge

0.3333 0.0095 18

Are there any flammable and explosive
materials inside the building

0.6667 0.0190 13

Standardization 0.1183

Do you refer to the design specifications for
building foundation

0.2390 0.0283 9

Do you refer to the seismic design
specifications for buildings

0.3397 0.0403 7

Is the seismic evaluation standard for buildings
implemented

0.2808 0.0333 8

Is the reliability evaluation standard for civil
buildings implemented

0.1405 0.0167 16
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sampling on the sample set, and a new dataset with a
sample size of 600 is constructed. Specifically, the esti-
mated seismic capacity of 200 samples meets the standard.
200 samples are suspected to have insufficient seismic
capacity, and 200 samples are suspected to have severely
insufficient seismic capacity, achieving a balance of various
sample data.

4.2. Indicator Correlation and Weight Analysis. Construct a
set of indicators C = C1, C2,⋯,Cn , n = 21, where Ci is the

second-level indicator in the evaluation system for seismic
capacity of building structures. In the naive Bayesian algorithm,
it is necessary to maintain the independence of each indicator
and select the secondary indicators in the seismic capacity eval-
uation system of buildings for the Spearman correlation coeffi-
cient analysis. The calculation formula is as follows:

rs = 1 −
6∑n

j=1 Rj −Qj
2

n n2 − 1 9

The paired values of two indicators x and y are ranked in
order from small to large (or from large to small). x, y ∈ C, xj,
and yj represent the j-th value of the indicator sample values
after ranking, Rj represents the rank of xj, Qj represents the
rank of yj, Qj is the difference between the ranks of xj and yj,
and n is the sample size. Find the features with the highest cor-
relation with the target value, and the correlation between these

K-SMOTE algorithm mixed 
sampling and AHP screening 

indicators

Balanced dataset

Random k-fold cross validation 
partitioning sample set

(70% training, 30% testing)

Sample set 2Sample set 1 Sample set k

Naive Bayesian 1 Naive Bayesian 2 Naive Bayesian k

Prediction
model 1 

Prediction
model 2 

Prediction
model k 

Multidimensional 
imbalanced dataset

Merge output
model 

Figure 4: Improved naive Bayesian algorithm model construction process.

Table 5: Model evaluation form.

Seismic capacity level Accuracy rate Recall rate F1 score

1 0.876 0.92 0.897

2 0.87 0.93 0.899

3 0.862 0.94 0.899
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features is lower. The correlation matrix of each indicator
feature is

R =

1 000 0 008 − 0 033 0 079 − 0 010⋯ 0 103 − 0 040 0 002 − 0 014 − 0 005
0 008 1 000 0 204 0 158 0 004⋯−0 026 − 0 050 − 0 047 − 0 019 0 008
0 033 0 204 1 000 0 100 − 0 056⋯−0 070 0 048 − 0 036 0 005 − 0 052
0 079 0 158 0 100 1 000 0 107⋯ 0 031 0 068 − 0 150 − 0 094 − 0 136
−0 010 0 004 − 0 056 0 107 1 000⋯ 0 038 − 0 066 0 007 − 0 018 0 019

−0 084 0 086 0 089 − 0 163 − 0 103⋯−0 059 − 0 008 0 079 − 0 017 0 009
−0 031 − 0 072 0 019 − 0 082 0 008⋯ 0 016 0 038 0 051 0 018 − 0 080
0 030 0 015 − 0 069 0 022 0 064⋯−0 050 0 063 − 0 060 − 0 060 − 0 058
0 037 − 0 053 − 0 045 − 0 101 0 040⋯ 0 049 − 0 062 0 030 − 0 006 0 045
−0 044 − 0 032 0 033 0 045 0 008⋯ 0 137 0 137 − 0 587 − 0 688 − 0 776

−0 081 − 0 016 − 0 086 − 0 060 0 051⋯−0 070 0 117 − 0 057 − 0 045 − 0 011
−0 014 0 012 0 102 0 023 − 0 097⋯ 0 043 − 0 040 − 0 022 − 0 021 0 019

−0 138 0 002 − 0 023 − 0 054 − 0 060⋯ 0 040 − 0 057 − 0 005 0 013 − 0 030
0 006 − 0 094 − 0 091 0 025 − 0 062⋯−0 029 0 114 − 0 093 − 0 085 0 002
−0 047 0 013 − 0 132 0 074 0 014⋯−0 017 0 061 − 0 138 − 0 036 0 012
−0 043 0 037 0 066 0 003 − 0 076⋯ 0 047 0 063 − 0 112 − 0 123 − 0 092

0 103 − 0 026 − 0 070 0 031 0 038⋯ 1 000 − 0 032 − 0 224 − 0 204 − 0 168
−0 040 − 0 050 0 048 0 068 − 0 066⋯−0 032 1 000 − 0 183 − 0 243 − 0 224
0 002 − 0 047 − 0 036 − 0 150 0 007⋯−0 224 − 0 183 1 000 0 732 0 580
−0 014 − 0 019 0 005 − 0 094 − 0 018⋯−0 204 − 0 243 0 732 1 000 0 715
−0 005 0 008 − 0 052 − 0 136 0 019⋯−0 168 − 0 224 0 580 0 715 1 000

10

Rmn represents the correlation coefficient matrix between
indicator Cm and indicator Cn. According to equation (10), it
can be seen that the building structure (C10) has a strong corre-
lation with the seismic damage degree (C19) in the VI degree
zone, the seismic damage degree (C20) in the VII degree zone,
and the seismic damage degree (C21) in the VIII degree zone.
The correlation between the three indicators C19 − C21 is high,
and the indicator C19 − C21 is a nonbasic attribute indicator of
building construction. To ensure the independence of the attri-

bute set, select the indicator C1 − C18 and use the AHPmethod
to assign weights and sort them according to the global weights
of the secondary indicators, as shown in Table 4.

From Table 4, it can be seen that in the determination of
seismic capacity of building, the proportion of indicator
building structures is the highest, followed by overall con-
nection structures, seismic facilities, upper structure bearing
capacity, and foundation bearing capacity. Overall, the seis-
mic capacity of building structures is greatly influenced by
three levels: foundation, comprehensive, and construction
standards. The weight of the two indicators, namely, the
promotion intensity of earthquake prevention and disaster
reduction knowledge and the surrounding terrain, is rela-
tively small. In the management of seismic fortification,
emphasis should be placed on indicators with high weights,
and preventive measures should be taken to prevent risks
from escalating. After analyzing the correlation of indicators
and ranking their weights, the top 16 indicators were finally
extracted as a new attribute set, and then, a naive Bayesian
model was constructed for the new attribute dataset.

4.3. Model Building. Process the data from the sample data
source, construct a sample set according to evaluation indi-
cators, obtain a balanced dataset based on K-SMOTE algo-
rithm mixed sampling, use AHP method to filter indicators
to form a new attribute dataset, and then, use random k
-fold cross validation to generate k different sample sets. In
the experiment, k = 5, use naive Bayesian algorithm to con-
struct independent models for each sample set, use the con-
structed model to classify and predict the test sets in each
sample set, and average the results of each model to obtain
the seismic damage degree and seismic capacity level of the
building under different intensities. The model construction
process is shown in Figure 4.

4.4. Experimental Results

4.4.1. Model Evaluation. Evaluate the model using classifica-
tion accuracy, precision, and recall, and the calculation
results are shown in Table 5.

The accuracy rate in Table 2 indicates that the evaluation
result of the model is the proportion of samples at that level,
which is actually the proportion of samples at that level. The
average accuracy rate of this model evaluation is 0.87, indi-
cating the effectiveness of the model for sample classifica-
tion. The recall rate represents the actual proportion of
samples at that level, and the evaluation result is the propor-
tion of samples at that level. For seismic fortification capabil-
ity levels 1, 2, and 3, the recall rate is above 90%, with an
average recall rate of 0.93, reflecting the model’s ability to
find relevant samples in a given sample set; F1 score is an
indicator used in statistics to measure the accuracy of a
model. It takes into account both the accuracy and recall
of the classification model. F1 scores for seismic fortification
capability levels 1, 2, and 3 are all above 0.89, reflecting the
strong evaluation ability of the model for samples. The over-
all accuracy of the model evaluation is 93%, which verifies
the effectiveness of the method proposed in this article in
determining the seismic capacity of building structures.
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0.6

H
it 

ra
te

0.4

0.2

0.0
0.0 0.2 0.4

False alarm rate

0.6 0.8 1.0

Improved naive Bayesian (area = 0.93)
Naive Bayesian (area = 0.90)

Figure 5: ROC curve comparison chart.
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Table 6 shows the prediction of seismic capacity of some
buildings.

4.4.2. ROC Analysis. For classification models, we are not
only concerned with the accuracy of their predictions but
also with the following two indicators: hit rate (the ratio of
predicted x in all samples with a classification level of x)
and false alarm rate (the ratio of predicted x in all samples
with an actual classification level of x), which are used to
evaluate the model through the ROC curve (receiver operat-
ing characteristic curve) drawn by both. We hope that under
the same threshold, the false alarm rate should be as small as
possible, and the hit rate should be as high as possible; that
is, the ROC curve should be as steep as possible, and the
corresponding AUC (area under ROC curve) value should
be as high as possible. In order to further verify the evalua-
tion performance of the proposed method, the improved
naive Bayesian method and the traditional naive Bayesian

method were compared and analyzed through ROC curves,
as shown in Figure 5.

From the figure, it can be seen that the area under the
curve of the improved naive Bayesian method and the tradi-
tional naive Bayesian method is both greater than 0.90,
indicating that the naive Bayesian model is feasible in deter-
mining the seismic capacity of buildings. Compared with the
traditional naive Bayesian method, the ROC curve of the
improved naive Bayesian method is closer to the upper left
corner, and the evaluation accuracy is higher.

4.4.3. Application of Seismic Capacity Assessment for Regional
Housing Buildings. The Ta-pieh Mountains are located in the
eastern region of China, extending eastward to the Huoshan
in Lu’an. Affected by the Tanlu Fault Zone, the frequency of
small- and medium-sized earthquakes in the Dabie Mountain
region in Lu’an remains high. According to earthquake
records in Anhui Province, there have been 8 moderate to

Table 7: Calculation results of seismic capacity of some building areas in Ta-pieh Mountains of Lu’an.

Name
Proportion of buildings

with standard
fortification standards

Suspected insufficient
construction
proportion

Suspected severe
shortage of
buildings

Regional seismic
performance

index

Regional seismic
capacity level

Shuanghe Town,
Jinzhai County

0.0039 0.1302 0.8659 0.0756 Poor

Meishan Town,
Jinzhai County

0.1211 0.3658 0.5131 0.0980 Common

Youfangdian
Township,
Jinzhai County

0.0006 0.0547 0.9447 0.0723 Poor

Taoling Township,
Jinzhai County

0.0000 0.0059 0.9941 0.0702 Poor

Gubei Town,
Jinzhai County

0.0002 0.1933 0.8064 0.0778 Poor

Zhufo’an Town,
Huoshan County

0.1088 0.1839 0.7072 0.0893 Poor

Luoerling Town,
Huoshan County

0.0470 0.6324 0.3206 0.1005 Common

Taipingfan
Township,
Huoshan County

0.0154 0.0000 0.9846 0.0717 Poor

Hengshan Town,
Huoshan County

0.4900 0.2134 0.2966 0.1324 Common

Foziling Town,
Huoshan County

0.0158 0.1893 0.7948 0.0793 Poor

Dongxixi Township,
Huoshan County

0.0000 0.3546 0.6454 0.0842 Poor

Zhouji Town,
Huoqiu County

0.0925 0.4866 0.4210 0.0996 Common

Madian Town,
Huoqiu County

0.1484 0.2989 0.5528 0.0983 Common

Xihu Township,
Huoqiu County

0.0025 0.0141 0.9834 0.0708 Poor

Xiadian Town,
Huoqiu County

0.1551 0.1164 0.7285 0.0917 Common

Huhu Town,
Huoqiu County

0.0653 0.1340 0.8007 0.0825 Poor
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strong earthquakes with a magnitude of 5.0 or above in the
region, with the largest earthquake being the Huoshan Luoer-
ling Ms 6.25 earthquake. Over the years, counties and districts
near the Ta-pieh Mountains in Lu’an have been designated as
earthquake risk areas. Analyzing and researching the seismic
capacity of buildings in these areas has practical work signifi-
cance. The model proposed in this article was used to evaluate
the seismic capacity of 455879 buildings in 3 counties, 66
townships, and 455879 buildings in the Ta-pieh Mountains
of Lu’an.

The seismic capacity of regional buildings is determined
using the seismic performance index of regional buildings
[29], and the calculation method is as follows:

I = Pdb × Idb + Pbz × Ibz + Pyzbz × Iyzbz 11

I represents the seismic performance index of buildings
in townships as a region; Pdb, Pbz, and Pyzbz refer to the pro-
portion of buildings in townships with seismic fortification
capabilities that meet the standards, are suspected to be
insufficient, and are suspected to be severely insufficient;
Idb, Ibz , and Iyzbz refer to the seismic performance indices

of buildings in townships that meet the seismic capacity
standards, are suspected to be insufficient in seismic capac-
ity, and are suspected to be severely insufficient in seismic
capacity. They are obtained using expert experience method,
with values of 0.18, 0.11, and 0.07, respectively.

Divide the calculated seismic performance index of
regional buildings into above 0.18, 0. 09~0. 18, and below
0.09. The three levels respectively, represent good, average,
and poor seismic capacity of the house. According to equa-
tion (11), calculate the seismic performance index of each
township building based on the proportion of seismic forti-
fication types, and determine the seismic capacity level of
each township building (Table 7 and Figure 6).

According to the calculation results, except for Meishan
Town in Jinzhai County, Luoerling Town in Huoshan
County, Hengshan Town in Huoshan County, Zhouji Town
in Huoqiu County, Madian Town in Huoqiu County, and
Xiadian Town in Huoqiu County, the seismic performance
index of all other areas is below 0.09, indicating poor overall
seismic capacity. Through sampling surveys, the seismic
capacity distribution maps of densely packed building in dif-
ferent urban areas were verified. There are many civil struc-
tural buildings in Shuanghe Town, Youfangdian Township,

0 5 10 20 30

N

40 50
km

Jinzhai

Huoshan

Jinzhai

Huoshan

Seismic capacity of building
Poor

Common
Preferably

Huoqiu

Figure 6: Distribution map of seismic capacity of building areas in Ta-pieh Mountains of Lu’an.
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Taoling Township, Gubei Town, Zhufo’an Town, Taipingfan
Township, Foziling Town, Dongxixi Township, Xihu Town-
ship, and Huhu Town, with poor seismic capacity, in which
other regions have many brick and wood structures, and a
certain proportion of brick and concrete structures exist. The
overall seismic capacity is common, which is consistent with
the calculation results. Based on the evaluation system indica-
tors of seismic capacity of building structures, analysis was
conducted on the buildings in various townships. The types
of buildings in each region basically include frame structures,
standard brick concrete, nonstandard brick concrete, and a
small number of old civil structures and brick wood structures.
The buildings that are estimated to meet the seismic capacity
standards are mainly residential buildings, industrial factories,
and commercial buildings with multistory or high-rise frame
structures built in urban areas and market towns after 2000.
The building materials of the houses are mostly steel bars
and brick concrete, and they are designed and constructed
according to building standards. Residents have a wide range
of knowledge about earthquake prevention and disaster
reduction, and there is no unauthorized house renovation
or building behavior. Most buildings suspected to have
insufficient seismic capacity are old buildings in urban areas,
with self-built multistory houses in the urban-rural fringe.
One- to two-story buildings are uniformly planned along
national roads, provincial roads, county roads, etc. Some of
them are designed and constructed according to building
codes, and some buildings have been privately renovated.
Suspected to have severe seismic capacity, most of them
are single-story houses in urban villages and urban-rural
fringe areas, as well as 1-2-story low-rise self-built houses
with irregular sheeting characteristics distributed on rural
roadside and farmland. They have not been designed and
constructed according to building standards, and there are
many cases of private house renovation and disorderly con-
struction. Residents have weak awareness of earthquake pre-
vention and disaster reduction.

5. Conclusion

(1) A judgment system for seismic capacity of building
structures was constructed using FTA method. The
seismic capacity of building structures is greatly
influenced by indicators such as foundation bearing
capacity, foundation bearing capacity, seismic facili-
ties, overall connection structure, building structure,
and building seismic design specifications

(2) A sample set was constructed based on the basic data
of some houses and buildings in Huoshan County.
The K-SMOTE mixed sampling method was used
to solve the problem of sample imbalance, and the
naive Bayesian algorithm was improved through
random crossover validation to construct a model
for determining the seismic capacity of houses and
buildings. The model integrated the experience of
multiple experts in the field of earthquake disaster
assessment and obtained the seismic capacity level
of houses and buildings through quantitative indica-

tor evaluation, providing a new method for deter-
mining the seismic capacity of building structures

(3) This model can be effectively used to quickly deter-
mine the seismic capacity of building structures,
and compared with traditional naive Bayesian algo-
rithms, the model constructed by the method pro-
posed in this paper has better generalization and
higher accuracy

(4) Applying this method to the evaluation of seismic
capacity of buildings in the Dabie Mountain area of
Lu’an, the seismic performance index of buildings
in various townships is obtained, and the overall
seismic capacity of buildings in the Dabie Mountain
area of Lu’an is poor. Therefore, the implementation
and management of seismic fortification measures
should be strengthened
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