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Hepatobiliary diseases and their complications cause the accumulation of toxic bile acids (BA) in the liver, blood, and other
tissues, which may exacerbate the underlying condition and lead to unfavorable prognosis. To develop and validate prognostic
biomarkers for the prediction of complications of cholestatic liver disease based on urinary BA indices, liquid chromatography-
tandem mass spectrometry was used to analyze urine samples from 257 patients with cholestatic liver diseases during a 7-year
follow-up period. The urinary BA profile and non-BA parameters were monitored, and logistic regression models were used to
predict the prognosis of hepatobiliary disease-related complications. Urinary BA indices were applied to quantify the
composition, metabolism, hydrophilicity, and toxicity of the BA profile. We have developed and validated the bile-acid liver
disease complication (BALDC) model based on BA indices using logistic regression model, to predict the prognosis of
cholestatic liver disease complications including ascites. The mixed BA and non-BA model was the most accurate and
provided higher area under the receiver operating characteristic (ROC) and smaller akaike information criterion (AIC) values
compared to both non-BA and MELD (models for end stage liver disease) models. Therefore, the mixed BA and non-BA
model could be used to predict the development of ascites in patients diagnosed with liver disease at early stages of
intervention. This will help physicians to make a better decision when treating hepatobiliary disease-related ascites.

1. Introduction

Cholestatic liver diseases is a diverse group of hepatobiliary
diseases associated with limitations in bile flow due to a fail-
ure of bile flow or an impairment in bile production [1]. Rel-
atively common cholestatic liver diseases include primary
biliary cirrhosis (PBC) [2], primary sclerosing cholangitis
(PSC) [2], and alcoholic liver diseases [3].

Common complications associated with cholestatic liver
diseases include ascites [4], bacterial peritonitis [5], encepha-
lopathy [6], GI bleeding [7], hepatobiliary carcinoma [8],
hepatorenal syndrome [9], jaundice [10], peripheral edema

[11], and portal hypertension [12]. In particular, ascites is one
of the most common complications associated with cirrhosis
[13]. The risk of developing ascites is around 60% if the cause
of cirrhosis has not been treated [14]. Cirrhosis is an
advanced-stage liver disease caused by fibrosis, which impedes
the intrahepatic blood flow, increases portal blood pressure,
and causes accumulation of fluids in the peritoneal cavity
(ascites) [15]. The survival of cirrhosis patients decreases from
80% to 50% when these patients are diagnosed with ascites
[16]. Cirrhosis patients with ascites experience several symp-
toms, such as nausea [17], abdominal distention [18], dyspnea
[19], edema [11], and hepatorenal syndrome [20].
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Aspartate transaminase (AST), alanine transaminase
(ALT), alkaline phosphatase (ALP), glutamyl transferase
(GGT), serum creatinine, protime, and INR (international
normalized ratio) are commonly used biomarkers for the
diagnosis and prognosis of liver diseases [21–24]. However,
these biomarkers are not specific to bile duct or liver injuries,
and may be related to nonhepatobiliary conditions [21].
Therefore, models with multivariate parameters/markers
were developed to better predict the prognosis of liver dis-
eases with higher accuracy than individual parameters [25,
26].

Models with multivariate parameters are used to predict
survival of hepatobiliary disease-related complications such
as the Child-Turcotte-Pugh (CTP) and the Mayo model
for end-stage liver disease (MELD) scores. The CTP score
was originally used to determine the risk of shunt surgery
for severity of liver disease and its complications, such as
GI bleeding and encephalopathy [27, 28]. The MELD score
was originally used to estimate survival of liver patients
undergoing the transjugular intrahepatic portosystemic
shunt (TIPS) [29]. The MELD score is currently used to
determine patients’ eligibility for liver transplantation [30,
31]. In addition, the MELD score is used as a predictor of
liver disease complications, such as GI bleeding and portal
hypertension [27, 29]. Even though the CTP and MELD
scores are widely used worldwide, they still have several lim-
itations. Variables of ascites and encephalopathy are easily
affected by extraneous factors in the CTP score [29], while
the MELD score has a poor evaluation for patients with cho-
lestatic liver disease-related complications, such as ascites
and encephalopathy [25].

More recently, bile acids (BA) have been considered as
potential biomarkers for prognosis of hepatobiliary diseases
[1, 32, 33]. BA are synthesized in the liver and excreted into
bile, which flows to the small intestine via the bile duct [34].
BA have many physiological functions, such as fat absorp-
tion and cholesterol elimination [35]. Compared to their
physiological functions, BA also exhibit pathological effects
at high BA concentrations. They are associated with necrotic
effects on mitochondria, detergent effects on biological
membranes, and cancer promoting effects [36, 37]. There
are a plethora of human and animal studies illustrating the
link between the accumulation of toxic BA in the liver, blood
and extrahepatic tissues, and unfavorable liver disease prog-
nosis [1, 32, 38, 39].

However, BA have not been widely used in the clinic as
biomarkers for liver diseases due to several limitations. Both
individual and total BA concentrations have high inter- and
intravariability under normal conditions due to several fac-
tors including weight, gender, and alcohol consumption,
food ingestion, diurnal variation, and medication intake.
Therefore, the normal baseline ranges are difficult to estab-
lish [40–44].

To address these limitations, we have established the
concept of “BA idices.” BA indices are ratios calculated from
the absolute individual BA concentration and their metabo-
lites [1, 32, 45, 46]. BA indices have markedly low inter- and
intraindividual variability and are more resistant to the
above-mentioned cofactors than absolute BA concentra-

tions. For example, the absolute total and individual BA con-
centrations increased more than 2-fold in individuals one
hour after eating, while BA indices changed less than 10%
in the same individuals [32]. Furthermore, we have demon-
strated that urinary BA indices outperformed the currently
used blood liver enzymes as biomarkers for cholestatic liver
diseases [1, 32, 47]. In addition, we have recently developed
a BA-based survival model (the BA score (BAS) model) to
predict the prognosis of cholestatic liver diseases [48]. BAS
had a higher true-positive and true-negative prediction of
5- and 3-year death and liver transplant than other non-
BA models including MELD.

Multivariate markers and models are used to predict the
survival of cholestatic liver diseases [49, 50]. However, very
few studies have addressed the prognosis of cholestatic liver
disease-related complications. For example, the CTP score
has widely been used in the prognosis of cirrhosis, but it
does not provide clear guidance of prognosis for cirrhotic
patients with complications [51]. Similarly, the MELD score
has extensively been used to prioritize cirrhotic patients
awaiting liver transplantation [52], but it does not correlate
with cirrhosis-related complications, including encephalopa-
thy and bacterial peritonitis [53]. Therefore, there is a critical
need for markers/models to particularly predict complica-
tions of liver diseases.

In this study, we have expanded the application of BA
indices to predict complications, especially ascites, in
patients with liver diseases. The study focuses on developing
prognostic models based on BA indices to predict the devel-
opment of ascites in liver patients.

2. Materials and Methods

2.1. Study Participants. The study population was described
in details previously (cite our most recent paper [1, 32, 46,
48]. Briefly, patients with hepatobiliary conditions were
diagnosed by University of Nebraska Medical Center’s
(UNMC) hepatology Clinic (Omaha, NE, USA). The institu-
tional review board (IRB) approved this study at UNMC.
Hepatobiliary conditions included chronic hepatitis C (64),
chronic hepatitis B (15), Laennec’s cirrhosis (105), primary
biliary cholangitis (PBC) (12), primary sclerosing cholangitis
(PSC) (15), alpha-1-antitrypsin deficiency (5), and crypto-
genic cirrhosis (11). The following complications were diag-
nosed and monitored by the hepatologists: ascites (62),
bacterial peritonitis (2), encephalopathy (36), GI bleeding
(18), hepatobiliary carcinoma (15), hepatorenal syndrome
(1), and portal hypertension (106). Two-hundred fifty-
seven patients with cholestatic liver diseases between the
ages of 19 and 65 years (121 female and 136 male) were
recruited and treated at the UNMC from November of
2011 to December of 2018 into the study. Thirty milliliters’
urine samples were collected from patients on their first
and follow-up visits to the hepatology clinic. All urine sam-
ples were stored at -80°C before BA analysis using liquid
chromatography-tandem mass spectrometry (LC-MS/MS)
until analyzed. The study was approved by the institutional
review board (IRB) at UNMC and written informed con-
sents were provided for all participating subjects. The
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registry URL was (https://www.clinicaltrials.gov/ct2/show/
NCT01200082?term=alnouti&draw=2&rank=1). The clini-
cal trial number was NCT01200082.

2.2. Non-BA Parameters. The performance of potential bio-
markers from the urinary BA profile has also been compared
with the performance of existing markers of liver function
including alanine transaminase (ALT), aspartate transami-
nase (AST), serum creatinine, albumin, bilirubin, interna-
tional normalized ratio (INR), protime, AST/ALT ratio,
and AST/platelet ratio index (APRI).

2.3. Bile Acid (BA) Quantification by Liquid
Chromatography-Tandem Mass Spectrometry (LC-MS/MS).
BA concentrations were quantified by LC-MS/MS, as
described previously [1, 32, 46, 48]. Briefly, a Waters
ACQUITY ultraperformance liquid chromatography
(UPLC) system (Waters, Milford, MA, USA) coupled to an
Applied Biosystem 4000 Q TRAP® quadrupole linear ion
trap hybrid mass spectrometer with an electrospray ioniza-
tion (ESI) source (Applied Biosystems, MDS Sciex, Foster
City, CA, USA) was used to perform the LC-MS/MS analy-
sis. All chromatographic separations were performed with
an ACQUITY UPLC® BEH C18 column (2:1 × 150mm,
1.7μm) equipped with an ACQUITY UPLC C18 guard col-
umn (Waters, Milford, MA, USA).

2.4. Sample Preparation. Solid phase extraction was used to
extract urine samples as mentioned previously [1, 32, 45,
54, 55]. 100μL of urine samples were spiked with 10μL of
internal standard (IS), vortexed and loaded on to Supel-
cleanTM LC-18 SPE cartridges preconditioned with 4mL
MeOH, followed by 4mL H2O. Loaded cartridges were then
washed with 3mL H2O and eluted with 4mL MeOH. The
eluates were evaporated under vacuum at room temperature
and reconstituted in a 100μL of 50% MeOH solution. Ten
microliters of reconstituted samples was injected for LC-
MS/MS analysis.

2.5. Calculation of BA Indices. The BA profile in urine was
characterized using BA “indices,” as we have described pre-
viously [1, 32, 46, 48]. Table 1 shows a summary of the BA
indices used in the current study. BA indices describe the
composition, hydrophilicity, formation of 12α-OH BA by
CYP8B1, metabolism, and formation of secondary BA by
intestinal bacteria. The composition indices were calculated
as the ratio of the concentration of individual BA in all their
forms (unamidated, amidated, unsulfated, and sulfated) to
the total concentration of BA. Hydrophilicity indices include
the percentages of the BA pool exist as mono-, di-, or tri-OH
BA as well as the hydrophobicity index (HI) of the BA pool.
The percentages of mono-OH BA (LCA), di-OH BA
(UDCA, MDCA, HDCA, DCA, and CDCA), and tri-OH
BA (CA, MCA, and HCA) were calculated as the ratio of
the concentration of the sum of the respective BA in all their
forms to the total concentration of BA. HI was calculated
according to the Heuman index, which based on the relative
contributions of the individual BA to the total BA pool and
their His [56].

12α-OH BA are formed by CYP8B1 in the liver and
include DCA, CA, Nor-DCA, and 3-dehydroCA. Therefore,
CYP8B1 activity can be measured by the ratio of 12α-OH
BA to the remaining of all other BA (non-12α-OH BA).
Another marker for CYP8B1 is the ratio of CA to CDCA
because CA is formed by the 12α hydroxylation of CDCA.
In the same way, the ratio of 12α-OH (DCA, CA, Nor-
DCA, and 3-dehydroCA in all their forms) to non-12α-OH
(HDCA, CDCA, UDCA, LCA, MDCA, MCA, HCA, 12-
oxo-CDCA, 6-oxo-LCA, 7-oxo-LCA, 12-oxo-LCA, isoLCA,
and isoDCA in all their forms) was calculated.

BA are primarily metabolized by sulfation, glycine (G),
and taurine (T) amidation in the liver. The percentage of sul-
fation of individual BA was calculated as the ratio of the con-
centration of sulfated BA, in both the unamidated and
amidated forms, to the total concentration of individual
BA in all of their forms (unamidated, amidated, unsulfated,
and sulfated). The percentage of amidation of individual
BA was calculated as the ratio of the concentration of ami-
dated BA, in both the unsulfated and sulfated forms, to the
total concentration of individual BA in all of their forms
(unamidated, amidated, unsulfated, and sulfated). In addi-
tion, percentages of amidation were divided into the per-
centages of BA existing as taurine (T) or as glycine (G)
amidates.

Primary BA are synthesized in the liver and secreted into
the intestine via bile, where they are metabolized by intesti-
nal bacteria into secondary BA. The ratio of primary (CA,
CDCA, MCA, and HCA in all their forms) to secondary
BA (DCA, LCA, UDCA, HDCA, MDCA, Nor-DCA, 12-
oxo-CDCA, 3-dehydroCA, 6-oxo-LCA, 7-oxo-LCA, 12-
oxo- LCA, isoLCA, and isoDCA in all their forms) was also
calculated.

2.6. Statistical Analysis. To develop prognostic models, logis-
tic regression model was used to predict the prognosis of
hepatobiliary diseases in terms of developing disease-
related complications. Models were constructed to predict
(i) various individual complications and (ii) all complica-
tions combined (pooled) in the entire liver-patient popula-
tion as well as in the individual disease subtype-
populations (patient groups with specific disease subtypes).
All statistical analyses were conducted using the Statistical
Product and Service Solutions (SPSS) software, version 26
(IBM corporation, Armonk, NY, USA).

We developed models with six different sets of predic-
tors: (i) BA variables only, (ii) Non-BA variables only, (iii)
Mixed BA and non-BA variables, (iv) original model for
end-stage liver disease (MELD), (v) MELD variable with
coefficients from our data set, and (vi) original MELD mod-
ified with BA and/or non-BA variables.

Individual BA and/or non-BA variables were analyzed as
possible predictors in a univariate logistic regression analy-
sis. Significant variables (P value < 0.05) were selected from
the univariate analysis to include in the multivariate analysis.
The backward elimination method was used to avoid multi-
collinearity and retain the statistically significant variables
with retention criteria during the multivariate analysis.
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The estimated odds ratio (OR) of developing complica-
tions by BA and/or non-BA variables was obtained from
the final multivariate logistic regression model for all sub-
jects.

log dOR� �
= log P̂

1 − P̂

� �
= a + b1x1+⋯+bkxk, ð1Þ

where P̂ is the probability of developing complications; a
is the estimated intercept; and b1,⋯, bk represent the esti-
mated regression coefficients for the variables x1,⋯, xk [57].

The final multivariate logistic regression model provides
the associations between significant BA and/or non-BA var-
iables and the odds of developing complications. We then
computed the predicted probability, which transforms the
estimated probabilities of complications to a scale of 0 to 1
using the following equation:

P̂ =
exp log dOR� �� �

1 + exp log dOR� �� � : ð2Þ

Goodness-of-fit was assessed by using the Hosmer–
Lemeshow (HL) test for logistic regression models. This test
compares the observed number of individuals to the
expected number of individuals in each pattern, which
shows how well the data fits into the model [57]. In general,
the HL test indicates a poor fit if the P value is less than 0.05.

We used akaike information criterion (AIC) for model
comparisons among logistic regression models with different
sets of predictors [58]. Minimizing AIC values represents a
better goodness-of-fit [59]. The AIC values were calculated
by

AIC = −2 ln Lð Þ + 2K , ð3Þ

where L is the likelihood evaluated at the maximum likeli-
hood estimate and K is the number of parameters in the
models [60].

Bootstrapping was used to validate the models. Boot-
strapping is a resampling technique used to estimate statis-
tics on a population by sampling a data set with
replacements [61]. The parameters included P value, bias,

and standard error (SE) [62]. The bootstrapping estimate
of bias indicated the difference between the estimates com-
puted using the original sample and the mean of the boot-
strap estimate. The SE represented the standard deviation
of the estimator and reflects how far our sample estimate
deviates from the actual parameters [63]. The range of
regression coefficients (B) was defined as a 95% confidence
interval of the bootstrap estimator. A bootstrap estimate of
bias is the difference between the estimate calculated using
the original sample and the mean of the bootstrap estimates.
Acceptance criteria of P values were set at 0.05.

We also performed receiver operating characteristic
curve (ROC) on the scores from multivariate logistic regres-
sion models to determine their optimal cut-off value in dif-
ferentiating patients with or without ascites. The cut-off
values with optimum specificity vs. sensitivity were selected,
and the areas under the ROC curve (AUC) values were cal-
culated. AUC of 0.9 or greater is rarely seen, AUC between
0.8 and 0.9 indicates excellent diagnostic accuracy, and any
AUC over 0.7 may be considered clinically useful [54, 57,
64, 65].

The performance of the different models in predicting
the occurrence of complications was compared using statis-
tical outcomes from the HL test, AIC values, bootstrapping,
and AUC values.

3. Results

3.1. Demographics. Table 2 shows a summary of the demo-
graphics of patients, who participated in this study. During
the 7-year follow-up period, there were 257 patients with
cholestatic liver diseases. The development of the following
liver disease-related complications was monitored: ascites
(62), bacterial peritonitis (2), encephalopathy (36), GI bleed-
ing (18), hepatobiliary carcinoma (15), hepatorenal syn-
drome (1), jaundice (7), peripheral edema (63), and portal
hypertension (106).

3.2. Univariate Logistic Regression Analysis for Ascites
Prediction in the Entire Liver-Patient Population. Table 3
shows the results of univariate logistic regression analyses
for ascites prediction by BA indices in the entire liver-
patient population. The odds ratio (OR) quantifies the mag-
nitude of the risk of developing ascites per one unit as well as

Table 1: List of BA indices.

Composition Hepatic metabolism Hydrophilicity CYP8B1 activity Intestinal contribution

Concentration of individual BA Total sulfated Total mono-OH Total 12α-OH Total primary

% of individual BA

Total G-amidated Total Di-OH Total non-12α-OH Total secondary

Total T-amidated Total tri-OH 12α-OH/non12α-OH Primary/secondary

% Sulfation % mono-OH CA/CDCA % primary

% Amidation % di-OH % 12α-OH % secondary

% G-amidation % tri-OH % non-12α-OH

% T-amidation HI

BA: bile acids; G: glycine; T: taurine; CDCA: chenodeoxycholic acid; CA: cholic acid.
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10% and 20% change of the normal values of BA indices. We
found a correlation between the odds of developing ascites
and many BA indices (P values < 0.05). Positive regression
coefficient (B) values indicate that odds of developing ascites
increase with increasing the values of BA indices, while neg-
ative coefficients imply the odds of developing ascites
increase with decreasing the value of BA indices. For exam-
ple, for every 20% increase in the % CDCA, the odds of
developing ascites increased 1.4-fold (OR: 1.387; P value <
0.05). In contrast for every 20% increase in % MDCA, the
odds of developing ascites decreased 0.774-fold (OR: 0.774;
P value< 0.05).

We performed the same univariate logistic regression
analysis for demographics and non-BA parameters as well
(Table 4). For demographics, gender was the only statisti-
cally significant variable (P value < 0.05), with the odds of
developing ascites being 1.3-fold higher in males than
females. For non-BA parameters, increasing levels of creati-
nine, INR, protime, AST, bilirubin, AST/ALT, and MELD
significantly increased the odds of developing ascites,
whereas decreasing levels of albumin and ALT significantly
increased the odds of developing ascites. For example, for
every 20% increase in the INR, the odds of developing ascites
increased 1.4-fold (OR: 1.391; P value < 0.05). In contrast,
for every 20% increase in the albumin, the odds of develop-
ing ascites decreased 0.23-fold (OR: 0.231; P value < 0.05).

4. Multivariate Logistic Regression Analysis for
Ascites Prediction in the Entire Liver-
Patient Population

4.1. The BALDC Model. In multivariate logistic regression
analysis, a backward elimination method was used to iden-
tify a statistically relevant BA variable from univariate anal-
ysis. The only BA variables retained in the multivariate
model were % MDCA and % primary BA, which were inde-
pendently predictive of developing ascites (Table 5(a)). The
estimated odds ratio (OR) of developing ascites as a function

of BA variables (BA-dOR) for individual patients were calcu-
lated using this equation:

BALDC score = Log BA‐ð Þ = −3:463 − 2:452 ×%MDCAð Þ
+ 0:045 ×%PrimaryBAð Þ:

ð4Þ

The predicted probability ðP̂Þ of ascites as a function of
BALDC (BA-P̂) variables was then calculated using this
equation:

BA‐ P̂
� �

=
exp Log BA‐dOR� �� �

1 + exp Log BA‐dOR� �� � : ð5Þ

Figure 1(a) shows the probability of developing ascites
ðBA − P̂Þ as predicted by the BALDC score.

For example, for a patient with a % MDCA of 1%, and %
primary BA of 30%, the estimated odds ratio (BA-OR) of
developing ascites by BA variables is as follows:

BALDC score = Log BA‐ð Þ = −3:463 − 2:452 × 1%ð Þ
+ 0:045 × 30%ð Þ = −4:564:

ð6Þ

Then, the predicted probability of developing ascites
(BA-P̂) by BA variables can be calculated as

BA‐ P̂
� �

= exp −4:565ð Þ
1 + exp −4:565ð Þ = 0:01: ð7Þ

Furthermore, we tested the effect of the significant
demographic variables from univariate analysis, i.e., gender,
on this BADLC multivariate model. Gender was retained in
the multivariate analysis but with no-minimal improvement
of model validation and comparison criteria including boot-
strapping, AIC, and ROC-AUC. Therefore, we did not
include gender in the multivariate logistic regression model.

4.2. The Non-BA Model. We performed the same multivari-
ate logistic regression analysis for non-BA parameters as
well. Albumin level and MELD were the only significant pre-
dictive variables of developing ascites (Table 5(b)). The esti-
mated odds ratio (OR) of developing ascites as a function of

non-BA variables (non-BA-dOR) for individual patients was

Table 2: Demographics.

Patients

n 257

Gender

Male 136

Female 121

Age (yr)

Mean ± SEM 52:2 ± 0:71
Body mass index

Mean ± SEM 30:7 ± 0:45
Race

White 217

Black 11

Asian 7

Hispanic 4

Others 18

Liver disease complications

Ascites 62

Bacterial peritonitis 2

Encephalopathy 36

GI bleeding 18

Hepatobiliary carcinoma 15

Hepatorenal syndrome 1

Jaundice 7

Peripheral edema 63

Portal hypertension 106
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Table 3: Univariate logistic regression analyses for the prediction of developing ascites in the entire liver-patient population based on BA
indices.

BA (μM)/BA indices B-value (regression coefficient) P value
Odds ratio (OR): Exp (B)

1 unit change 10% change 20% change

Total BA 0.002 0.059 1.002 1.010 1.020

Total LCA 0.024 0.275 1.024 1.007 1.013

Total UDCA 0.001 0.538 1.001 1.002 1.004

Total CDCA 0.009 0.002 1.009 1.017 1.034

Total DCA -0.001 0.871 0.999 0.999 0.999

Total HDCA -20.099 1.000 0.001 0.980 0.961

Total MDCA -20.104 0.999 0.001 0.923 0.851

Total CA 0.052 0.007 1.053 1.013 1.027

Total MCA 0.008 0.528 1.008 1.002 1.005

Total HCA 0.407 0.012 1.502 1.007 1.015

% LCA -0.071 0.004 0.931 0.936 0.877

% UDCA -0.049 0.001 0.952 0.892 0.795

% CDCA 0.048 0.001 1.049 1.178 1.387

% DCA -0.061 0.001 0.941 0.908 0.825

% HDCA -6.66 0.108 0.001 0.980 0.960

% MDCA -3.281 0.003 0.038 0.880 0.774

% CA 0.065 0.005 1.067 1.040 1.081

% MCA -0.007 0.713 0.993 0.996 0.991

% HCA -0.671 0.001 0.511 0.977 0.954

Total Unamidated 0.016 0.076 1.016 1.009 1.017

Total G-amidated 0.002 0.103 1.002 1.008 1.017

Total T-amidated 0.019 0.016 1.019 1.011 1.021

% Amidation 0.041 0.017 1.042 1.433 2.054

% G-amidation -0.004 0.665 0.996 0.970 0.940

% T-amidation 0.037 0.002 1.038 1.039 1.080

Total Unsulfated 0.061 0.076 1.016 1.009 1.017

Total sulfated 0.002 0.061 1.002 1.009 1.018

% Sulfation 0.012 0.338 1.012 1.106 1.224

Total mono-OH 0.024 0.275 1.024 1.007 1.013

Total Di-OH 0.002 0.074 1.002 1.008 1.017

Total tri-OH 0.018 0.029 1.018 1.010 1.021

% mono-OH -0.071 0.004 0.931 0.936 0.877

% Di-OH 0.018 0.095 1.018 1.142 1.304

% tri-OH 0.021 0.108 1.021 1.027 1.055

Total 12α-OH 0.008 0.162 1.008 1.007 1.014

Total non-12α-OH 0.002 0.068 1.002 1.008 1.017

12α-OH/non12α-OH -0.787 0.114 0.455 0.974 0.948

CA/CDCA -0.997 0.159 0.369 0.974 0.949

% 12α-OH -0.033 0.014 0.968 0.928 0.861

% non-12α-OH 0.033 0.014 1.034 1.291 1.666

Total primary 0.007 0.003 1.007 1.017 1.034

Total secondary 0.001 0.543 1.001 1.003 1.005

Primary/secondary 0.09 0.001 1.094 1.020 1.041

% primary 0.049 0.001 1.050 1.258 1.582

% secondary -0.049 0.001 0.952 0.770 0.594

HI 0.074 0.012 1.077 0.999 0.998

BA concentrations are in (μM), while BA indices are in percentage.
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calculated from this equation:

Non − BA score = Log non‐BA‐dOR� �
= 0:947 − 1:205 × Albumin level g

dl
� �� �

+ 0:189 ×MELDð Þ:
ð8Þ

The predicted probability ðP̂Þ of developing ascites as a
function of non-BA ðnon − BA − P̂Þ variables was calculated
using this equation:

Non‐BA‐ P̂
� �

=
exp log Log non‐BA‐dOR� �� �

1 + exp log Log non‐BA‐dOR� �� � : ð9Þ

Figure 1(b) shows the probability of developing ascites as
predicted by the non-BA score.

4.3. The Mixed BA and Non-BA Model. For mixed BA and
non-BA variables, the variables retained in the multivariate
model were % CDCA, primary/secondary BA, albumin level,
and MELD which were independently predictive of develop-
ing ascites (Table 5(c)). The estimated odds ratio (OR) of
developing ascites by mixed BA and non-BA for individual

Table 4: Univariate logistic regression analyses for the prediction
of developing ascites in the entire liver-patient population based
on demographics and non-BA parameters.

Demographics and
non-BA parameters

B
value

P
value

Odds ratio (OR): Exp (B)
1 unit
change

10%
change

20%
change

Age (yr) 0.012 0.366 1.012 1.000 1.001

BMI -0.008 0.685 0.992 1.000 0.999

Gender 1.291 0.001 3.636 NA NA

Race ∗ 0.258 ∗ ∗ ∗

Creatinine (mg/dL) 0.048 0.601 1.049 1.005 1.010

Albumin (g/dL) -1.980 0.001 0.138 0.481 0.231

INR 1.529 0.001 4.614 1.180 1.391

Protime (sec) 0.133 0.001 1.142 1.156 1.337

AST (U/L) 0.003 0.168 1.003 1.017 1.034

ALT (U/L) -0.004 0.257 0.996 0.977 0.955

Bilirubin (mg/dL) 0.536 0.001 1.709 1.069 1.142

AST/ALT 1.895 0.001 6.653 1.246 1.552

MELD 0.276 0.001 1.318 1.281 1.642

B value: regression coefficient; ∗Race is a categorical variable which contains
five race groups. There are five values for B value and HR, one for each race
group, which are not shown, because was not statistically significant in
univariate logistic regression analysis; BMI: body mass index; INR:
international normalized ratio; AST: aspartate transaminase; ALT: alanine
transaminase; MELD: model for end-stage liver disease. NA: not applicable.

Table 5: Multivariate logistic regression analyses for ascites in the
entire liver-patient population.

(a) BALDC model

BA
parameters

B
value

Standard
error

P
value

Odds ratio (OR):
Exp (B)

1-
unit

10% 20%

Intercept -3.463 — 0.001 0.031 — —

% MDCA -2.452 1.112% 0.027 0.086 0.909 0.826

% Primary
BA

0.045 0.008% 0.001 1.046 1.234 1.524

Using the regression coefficients (B) from this table, the estimated (OR) of
developing ascites by the BALDC model is BALDC score = Log ðBA‐ORÞ
= −3:463 − ð2:452 ×%MDCAÞ + ð0:045 ×%primary BAÞ.

(b) Non-BA model

Non-BA
parameters

B
value

Standard
error

P
value

Odds ratio (OR):
Exp (B)

1-
unit

10% 20%

Intercept 0.947 — 0.560 2.577 — —

MELD 0.189 0.050 0.001 1.208 1.185 1.404

Albumin level -1.205 0.387 0.002 0.300 0.640 0.410

Using the regression coefficients (B) from this table, the estimated (OR) of
developing ascites by the non-BA model is non‐BA score = Log ðNon‐BA‐
ORÞ = 0:947 + ð0:189 ×MELDÞ − ð1:205 × albumin levelÞ.

(c) Mixed BA and Non-BA model

Mixed BA and
non-BA
parameters

B
value

Standard
error

P
value

Odds ratio (OR):
Exp (B)

1-
unit

10% 20%

Intercept -0.275 1.768 0.894 0.79 — —

% CDCA 0.029 0.012% 0.014 1.029 1.104 1.218

Primary BA/
secondary BA

-0.077 0.032 0.015 0.926 0.983 0.967

Albumin level -1.143 0.407 0.004 0.319 0.655 0.429

MELD 0.189 0.053 0.001 1.208 1.185 1.404

Using the regression coefficients (B) from this table, the estimated (OR) of
developing ascites by the mixed BA and non-BA model is mixedBA and
non − BA score = Log ðBA‐ORÞ = −0:275 + ð0:029 ×%CDCAÞ − ð0:077 ×
primary BA/secondary BAÞ − ð1:143 × albumin levelÞ + ð0:189 ×MELDÞ.

(d) Original MELD model

MELD
parameters

B
value

Standard
error

P
value

Odds ratio (OR):
Exp (B)

1-
unit

10% 20%

Intercept -4.049 0.554 0.001 1.317 — —

MELD 0.276 0.045 0.001 0.017 0.026 0.001

Using the regression coefficients (B) from this table, the estimated (OR) of
developing ascites by the original MELD model is originalMELD score =
Log ðMELD −ORÞ = −4:049 + ð0:276 ×MELDÞ.
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patients was calculated from this equation:

Mixed BA and non − BA score = Log mixed BA and non‐BA‐dOR� �
= −0:275 + 0:029 ×%CDCAð Þ − 0:077 × PrimaryBA

SecondaryBA

� 	
− 1:143 × Albumin level g

dl
� �� �

+ 0:189 ×MELDð Þ:
ð10Þ

The predicted probability ðP̂Þ of developing ascites as a
function of mixed BA and non − BA ðmixed BA and non −
BA − P̂Þ variables was calculated using this equation:

Mixed BA and non‐BA‐ P̂
� �

=
exp log Log mixed BA and non‐BA‐dOR� �� �

1 + exp log Log mixed BA and non‐BA‐dOR� �� �
ð11Þ

Figure 1(c) shows the probability of developing ascites as
predicted by the mixed BA and non-BA score.

4.4. The Original MELD Model.We also performed the same
multivariate logistic regression analysis for the MELD
parameter (Table 5(d)). The estimated odds ratio (OR) of

developing ascites as a function of original MELD variables
for individual patients was calculated from this equation:

OriginalMELD score = log MELD −dOR� �
= −4:049 + 0:276 ×MELDð Þ:

ð12Þ

The predicted probability (P̂) of developing ascites as a
function of original MELD variables was calculated using
this equation:

MELD‐ P̂
� �

= exp log Log MELDð Þð Þ
1 + exp log Log MELDð Þð Þ : ð13Þ

Figure 1(d) shows the probability of developing ascites as
predicted by the original MELD score.

4.5. Other Hybrid Models. In addition, we used the same
methodology to develop other models (Supplementary
Table S1) including (i) MELD variables with coefficients
from our data set to create a model with the original
MELD variables, but with model coefficients derived from
our data set. In this model, creatinine and INR variables
from the original MELD were not statistically significant.
(ii) Original MELD modified with BA or non-BA variables
at a time, to test if the performance of the original MELD
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(c) Mixed BA and Non-BA model
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(d) Original MELD model

Figure 1: The relationship between the BALDC, non-BA, mixed BA and non-BA, and original MELD model scores and the probability of
developing ascites.
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could be improved by adding significant BA or non-BA
parameters from the univariate analysis. Original MELD
modified with BA variables only did not pass the HL test
(P value < 0.05), while original MELD modified with non-
BA variables only did improve the performance of the
original MELD variables. However, this model has poor
performance because of the low AUC (0.865) and high
AIC (171) values compared to the mixed BA and non-BA
model. (iii) Original MELD was modified with both BA
and non-BA variables, to test if the performance of the
original MELD could be improved by adding both
significant BA and non-BA parameters from the univariate
analysis. This model did not result in any improvement
compared to the mixed BA and non-BA model
(Table 5(c)). In this model’s performance, AUC (0.875)
and AIC (167) values were the same as the mixed BA and
non-BA model. Since none of these models has improved
the performance of our main models, we did not further
evaluate any of these approaches.

4.6. Model Goodness-of-fit, Validation, and Performance.
The Hosmer–Lemeshow (HL) test was used as one criteria
to evaluate goodness-of-fit for all logistic regression models.
The HL P values were 0.17 for BALDC, 0.23 for non-BA,
and 0.11 for mixed BA and non-BA model. HL P values
above 0.05 means that the observed and expected results
were not significantly different, indicating the logistic regres-
sion of these models fit the data well. In contrast, for the
original MELD model, the P value of the HL test was 0.029
(P value < 0.05), indicating the logistic regression of the orig-
inal MELD model did not fit the data well (Table 6).

Table 6 also shows the akaike information criterion
(AIC) for ascites prediction. AIC values were used to com-
pare models with different error distribution. The AIC
values for the BALDC, non-BA, mixed BA and non-BA,
and original MELD models were 223.56, 170.81, 167.3, and
180.45. The BALDC model had a larger AIC value than
the non-BA, mixed BA and non-BA, and original MELD
models. This indicates that the logistic regression of the
BALDC model did not fit the data well compared to the
other candidate models.

Table 7 describes the bootstrapping validation for ascites
prediction. Bootstrapping validation results for all four
models indicated that the regression coefficients (B) were
in the range of 95% confidence intervals, and P values were
statistically significant for all covariates (P value < 0.05). Bias
values were relatively small (-0.056 to 0.016), which means
the estimates calculated using the original sample and the
mean of the bootstrap estimate were not significantly differ-
ent. In contrast, standard error (SE) and relative standard
error (RSE) (0.02% to 296.3%) values of the bootstrapping
analysis were relatively high, which may reflect our sample
estimate derivates far from the actual parameter (Supple-
mentary Figure S1).

Figure 2 shows the receiver operating characteristic
(ROC) curves of all four models for ascites prediction. The
area under the ROC curve for the BALDC, non-BA, mixed
BA and non-BA, and original MELD was 0.81, 0.87, 0.88,
and 0.86, respectively.

We also calculated the sensitivity (SEN), specificity
(SPE), positive predictive value (PPV), and negative predica-
tive values (NPV) from ROC analysis (Table 6). For
instance, in the BALDC model, the sensitivity and specificity
were 33.90% and 88.30% and the positive and negative pre-
dictive values were 48.80% and 80.20%.

Potential cut-off values of all 4 model scores to best dif-
ferentiate patients with vs. without ascites were selected
based on the optimum sensitivity vs. specificity from ROC
analysis. The ROC-optimum cut-off values for BALDC,
non-BA, mixed BA and non-BA models, and original MELD
models for ascites prediction were -0.99, -1.18, -1.06, and
-1.09, respectively (Table 6).

Moreover, we tested if patient populations with scores
below vs. higher than these optimum cut-off values can be
distinguished using ROC analysis. The P value of AUCs
was used to find statistically significant differences between
the low- vs. high-score populations (Figure 3 and Table 8).
The null hypothesis for P value of AUCs was AUC = 0:5.

4.7. Prediction for Other Complications.We also followed the
same approach to predict other complications of liver dis-
eases including bacterial peritonitis, encephalopathy, GI
bleeding, hepatobiliary carcinoma, hepatorenal syndrome,
and portal hypertension. Supplementary Table S2 shows
the ROC analyses, P values of the bootstrapping, HL tests,
and AICs for the BALDC models. Supplementary
Table S3–5 show similar results for non-BA, mixed BA
and non-BA, and original MELD models.

5. Discussion

In this study, we have examined the ability of BA indices to
predict complications in patients with liver diseases. Logistic
regression model was used to predict the prognosis of hepa-
tobiliary diseases in terms of developing disease-related
complications. In addition to the BALDC model, we have
developed (i) non-BA, (ii) mixed BA, and non-BA variables
to compare with the BA-only and non-BA-only models. (iii)
MELD variables with coefficients from our data set were
used to create a model with the original MELD variables,
but with model coefficients derived from our data set. (iv)
Original MELD was modified with BA and/or non-BA vari-
ables, to test if the performance of original MELD can be
improved by adding significant BA and non-BA parameters
from the univariate analysis. First, individual BA and non-
BA variables were analyzed as possible predictors of devel-
oping ascites in a univariate logistic regression analysis.
Then, multivariate models were built using backward elimi-
nation regression, where only the most significant variables
from the univariate regression were retained.

The final multivariate logistic regression models were
then validated using bootstrapping method. Goodness-of-
fit criteria also included the HL test, the AIC, and multivar-
iate parameters from the receiver operating characteristic
analyses.

From univariate logistic regression analysis, total UDCA,
total CA, total MCA, % CDCA, % sulfation, total Mono-OH,
% T-amidation, % tri-OH, % non-12α-OH, and % primary
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BA significantly increased the odds of having ascites,
whereas total DCA, total HDCA, % LCA, % G-amidation,
% mono-OH, and % secondary BA decreased the odds of
having ascites (Table 3).

For demographics, univariate logistic regression analysis
showed that the odds of having ascites was significantly 1.3-
fold higher in males than females. For non-BA parameters,
creatinine, INR, protime AST, bilirubin, AST/ALT, and

Table 6: Model comparisons for ascites prediction.

(a) BALDC model

ROC analysis
HL (P value) AIC value

SEN SPE PPV NPV Cutoff value (SEN, SPE)

33.90% 88.30% 48.80% 80.20% -0.99 (74%, 74%) 0.168 223.56

(b) Non-BA model

ROC analysis
HL(P value) AIC value

SEN SPE PPV NPV Cutoff value (SEN, SPE)

56.40% 91.50% 72.10% 84.30% -1.18 (78%, 78%) 0.228 170.81

(c) Mixed BA and Non-BA model

ROC analysis
HL(P value) AIC value

SEN SPE PPV NPV Cutoff value (SEN, SPE)

54.50% 90.10% 68.2% 83.60% -1.06 (78%, 78%) 0.11 167.3

(d) Original MELD model

ROC analysis
HL(P value) AIC value

SEN SPE PPV NPV Cutoff value (SEN, SPE)

45.50% 91.50% 67.60% 81.30% -1.09 (76%, 76%) 0.029 180.45

SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV: negative predictive value; P value is for the Hosmer-Lemeshow test (HL); AIC: akaike
information criterion.

Table 7: Bootstrapping validation for ascites predication models.

Variables B value Bias SE RSE P value
95% CI

Lower Upper

BALDC model

Intercept -3.463 -0.049 0.548 — 0.001 -4.666 -2.445

% MDCA -2.452 -0.192 0.948% 296.3% 0.002 -4.823 -1.148

% PrimaryBA 0.045 -0.049 0.008% 0.02%% 0.001 0.032 0.061

Non-BA model

Intercept 0.947 -0.056 1.702 — 0.554 -2.606 4.139

MELD 0.189 0.009 0.062 0.59% 0.001 0.086 0.325

Albumin_level -1.205 -0.014 0.389 11.21% 0.001 -2.028 -0.490

Mixed BA and non-BA model

Intercept -0.236 -0.052 2.029 — 0.897 -4.572 3.484

% CDCA 0.029 -0.002 0.013% 0.03% 0.013 -0.001 0.052

Primary/secondary BA -0.077 0.012 0.055 1.58% 0.028 -0.164 0.053

Albumin (g/dL) -1.158 -0.023 0.46 13.26%% 0.005 -2.108 -0.219

MELD 0.189 0.016 0.066 0.63% 0.003 0.087 0.341

Original MELD model

Intercept -4.049 -0.098 0.658 — 0.001 0.183 0.411

MELD 0.276 0.007 0.061 0.59%. 0.001 -5.573 -2.996

B value: regression coefficient; SE: standard error; RSE: relative standard error; CI: confidence interval.
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MELD increased the odds of having ascites, whereas albu-
min and ALT decreased the odds of having ascites (Table 4).

Using multivariate logistic regression analysis, we have
constructed these final models for ascites prediction:

(i) The BA variables (BA-dOR) model for ascites
prediction:

BALDC score = Log BA‐dOR� �
= −3:463 − 2:452 ×%MDCAð Þ

+ 0:045 ×%PrimaryBAð Þ
ð14Þ

(ii) The non-BA variables (non-BA-dOR) model for asci-
tes prediction:

Non − BA score = Log non − BA‐dOR� �
= 0:947 − 1:205 × Albumin level g

dl
� �� �

+ 0:189 ×MELDð Þ
ð15Þ

(iii) The original MELD variable (MELD-dOR) model
for ascites prediction:

OriginalMELD score = Log MELD‐dOR� �
= −4:049

+ 0:276 ×MELDð Þ
ð16Þ

(iv) The mixed BA and non-BA variables (mixed BA

and non-BA-dOR) model for ascites prediction:
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(c) Mixed BA and Non-BA model
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Figure 2: Receiver operating characteristic (ROC) curves of the BALDC, non-BA, mixed BA and non-BA, and original MELD models for
ascites prediction. The area under the ROC curves (AUC) for (a) BALDC model, (b) non-BA model, (c) mixed BA and non-BA model, and
(d) original MELD model for differentiating patients with ascites from patients without ascites.
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(c) Mixed BA and non-BA model
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(d) Original MELD model

Figure 3: ROC analysis using optimum cut-off values in BALDC, non-BA, mixed BA and non-BA, and original MELD model scores.
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Mixed BA and non − BA score = Log mixed BA and non − BA −dOR� �
= −0:275 + 0:029 ×%CDCAð Þ − 0:077 × PrimaryBA

SecondaryBA

� 	
− 1:143 × Albumin g

dl
� �� �

+ 0:189 ×MELDð Þ
ð17Þ

Gender was the only significant demographic variable in
univariate logistic regression analysis for all models
(Table 4). However, it was not included in these models
because it resulted in but with no-minimal improvement of
model validation criteria including bootstrapping, AIC, and
ROC-AUC. Therefore, we did not include gender in the
multivariate logistic regression model.

Cholestatic diseases are associated with impaired bile
flow to the intestine, which is expected to translate into
reduced transformation of primary BA into secondary BA
by intestinal bacteria. Therefore, an accumulation of primary
and a decrease in secondary BA in the blood may indicate
further impairment in bile flow and existing liver disease
[1, 66–69]. This was in agreement with the BALDC model,
where increasing % primary BA and decreasing % MDCA
(a secondary BA) were the final significant predictors of liver
disease prognosis. Furthermore, we have previously demon-
strated survival model development for death prediction
using cox regression analyses. The same results have shown
in their BA model, where increased % CDCA and % Tri-OH
BA (both are primary BA) were the significant predictors of
liver disease prognosis into death.

As shown in Figure 1, the probability of developing asci-
tes increased as a function of BALDC, non-BA, mixed BA
and non-BA, and original MELD scores. In general, logistic
regression analysis produces an S-shaped curve, when pred-
icated probability is plotted against the explanatory score
[70]. All four models produced such S-shaped curves except
for the BALDC score. This is expected in the absence of
extreme values of BALDC scores from our data set. How-

ever, with more subject enrollment in the future, more
extreme BALDC score values; therefore, S-curve shapes are
expected.

Hosmer–Lemeshow (HL) test was one of the criteria to
evaluate the goodness-of-fit for logistic regression models.
The HL test results supported the validity of the BALDC,
non-BA, and mixed BA, and non-BA models (P value >
0.05), but not the original MELD model (Table 6). The orig-
inal MELD model was the only model with P value < 0.05,
which indicates the expected and observed results were sig-
nificantly different. As an alternative, we considered a probit
regression analysis to model the original MELD (data not
shown). Based on our finding, the MELD with probit model
showed a better performance compared to the logistic
regression model; however, it was not fitted well in BA and
non-BA models. Therefore, we use the logistic regression
model for the entire analyses.

We also used akaike information criterion (AIC) to com-
pare the estimated out-of-sample prediction error from mul-
tivariate logistic regression models. Smaller AIC values
represent a better goodness-of-fit in model performance
[59]. The AIC values of the BALDC, non-BA, and original
MELD models were 233.56, 170.81, and 180.45, which were
higher than the AIC value of the mixed BA and non-BA
model (167.3) (Table 6).

Models were validated using the bootstrapping method
(Table 7). Bootstrapping is a resampling technique used to
estimate statistics on a population by sampling a data set
with replacement [61]. Random samples were taken one at
a time, with replacement from our data set to create a series
of 1000 new data sets. Statistics were calculated by compar-
ing these data sets. In the BALDC model, the relative stan-
dard error was relatively large because the model
parameter (% MDCA) has a high relative standard error
(Supplementary Figure S1). This could be due to the fact
that % MDCA was not normally distributed in the original
data set and because the sample size was relatively small
[71]. Despite the high relative standard error, the BALDC

Table 8: ROC analysis using optimum cut-off values.

Cutoff AUC P value SE
95% CI

Lower Upper

BALDC score

High BALDC score < −0:99 0.842 0.00 0.05 0.752 0.932

Low BALDC score ≥ −0:99 0.527 0.65 0.06 0.41 0.644

Non-BA score

High non‐BA score < −1:18 0.806 0.00 0.05 0.707 0.905

Low non‐BA score ≥ −1:18 0.670 0.01 0.07 0.538 0.801

Mixed BA and non-BA score

High BA and non‐BA score < −1:06 0.895 0.00 0.04 0.821 0.970

Low BA and non‐BA score ≥ −1:06 0.672 0.01 0.06 0.546 0.797

Original MELD score

High originalMELD score < −1:09 0.879 0.00 0.04 0.809 0.949

Low originalMELD score ≥ −1:09 0.657 0.01 0.06 0.532 0.782

AUC: area under the ROC curve; SE: standard error; CI: confidence interval.
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model could be considered to pass the bootstrapping
validation given the relatively small sample size of our
study. Overall, the bootstrapping validation results
supported the validity of the BALDC, non-BA, mixed BA
and non-BA, and original MELD models for ascites
prediction.

ROC analysis was used to compare the models for their
accuracy to predict liver patient prognosis into complica-
tions such as ascites. The higher the area under the ROC
curve, the greater the overall accuracy of the marker in dis-
tinguishing between groups. For prognostic models, AUC
of 0.9 or greater is rarely seen. AUC between 0.8 and 0.9
indicates excellent accuracy. And any AUC over 0.7 may
be considered clinically useful [72–74]. Therefore, all four
models show high accuracy for ascites prediction.

ROC analysis was also performed to test sensitivity,
specificity, and positive and negative predictive values
(Table 6). The sensitivity is the proportion of true positive
patients (patients who were predicted to have ascites and
actually did have ascites) to the actual positive patient popu-
lation (total number of patients who actually did have asci-
tes). The specificity is the proportion of true negative
patients (patients who were predicted not to have ascites
and actually did not have ascites) to the actual negative
patient population (total number of patients who actually
did not have ascites). The positive predictive value is the
proportion of true positive patients to the total number of
predicted positive patients. The negative predictive value is
the proportion of true negative patients to the total number
of predicted negative patients. The high sensitivity and spec-
ificity correspond to the high positive and negative predic-
tive values, and vice versa. Predictive values are more
commonly used than sensitivity and specificity in clinical
studies [70]. The higher positive and negative predictive
values are preferred when comparing model performance.
Based on that, we compared positive and negative predictive
values for all four models. The non-BA model has higher
positive and negative predictive values than other models.
In addition, the mixed BA and non-BA model also has high
predictive values closed to the non-BA model. Therefore,
both non-BA and mixed BA and non-BA models show bet-
ter model performance than others.

Moreover, ROC analysis was used to determine potential
cut-off values which quantify the normal range of biomark-
ers. The selection of optimum cut-off values is a tradeoff
between sensitivity vs. specificity, where lower cut-off values
are associated with higher sensitivity but lower specificity,
and vice versa. Scores for the BALDC, non-BA, mixed BA
and non-BA, and original MELD models were identified as
cut-off values with optimum sensitivity vs. specificity, which
were -0.99, -1.18, -1.06, and -1.09, respectively (Table 6). For
example, a BALDC score of -0.99 was considered an opti-
mum cut-off value in differentiating patients with vs. with-
out ascites because it maintained a balance between
sensitivity (74%) vs. specificity (74%).

These ROC optimum cut-off values were used to split
the overall patient population into two populations for every
model. One population contained patients with model
scores higher than the cut-off score and the other contained

patients with model scores lower than the cut-off score. The
P value of AUCs from the two populations for every model
was then used to find statistically significant differences
(Figure 3 and Table 8). The P value of AUCs is smaller than
0.05 and lead to the rejection of the null hypothesis, indicat-
ing AUCs are above the reference line (AUC = 0:5), and vice
versa. Only ROC-optimum cut-offs for the BALDC score
(-0.99) resulted in statistically significant different AUCs
based on their P values; therefore, they were able to distin-
guish high- vs. low-score patient populations.

In addition to ascites, we attempted to develop similar
models for the prediction of other common liver disease
complications including bacterial peritonitis, encephalopa-
thy, GI bleeding, hepatobiliary carcinoma, hepatorenal syn-
drome, and portal hypertension (Supplementary Table S3–
5). None of these complications were as accurately
predicted as ascites by any of the BALDC and non-BA
models. In general, models for the prediction of other
complications had lower sensitivity, lower specificity, lower
AUC values, and higher AIC values. This could be due to
the fact that other complications were less common than
ascites (except for portal hypertension) in our study.
Overall, improving prediction accuracy would require an
increase in the study population to predict all these other
complications.

6. Conclusions

We have developed and validated a prognosis model based
on BA indices to predict the development of liver disease
complications such as ascites. Other models, including
non-BA, mixed BA and non-BA, and original MELD
models, were also developed to compare their performance
with our BALDC model. Overall, the mixed BA and non-
BA model was the most accurate based on AIC and ROC
analyses. The mixed BA and non-BA had lower AIC values
indicating a smaller error of distribution and a better
trade-off between goodness-of-fit vs. degrees of freedom
(Table 6). Moreover, the mixed BA and non-BA model
had the highest AUC values indicating higher accuracy than
other models (Figure 2). Therefore, the mixed BA and non-
BA model could be used to predict the development of asci-
tes in patients diagnosed with liver-disease at early stages of
intervention, such as liver transplantation. This will assist in
supply allocation and physician decisions when treating liver
diseases.
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