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Anxiety is more common in patients with hypertension, and these two conditions frequently coexist. Recently, more emphasis has
been placed on determining etiology in patients with comorbid hypertension and anxiety.Tis review focuses on the common risk
factors and potential mechanisms of comorbid hypertension and anxiety. Firstly, we analyze the common risk factors of comorbid
hypertension and anxiety including age, smoking, alcohol abuse, obesity, lead, and trafc noise. Te specifc mechanisms
underlying hypertension and anxiety were subsequently discussed, including interleukin (IL)-6 (IL-6), IL-17, reactive oxygen
species (ROS), and gut dysbiosis. Increased IL-6, IL-17, and ROS accelerate the development of hypertension and anxiety. Gut
dysbiosis leads to hypertension and anxiety by reducing short-chain fatty acids, vitamin D, and 5-hydroxytryptamine (5-HT), and
increasing trimethylamine N-oxide (TAMO) and MYC. Tese shared risk factors and potential mechanisms may provide an
efective strategy for treating and preventing hypertension and comorbid anxiety.

1. Introduction

Hypertension is the leading preventable risk factor for
cardiovascular disease and all-cause mortality globally [1].
Te prevalence of hypertension projected to exceed 1.5
billion by 2025 [2]. Hypertension afects approximately 1
billion adults and associated with 9 million global fatalities
annually [3]. Besides hypertension, mental disorders are
serious public health concern [4]. According to a meta-
analysis, the incidence of comorbid hypertension and
anxiety is approximately 38% [5].

Anxiety disorders are the most common category of
mental disorders. Te global prevalence of anxiety disorders
is approximately 7.3%, accounting for 3.3% of the global
disease [6]. Te World Health Organization ranked anxiety
disorders as the ninth leading cause of disability due to their
high prevalence, chronicity, and comorbidity [7]. Numerous
studies have reported a positive association between

hypertension and anxiety. Comorbidities, such as hyper-
tension and anxiety are associated with lower treatment
compliance, lower levels of daily functioning, lower health-
related quality of life, and healthcare-related costs [8].
Furthermore, patients with hypertension are at a greater risk
of cardiovascular disease-related mortality [9, 10].

Here, we reviewed the relationship between hyperten-
sion and anxiety. Additionally, we discuss some of the most
prevalent risk factors and potential mechanisms of comorbid
hypertension and anxiety.

2. Positive Association between Hypertension
and Anxiety

Recent research shows that the severity of disability is higher
among patients with comorbid anxiety disorders and hy-
pertension. Hence, the relationship between anxiety and
hypertension is worth investigating in depth to develop

Hindawi
International Journal of Hypertension
Volume 2023, Article ID 9619388, 14 pages
https://doi.org/10.1155/2023/9619388

https://orcid.org/0000-0003-2419-2775
https://orcid.org/0000-0002-3035-2782
mailto:30877837@qq.com
mailto:1602728669@qq.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9619388


comprehensive and integrated interventions to reduce
disability [11].

Te relationship between hypertension and anxiety is
mutually reinforced. Longitudinal data and theoretical lit-
erature indicate that anxiety is an etiology for hypertension
[12]. Anxiety is an independent risk factor of hypertension
and promotes the development and progression of the
condition. Patients with hypertension are prone to anxiety
due to the disease or inefcacious treatment [13]. Anxiety
disorders were more prevalent in patients with hypertension
(37.9%) than in the general population (12.4%) [14]. Ad-
ditionally, anxiety is an independent risk factor for hyper-
tension [15] due to its infuence on unhealthy behaviors such
as smoking, depression, a sedentary lifestyle, and being
overweight [16]. Anxiety was more prevalent among older
hypertensive patients with a medical history of stroke and
depression [17]. Like essential hypertension, anxiety also
consistently increases the risk of hypertensive disorders
during pregnancy and eclampsia [18]. Accordingly, anxiety
increases the probability of developing hypertension.

Until recently, research has suggested that older adults
with comorbid hypertension and anxiety have an increased
probability of medication noncompliance, resulting in de-
creased treatment efcacy [13]. Based on the preceding data,
anxiety may be a barrier to medication adherence, exacer-
bating hypertension, and cardiovascular complications.
Anxiety signifcantly afects the functional, cognitive, and
afective dimensions of quality of life in patients with hy-
pertension. Furthermore, individuals with hypertension
incur an additional excess economic burden from anxiety
[8]. Overall, anxiety is directly related to the life of patients
with hypertension. Antianxiety treatment is efective in
lowering blood pressure in hypertension patients [12].
Terefore, early detection and treatment of comorbid hy-
pertension and anxiety are critical.

3. Risk Factors for Comorbid Hypertension
and Anxiety

Te co-occurrence of hypertension and anxiety suggests the
existence of mutual risk factors. Individual risk factors,
lifestyle choices, and environmental risk factors (Table 1) are
the primary risk factors associated with comorbid hyper-
tension, according to a previous study. In this study, we
analyzed the efects of these risk factors on the incidence of
comorbid hypertension and anxiety.

3.1. Age. Age is a specifc risk factor. Age was the most
signifcant individual risk factor for comorbid hypertension
related anxiety. Signifcant evidence indicates that the risk of
hypertension increases with age [39]. Te prevalence of
hypertension is 26% in people aged 20–44, compared to 78%
among those >65 years of age [19]. Vascular endothelial cells
(ECs) are widely known to play an important role in vascular
homeostasis and tone modulation. With increasing age, ECs
undergo vascular senescence, which exacerbates apoptosis
and infammation, resulting in increased arterial stifness
and loss of endothelial cell-induced vasodilation, thereby

increasing the risk of hypertension [20]. Age enhances the
severity of anxiety similar to hypertension [21]. Te fun-
damental cause could be that the number of 5-
hydroxytryptamine (5-HT) specifc receptors in the brain
may be signifcantly reduced, increasing the probability of
anxiety development [22]. 5-HT also promotes vasodilation
by activating the 5-HT receptors in the endothelium to
promote NO production. Tis implies that reducing 5-HT
receptors may contribute to endothelial dysfunction [40].
Moreover, older adults with a higher prevalence of hyper-
tension are more vulnerable to comorbid anxiety disorders
[41]. Terefore, age is a primary risk factor for comorbid
hypertension and anxiety.

3.2. Sex. Sex also plays a role in the development of hy-
pertension. Specifcally, reproductive hormones, such as
estrogen and testosterone, likely contribute to sex diferences
in blood pressure (BP) and anxiety [42]. Premenopausal
women generally have benefcial metabolic, cardiovascular,
and sympathetic profles under estrogen protective condi-
tions [43]. However, the loss of estrogen due to menopause
in women during midlife and older age could increase their
susceptibility to “central obesity” and hypertension [23].
Similarly, women were twice as likely as men to experience
anxiety [24]. Several lines of evidence indicate that “with-
drawal” or decrease in estrogen during natural hormonal
shifts (within the menstrual cycle, postpartum, and during
the menopause transition) increases anxiety risk [25].
Terefore, understanding the sex diferences in car-
diometabolic and mental risk factors is important for
selecting preventive and/or therapeutic strategies in both
men and women.

3.3. Lifestyle. Undesirable lifestyle factors, such as smoking,
alcohol abuse, and obesity, are crucial in comorbid hyper-
tension and anxiety. First, chronic exposure to tobacco smoke
alters the autonomic nervous system’s regulation of BP,
resulting in hypertension due to an unrestrained increase in
sympathetic activation [26]. Furthermore, cigarette smoke
contains chemicals that activate oxidative stress. Hypertension
is caused by vascular infammation and aging due to increased
superoxide generation [29]. Strikingly, there was a strong link
between smoking >20 cigarettes per day and an elevated risk of
anxiety [27]. Interestingly, smoking exacerbates anxiety in
many ways, including nicotine withdrawal symptoms, per-
ceived and real health impairments, and physical illness [28].
Second, alcohol elevates BP in a dose-dependent manner.
Heavy alcohol consumption increases the risk of hypertension
by altering the heart or vascular smoothmuscle and stimulating
the sympathetic nervous system or the renin-angiotensin-
aldosterone (RAS) system [30]. Alcohol abuse can exacerbate
anxiety. Chronic alcohol abuse alters brain physiology,
resulting in psychological sequelae. Furthermore, a paucity of
coping responses and a sense of helplessness, inadequacy, and
anxiety can be caused by alcohol intoxication during stressful
situations [31]. Furthermore, alcohol abuse increases the en-
gulfment capacity of microglia, causing aberrant synaptic
pruning, synapse loss, and anxiety-like behaviors [32]. Tird,
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obesity is a signifcant predictor of various chronic disorders.
Numerous epidemiological studies have demonstrated that
being overweight or obese causes 65%–75% of primary hy-
pertension cases. Obesity-related hypertension is initiated by
impaired kidney function and increased tubular salt reab-
sorption [33]. Obesity is associated with various neurode-
generative disorders, particularly anxiety [34]. Te primary
reason is obesogenic lifestyle factors such as dense caloric diets
and inactivity. Mechanically, senescent glial cells exhibit ex-
cessive fat deposition, and obesity causes glial cell senescence,
which generates anxiety [44]. Collectively, lifestyle risk factors
are indispensable in the development of comorbid hyperten-
sion and anxiety.

3.4. Environment. Environmental risk factors are associated
with the exposure to Pb and trafc noise. Lead, one of the
most common environmental stressors, can cause irre-
versible damage to the central nervous system, especially
during development. Extended and desultory exposure to
lead causes neuroinfammation, characterized by astroglial
and microglial gliosis. Both anxiety and hypertension are
caused by neuroinfammatory processes that develop over
time [35]. In addition, hypertension can be caused by
baroreceptor and chemoreceptor refex dysfunction due to
intermittent or persistent lead exposure [36]. A recent study
suggested that lead exposure generates oxidative stress and
induces gut dysbiosis, which can lead to hypertension and
anxiety [45]. Consequently, people exposed to lead are at
high risk for comorbid hypertension and anxiety, especially
those with occupational exposure.

Trafc noise (from roads, aircraft, and railways) is
a potential risk factor for cardiovascular and mental illnesses
[46]. Trafc noise disrupts and shortens sleep, elevates stress
hormone levels, and causes severe oxidative stress in blood
vessels and the brain. Tese compounds facilitate in-
fammation, endothelial dysfunction, and hypertension [37].
Increased exposure to trafc noise is considered a signifcant
risk factor for anxiety. It is generally recognized that trafc
noise is regarded as a formidable neurological stressor [38].
Overall, environmental risk factors negatively impact the
cardiovascular and neurological systems during the early
stages of development. It is imperative to implement public
policy measures to mitigate the negative consequences of
these environmental risk factors.

Age, sex, smoking, alcohol abuse, obesity, lead exposure,
and trafc noise contribute to the development of comorbid
hypertension and anxiety. Preventive measures such as risk
factor screening and early management can enhance patient
well-being. More importantly, the specifc mechanisms in-
volved in comorbid hypertension and anxiety require fur-
ther exploration.

4. Potential Mechanisms of Comorbid
Hypertension and Anxiety

4.1. IL-6. Interleukin-6 (IL-6) stimulates chronic in-
fammation and regulates the expression of C-reactive
protein and cardiovascular disease risk biomarker [47].

IL-6 is related to angiotensin II (Ang-II)-mediated hyper-
tension [48]. IL-6 is enhanced in response to exogenous
Ang-II infusion, which increases the activity of the RAS
system and ultimately causes hypertension to occur and
develop [49]. Furthermore, IL-6 stimulates IL-17 production
by inducing the polarization of CD4+ T cells, resulting in
hypertension [50, 51]. IL-6 may trigger obesity by inducing
hepatic gluconeogenesis and inhibiting lipid metabolism,
thereby facilitating hypertension [52].

Similarly, individuals with anxiety disorders have ele-
vated circulating IL-6 levels [53]. IL-6 levels are elevated in
blood during repeated social defeat [54]. Increased IL-6
levels activate the bone marrow-derived peripheral
monocytes and promote their recruitment to neuro-
vascular endothelial cells, thereby releasing IL-1β and
triggering anxiety [55, 56]. Because of reduced amygdala
volumes, maternal IL-6 levels can predict ofspring anxiety
[57]. Terefore, IL-6 levels are closely associated with
anxiety. Here, the functions of IL-6 in hypertension and
anxiety were unclear. Despite the abundance of available
studies, more experiments are required to understand the
pathophysiological efects of IL-6.

4.2. IL-17. IL-17 induces the phosphorylation of endothelial
nitric oxide (NO) synthase (eNOS) on threonine 495 in
a Rho kinase-dependent manner, resulting in decreased NO
generation and the development of hypertension [58].
Additionally, IL-17 reduces lumen diameter and increases
wall thickness, which induces inward hypertrophy and ar-
terial stifness and results in hypertension [59].

IL-17 promotes anxiety development through neuronal
IL-17A receptor (IL-17Ra) signaling in the medial prefrontal
cortex [60]. Additionally, the astrocyte markers glial
fbrillary acidic protein (GFAP) and brain-derived neuro-
trophic factor (BDNF) expression were also reduced by
IL-17 [61]. Reductions in both GFAP and BDNF levels are
vital mediators for the advancement of anxiety [62, 63].
Consequently, we hypothesize that IL-17 is involved in the
corporate etiology of comorbid anxiety and hypertension.

4.3. Reactive Oxygen Species (ROS). Nicotinamide adenine
dinucleotide phosphate oxidase (NOX) and mitochondria
are the major enzymatic sources of ROS in the cardio-
vascular system [64]. Te production of ROS by NOX
promotes to mitochondrial ROS production by causing
mitochondrial DNA damage and oxidation of components
of the membrane permeability transition pores [65].
Moreover, excessive ROS generation damages biological
components, such as nucleic acids, proteins, and lipids,
leading to cell damage and death. Several human diseases,
including cancer, Alzheimer’s disease, hypertension, and
anxiety, are believed to be caused by these mechanisms
[66]. Moreover, abundant ROS and infammatory factors,
including IL-6 and tumor necrosis factor-α (TNF-α),
contribute to comorbid hypertension and anxiety in rats
[67]. Antihypertensive drugs (candesartan and azelnidi-
pine) signifcantly reduce ROS and IL-6 levels [68, 69].
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Additionally, candesartan improves BP and hippocampal
neurogenesis, and is an efcacious treatment for cardio-
vascular disease and mental illness [69].

4.3.1. ROS Accelerates the Development of Hypertension.
ROS levels are also closely associated with endothelial
dysfunction. ROS generation inhibits dihydrofolate re-
ductase (DHFR) activity. DHFR defciency led to mito-
chondrial ROS production. Excessive mitochondrial ROS
production reduces NO bioavailability which leads to en-
dothelial dysfunction [70]. Similarly, the reduction in DHFR
decreases tetrahydrobiopterin (BH4), an essential cofactor
for eNOS. Tis leads to eNOS uncoupling, which produces
superoxide rather than NO [71]. Moreover, ROS increases
the expression of poly (ADP-ribose) polymerase 1 (PARP1)
expression, a key activator of transient receptor potential
melastatin 2 (TRPM2). Importantly, activated TRPM2
contributes to vascular Ca2+ infux through Na+/Ca2+ ex-
change (NCX) [72]. Hypertension is caused by excessive free
intracellular Ca2+ concentration, which leads to endothelial
dysfunction, vascular hyperreactivity, and structural
remodeling [73]. Furthermore, ROS increases the response
of thioredoxin-interacting protein (TXNIP), which in turn
activates the NLR-family pyrin domain-containing protein 3
(NLRP3). By provoking endothelial infammation, NLRP3
activation worsens endothelial dysfunction [74].

ROS-mediated hypertension is complicated by the en-
doplasmic reticulum (ER) involvement. ROS generation
activates ER stress signaling pathways involving transcrip-
tion factor 6 (ATF6), inositol-requiring protein 1 (IRE-1),
and PRKR-like ER kinase [75]. Moreover, ER stress has been
shown to increase TGF-1 activity, decrease phosphorylation
of endothelial NO synthases, and worsen endothelium-
dependent relaxation contributing to hypertension [76].

Moreover, ROS is closely associated with hypertension as
they promote the formation of isoketals. Hypertensive in-
dividuals exhibit signifcant isoketone expression [77].ROS
induces the formation of isoketals, accumulating in dendritic
cells (DCs). Accumulation of isoketals promote DC acti-
vation of T cells, which release IL-17 and IFN-c that cause
aortic stifening, ultimately leading to overt hypertension
[78]. Additionally, increased ROS levels are caused by many
maternal conditions, such as obesity and smoking. Super-
fuous ROS then causes gut dysbiosis and RAS dysfunction
in ofspring, contributing to the generational programming
of hypertension in adult ofspring [79]. Terefore, ROS
facilitates the incidence and development of hypertension
(Figure 1).

ROS leads to vascular Ca2+ infux by activating the
PARP1-TRPM2 signaling pathway, inducing endothelial
dysfunction, subsequently leading to hypertension. ROS
promotes endothelial dysfunction by activating TXNIP-
NLRP3-IL-1β signaling pathway, causing hypertension. ROS
reduces the production of NO by inhibiting DHFR-BH4-
eNOS signaling pathway, exacerbating endothelial dys-
function, thus leading to hypertension. ROS causes mito-
chondria ROS generation by inhibiting DHFR expression,
reducing the production of NO to exacerbate endothelial

dysfunction, leading to hypertension. ROS activates the ER
stress enhancing TGF-β1 activity, reducing endothelial NO
synthase phosphorylation to promote hypertension. ROS
promotes immune response by inducing isoketal pro-
duction, resulting in hypertension. ROS promotes IL-6,
TNF-α, and AT-1expression by activating NF-κB leading to
hypertension and anxiety. ROS induces synaptic dysfunction
by suppressing the BDNF-synapsin I/CREB pathway to
aggravate anxiety. ROS enhances the excitatory amino acids
release via inducing ERK1/2 resulting in anxiety. ROS in-
duces the production of TNF-α and IL-1β by activating the
NFkBp65-COX2-mPGES-1 signaling pathway, thus accel-
erating anxiety. PARP1: poly [ADP-ribose] polymerase 1;
TRPM2: transient receptor potential melastatin 2; TXNIP:
thioredoxin-interacting protein; NLRP3: NLR-family pyrin
domain-containing protein 3; DHFR: dihydrofolate re-
ductase; BH4: tetrahydrobiopterin; eNOS: endothelial nitric
oxide synthase; AT-1: angiotensin 1; BDNF: brain-derived
neurotrophic factor; CREB: incyclic AMP responsive ele-
ment binding protein; ERK1/2: extracellular signal-
regulated kinase1/2; NFkBp65: nuclear factor-kappa B
p65; COX-2: cyclooxygenase-2; mPGES-1: microsomal
prostaglandin synthase-1.

4.3.2. ROS Promotes the Occurrence of Anxiety. Synaptic
dysfunction refers to imbalanced synaptic plasticity due to
disturbances in pre- and postsynaptic sites. Synaptic dys-
function mediates anxiety [80]. Recent research has iden-
tifed that ROS accumulation may contribute to imbalanced
synaptic function by reducing the expression of BDNF and
downstream efector synapsin I molecules and intracyclic/
incyclic AMP responsive element binding protein (CREB)
[81]. Moreover, ROS induces hyperphosphorylation of ex-
tracellular signal-regulated kinase 1/2(ERK1/2). ERK1/2
hyperphosphorylation increases the release of excitatory
amino acids resulting in anxiety [82]. Furthermore, ROS
elevates nuclear factor-kappa B p65 (NF-kB p65), which
activates the infammatory mediators cyclooxygenase-2
(COX-2) and microsomal prostaglandin synthase-1
(mPGES-1) and causes an infammatory response [83].
TNF-α and IL-1 production is aided by mPGES-1, which
functions in conjunction with COX-2 to trigger anxiety [84].

Glyoxalase (GLO)-1 and glutathione reductase (GSR)-1
are specifc antioxidant enzymes. ROS decreases the ex-
pression of (GLO)-1 and (GSR)-1 [82], and further enhances
the level of anxiety by increasing infammation and synaptic
plasticity [85]. Amazingly, ROS upregulates the expression
of IL-6 and TNF-α and angiotensin (AT)-1 receptors by
activating NF-κB generation. Tis process is involved in the
development of hypertension and anxiety [67] (Figure 1).
Given the detrimental roles of ROS in hypertension and
anxiety, targeting ROS is a potential therapeutic strategy.

4.4. Gut Microbiota. Te gut microbiotas play a vital role in
promoting health. Gut microbiotas are microorganisms that
colonize the digestive tract. Teir functions include the
digestion of food, elimination of toxins, regulation of im-
munity, regulation of metabolism, and induction of
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neurogenesis [86–88]. Gut dysbiosis plays a decisive role in
disease susceptibility. Microbial communities can be dis-
rupted by nutrition, long-term antibiotic use, stress, and
gastrointestinal disorders. Tis process is referred to as gut
dysbiosis. Individuals with gut dysbiosis, are characterized
by the loss of microbial diversity and benefcial microor-
ganisms and an increase in potentially harmful microbes
[89]. Recent studies confrmed the involvement of gut
dysbiosis in the onset and progression of various diseases.
Gut dysbiosis is particularly common in individuals with
colorectal cancer [90], neurodegenerative disorders [91],
kidney disease [92], obesity, type 2 diabetes, or arterial
stifness [93].

Notably, the gut microbiotas of both prehypertensive
and hypertensive populations showed decreased microbial
richness and diversity than healthy populations [94]. Fur-
thermore, considerable evidence supports the involvement
of gut dysbiosis in exacerbating hypertension [95, 96] be-
cause gut dysbiosis afects an individual’s immune system
andmetabolism [97]. Additionally, gut dysbiosis contributes
to anxiety by microbiota–gut–brain axis, which activates the
vagus nerve and increases microbial metabolite production
[87]. Changes in microbial metabolites, such as short-chain

fatty acids (SCFs), trimethylamine N-oxide (TAMO), vita-
min D, and 5-hydroxytryptamine (5-HT), play an in-
dispensable role in the onset of hypertension and anxiety
(Figure 2).

Gut dysbiosis leads to a reduction of SCFAs, disrupting
the intestinal barrier by decreasing ZO-1 and MUC-2. Te
defciency of SCFAs promotes the production of PCs by
stimulating the LPS-TLR4 pathway, inducing renal in-
fammation leading to hypertension. Te defciency of
SCFAs causes the overactivation of HPA axis by increasing
the level of LPS, resulting in hypertension and anxiety. Te
defciency of SCFAs exaggerates neuroinfammation by
increasing IL-1β and IL-6 expression in the hippocampus,
thereby promoting anxiety through inhibiting BDNF-GABA
signal pathway. Te defciency of SCFAs reduces synapses
via expediting microglial overactivation, inhibiting nerve
conduction, and causing anxiety. Gut dysbiosis promotes the
release of TMA into the bloodstream, further oxidized to
TMAO. TMAO penetrates BBB, subsequently inhibiting
MsrA expression promoting microglial overactivation,
causing anxiety. TMAO promotes SDHB expression and
inhibits SIRT1 expression, leading to ROS generation, which
stimulates Ox-LDL secretion, reducing the production of

PARP1

TRPM2

NCX

Ca2+

endothelial dysfunction

NLRPS

IL-1β
eNOS

NO

ER-
stress

TGF-β1

NOSP

Isoketal

immune
response

CREB
Synapsin 1

excitatory
amino acids

BDNF

Synaptic
dysfunction 

mPGES-1

TNF-α
IL-1β

Hypertension Anxiety

ROS

Mito-
ROS

NF-κB 

IL-6
AT-1

TNF-α

NF-kBp65TXNIP DHFR ERK1/2

COX-2BH4

Figure 1: ROS promotes the pathogenesis of hypertension and anxiety.
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NO, inducing endothelial dysfunction leading to hyper-
tension. ROS stimulates Ox-LDL secretion, thus promoting
vasoconstriction by increasing ETA, leading to hyperten-
sion. ROS promotes the pyroptosis of endothelial cells,
causing endothelial dysfunction leading to hypertension.
TMAO induces hypertension through the “TMAO-AVP-
AQP-2 axis.” Gut dysbiosis suppresses 5-HT secretion by
inhibiting tryptophan secretion, causing anxiety. Te sup-
pression of 5-HTexacerbates insulin resistance, contributing
to obesity leading to hypertension. Gut dysbiosis increases
intestinal MYC expression, facilitating obesity by decreasing
GLP-1 secretion and stimulating ceramide synthesis, leading
to hypertension. MYC accelerates anxiety by promoting the
expression of 5HT2AR/5HT1AR. Gut dysbiosis contributes
to hypertension by limiting VD production. Te lack of VD
results in anxiety by restraining the expression of NT-3/4.
ZO-1: zonula occludens-1; MUC-2: mucoprotein-2; TLR4:
toll-like receptor 4; MsrA: antioxidant enzyme methionine
sulfoxide reductase A; SDHB: succinate dehydrogenase B;
SIRT1: sirtuin 1; ETA: endothelial receptor A; AVP: pitui-
trin; AQP-2: aquaporin-2; GLP-1: glucagon-like peptide 1;
ChREBP: carbohydrate-responsive element-binding pro-
tein; GLUT2: solute carrier family 2, member 2; SGLT1:
solute carrier family 5, member 1; NT-3: neurotrophin-3;
NT-4: neurotrophin-4.

4.4.1. Short-Chain Fatty Acids (SCFAs). Short-chain fatty
acids (SCFAs) comprise butyrate, propionate, and acetate,
produced by numerous bacterial species during dietary
fermentation in the colon [98]. SCFAs increase energy ex-
penditure and improve glucose metabolism and insulin
secretion, reducing the risk of obesity, diabetes, metabolic

liver disease, and cardiometabolic diseases [99]. Gut dys-
biosis reduces SCFA production by decreasing benefcial
bacteria such as Firmicutes and Bacteroidetes [100].Te lack
of SCFs has been implicated in comorbid hypertension and
anxiety [101]. Insufcient SCFAs promote hypertension by
increasing intestinal permeability and the levels of proin-
fammatory cytokines and lipopolysaccharides (LPS). First,
reducing SCFAs signifcantly decreases colonic zonula
occludens-1 (ZO-1) and mucoprotein-2 (MUC-2). De-
fciencies in ZO-1 andMUC-2 indicate a disrupted intestinal
barrier and increased gut permeability, respectively [102].
Second, reducing SCFAs leads to an increase in proin-
fammatory cytokines, including TGF-β1, TNF-α, IL-1β, and
IL-6, which in turn causes a reduction in glomerular fl-
tration rate and consequently results in hypertension
[103, 104]. Furthermore, insufcient SCFAs increase
glucagon-like peptide 1 (GLP1) and gut hormone peptide
YY (PYY), promoting Na+ absorption and volume overload
in hypertension [105]. Tird, SCFA defciency increased the
plasma levels of LPS. LPS stimulates toll-like receptor 4
(TLR4), which induces the production of proinfammatory
cytokines involved in the pathogenesis of hypertension and
anxiety [106, 107]. Likewise, hypertension and anxiety can
develop due to of LPS activation of the hypothal-
amic–pituitary–adrenal axis (HPA axis) [108], which, in
turn, promotes hypothalamic overactivity [109, 110].

Similarly, the absence of SCFAs causes anxiety by re-
ducing c-aminobutyric acid (GABA) and promoting
microglial overactivation. Te absence of SCFAs potentiates
neuroinfammatory responses by enhancing the expression
of proinfammatory cytokines (IL-1β and IL-6) in the hip-
pocampus. Signifcantly, exaggerated neuroinfammation
arrests t BDNF expression [111]. Moreover, reduced
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Figure 2: Gut dysbiosis accelerates the occurrence of hypertension and anxiety.
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GABAergic transmission is the way that BNDF deprivation
promotes anxiety [112]. In addition, the absence of SCFAs
expedites microglial overactivation, which reduces the
number of synapses between neurons in the prefrontal
cortex, thereby inhibiting nerve conduction and causing
anxiety [32]. Te supplementation of SCFAs lowers BP [113]
and anxiety levels [114]. Hence, SCFAs are potential ther-
apeutic targets for comorbid hypertension and anxiety.

4.4.2. Trimethylamine N-Oxide (TAMO). Gut dysbiosis
causes occasional hypertension because of excessive TAMO
levels. Gut dysbiosis is characterized by increased harmful
microbes, particularly those involved in choline degradation.
Notably, choline degradation is widely observed in patients
with hypertension, including Prevotella, Klebsiella, Clos-
tridium, and Streptococcus [115]. Choline degradation
produces trimethylamine (TMA) by metabolizing dietary
choline, phosphatidylcholine, and l-carnitine. As mentioned
previously, increased gut permeability promotes TMA re-
lease into the bloodstream. Subsequently, TMA is further
oxidized to TMAO by favin-dependent monooxygenases 1
(FMO-1) and FMO-3 [116]. Importantly, elevated plasma
TMAO levels prolonged the hypertensive efects of Ang-II
[117]. Specifcally, elevated circulating TMAO induces hy-
pertension through the “TMAO-AVP-AQP-2 axis.” Spe-
cifcally, the release of pituitrin (AVP) was stimulated by an
increase in plasma osmotic pressure (POM) caused by el-
evated TMAO. AVP increases the production of aquaporin-
2 (AQP-2) in the apical membrane of the renal collecting
duct’s main cell, and sodium and water storage [118].
Moreover, TMAO induces oxidative stress by repressing
sirtuin 1 (SIRT1) expression, subsequently impairing
endothelial-dependent NO production [119]. Furthermore,
TMAO impairs mitochondrial structure and increases ROS
levels generation by upregulating succinate dehydrogenase B
(SDHB) expression. Consequently, an increase in ROS
promotes endothelial dysfunction by triggering pyroptosis
of ECs [120]. Additionally, excessive ROS levels enhance the
production of oxidized low density lipoproteins (Ox-LDL).
Enhanced Ox-LDL increases endothelin-1 concentration,
which activates endothelial receptor A (ETA), causing va-
soconstriction and hypertension [121]. However, TMAO
inhibition ameliorated hypertension by reducing neuro-
infammation and oxidative stress [122].

TMAO is also a critical contributor to anxiety. In the
hippocampus, TMAO inhibits the antioxidant enzyme
methionine sulfoxide reductase A (MsrA) by penetrating the
blood-brain barrier. Te absence of MsrA in microglia
promotes microglial overactivation by enhancing ROS
production and NF-kB activity [123, 124]. Moreover, the
probiotic application reduces TAMO levels, further allevi-
ating anxiety in anxious patients [125]. Tis evidence sug-
gests that TMAO plays a crucial role in the progression of
hypertension and anxiety.

4.4.3. Vitamin D. Hypertension and anxiety are more
common in individuals with vitamin D defciency [126]. Gut
dysbiosis is closely associated with hypertension and anxiety

by inhibiting vitamin D production. Gut dysbiosis decreases
vitamin D levels, increasing the risk of hypertension [127].
Te mechanisms underlying vitamin D defciency-related
hypertension include increased renin expression, hypocal-
cemia, and hyperparathyroidism [128]. Additionally, vita-
min D disrupts the integrity of neurons by downregulating
neurotrophic factors (neurotrophin-3 and neurotrophin-4)
in the hippocampus and neocortex, causing anxiety [129].
Tus, vitamin D defciency may lead to hypertension and
anxiety.

4.4.4. 5-Hydroxytryptamine (5-HT). Gut dysbiosis sup-
presses 5-HT secretion and contributes to hypertension and
anxiety. Tryptophan is produced by Lactobacillus and
Bifdobacterium. In enterochromafn cells, tryptophan
hydroxylase 1 (TPH1) catalyzes the conversion of trypto-
phan to 5-hydroxytryptophan (5-HTP) in the colon.
Tryptophan and 5-HTP can enter the brain and become
precursors of 5-HT in the central nervous system [130]. Gut
dysbiosis suppresses tryptophan secretion by decreasing the
abundance of Lactobacillus and Bifdobacterium, sup-
pressing the secretion of 5-HT [131]. Te abatement of 5-HT
exacerbates insulin resistance and leads to obesity and hy-
pertension [132]. Consistently, a reduction in 5-HT levels
accelerates the occurrence of anxiety. Additionally, selective
serotonin reuptake inhibitors can increase the concentration
of 5-HT in synapses, reduce anxiety, and control the risk of
hypertension [133]. In summary, gut microbiotas intensify
hypertension and anxiety by suppressing 5-HT secretion.

4.4.5. Others. Gut dysbiosis increases intestinal MYC ex-
pression and aggravates hypertension and anxiety. MYC is
a highly pleiotropic transcription factor that broadly afects
cell proliferation, metabolism, angiogenesis, apoptosis, and
diferentiation [134]. Recent studies have suggested that gut
dysbiosis increases MYC expression in the intestine. Sub-
sequently, abundant intestinal MYC targets ceramide syn-
thase 4 (Cers4) to stimulate ceramide synthesis and
simultaneously decrease glucagon-like peptide 1 (GLP-1)
secretion, facilitating obesity [135]. c-MYC, a member of the
MYC family, induces anxiety by upregulating the expression
of 5HT2AR and 5HT1AR [136].

Tese fndings suggest that gut dysbiosis is a risk factor
for hypertension and anxiety. Targeting gut microbiotas may
be a novel therapeutic option for patients with comorbid
hypertension and anxiety.

5. Conclusion

Te increasing prevalence of comorbid hypertension and
anxiety has a negative impact on treatment efcacy and
quality of life. Understanding these population risk factors
and physiological mechanisms will guide future clinical care
for a population at increased risk for comorbid hypertension
and anxiety. As discussed previously, the risk factors for
comorbid hypertension and anxiety mainly include age, sex,
smoking, alcohol abuse, obesity, lead exposure, and trafc
noise. Aging is associated with an increased risk of comorbid
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hypertension and anxiety. Hormonal changes make women
more likely to develop comorbid hypertension and anxiety.
Moreover, undesirable lifestyle factors such as smoking,
alcohol abuse, and obesity, play a crucial role in comorbid
hypertension and anxiety. Additionally, people exposed to
lead and trafc noises are highly prone to comorbid hy-
pertension and anxiety. Hence, optimizing lifestyle or living
environment remains the cornerstone in preventing and
treating of hypertension and anxiety. Furthermore, IL-6,
IL-17, ROS, and gut dysbiosis are potential mechanisms
underlying comorbid hypertension and anxiety. An increase
in IL-6, IL-17, and ROS levels can promote the occurrence of
comorbid hypertension and anxiety. Changes in SCFs,
TAMO, vitamin D, and 5-HT caused by gut dysbiosis play
essential roles in the occurrence and development of hy-
pertension complicated by anxiety. Similarly, the changes in
SCFs, TAMO, vitamin D, and 5-HT caused by gut dysbiosis
play important roles in the occurrence and development of
hypertension complicated by anxiety. Terefore, screening
for hypertension complicated by anxiety and assessing its
risk factors is necessary. Further studies should focus on the
mechanisms involved in comorbid hypertension and anxiety
and identify drug targets that can treat hypertension com-
plicated by anxiety, to improve the efectiveness of
treatment.

6. Prospection

Autophagy is an evolutionarily conserved self-digestion
process, essential for cellular homeostasis [137]. Auto-
phagy declines with age and may increase the risk of age-
related cardiovascular diseases [138]. Knockdown of
autophagy-related genes (ATG) 5/7 suppresses Wei-
bel–Palade bodies (WPB) in EC, thereby inhibiting endo-
thelial diastolic function [139]. Similarly, mice suppressed
essential gene (Ulk2) initiate autophagy and anxiety-like
behavioral abnormalities [140]. Dysfunctional autophagy
has been linked to gut dysbiosis and increased epithelial
permeability [141]. Moreover, the defciency of the mito-
chondrial autophagy-related gene (ATG16L1) increases the
number of mitochondria and produces numerous ROS
[142]. Given its role in endothelial dysfunction and ROS
activation, autophagy may be a potential target for comorbid
hypertension and anxiety. Owing to the lack of direct evi-
dence, more studies are needed to explore the exact efects of
autophagy in comorbid hypertension and anxiety.

7. Clinical Implications

Te comorbidities of chronic mental and physical conditions
complicate medical treatment and may expedite disease
severity and progression. Anxiety and hypertension are
common and often comorbid conditions treated during
diagnosis and treatment process [143]. Terefore, healthcare
systems and clinical care teams should focus on in-
terventions to improve the screening, diagnosis, and timely
treatment of hypertension comorbid anxiety. Efective,
sustainable interventions are urgently needed to improve the
screening and treatment of patients with comorbid

hypertension and anxiety. Tis study summarizes the risk
factors for hypertension and comorbid anxiety and provides
a theoretical basis for medical staf to screen patients with
comorbid hypertension and anxiety. Additionally, this study
described some common underlying mechanisms of hy-
pertension and anxiety, including IL-6, IL-7, ROS, and gut
dysbiosis, which are expected to become therapeutic targets
for patients with comorbid hypertension and anxiety.
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