## Supplementary data

Methylation pattern of the SOCS3 and $I L 6 R$ promoters in rheumatoid arthritis.

Cieśla M. et al.

Table S1. Genotypes and alleles distribution.

| SOCS3 SNPs |  | Number of carriers (\%) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs4969168 | Allele/ <br> Genotype | RA RF-positive, $\mathrm{n}=\mathbf{8 2}$ | RA RF-negative, $n=40$ | RA ACPApositive, $\mathrm{n}=104$ | RA ACPA- <br> negative, $n=18$ | RA overall, $\mathrm{n}=122$ | Controls, $\mathbf{n}=\mathbf{2 4}$ | Subjects in a <br> methylation <br> study, $\mathbf{n}=76$ |
|  | MAF (A allele) | 11\% | 15\% | 12.5\% | 11.1\% | 12.3\% | 10.4\% | 6.6\% |
|  | GG | 67 (81.7) | 28 (70) | 81 (77.9) | 14 (77.8) | 95 (77.9) | 19 (79.2) | 66 (86.8) |
|  | GA | 12 (14.6) | 12 (30) | 20 (19.2) | 4 (22.2) | 24 (19.7) | 5 (20.8) | 10 (13.2) |
|  | AA | 3 (3.7) | 0 | 3 (2.9) | 0 | 3 (2.5) | 0 | 0 |
| rs4969170 | Allele/Genotype |  |  |  |  |  |  |  |
|  | MAF (A allele) | 29.9\% | 35\% | 30.3\% | 38.9\% | 31.6\% | 45.8\% | 30.9\% |
|  | GG | 41 (50) | 17 (42.5) | 51 (49) | 7 (38.9) | 58 (47.5) | 7 (29.2) | 36 (47.4) |
|  | GA | 33 (40.2) | 18 (45) | 43 (41.3) | 8 (44.4) | 51 (41.8) | 12 (50) | 33 (43.4) |
|  | AA | 8 (9.8) | 5 (12.5) | 10 (9.6) | 3 (16.7) | 13 (10.7) | 5 (20.8) | 7 (9.2) |

polymorphism; SOCS3; suppressor of cytokine signaling 3 gene

Table S2. Distribution of genotypes in a different genetic models between patients and controls.

| $\begin{gathered} \text { SOCS3 } \\ \text { SNPs } \end{gathered}$ | Model | $\begin{aligned} & \text { RA, } \\ & \text { n=122 } \end{aligned}$ | Controls, $n=24$ | OR [95\% CI] | p-value | Fisher's exact p-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs4969168 | Codominant 1 GG vs. GA | $\begin{gathered} \hline 95(77.9) \\ \text { vs. } 24(19.7) \end{gathered}$ | 19 (79.2) vs. 5 (20.8) | $\begin{gathered} 0.96[0.32- \\ 2.87] \end{gathered}$ | 0.94 | 0.57 |
|  | Codominant 2 GG vs. AA | $95 \text { (77.9) }$ $\text { vs. } 3 \text { (2.5) }$ | 19 (79.2) vs. 0 | nd. |  | 0.58 |
|  | Dominant GA+AA vs. GG | $\begin{gathered} 27(22.1) \\ \text { vs. } 95(77.9) \end{gathered}$ | 5 (20.8) vs. 19 (79.2) | $\begin{gathered} 0.93 \text { [0.31- } \\ 2.74] \end{gathered}$ | 0.89 | 0.56 |
|  | Overdominant GA vs. GG+AA | $\begin{gathered} 24(19.7) \\ \text { vs. } 98(80.3) \end{gathered}$ | 5 (20.8) vs. 19 (79.2) | $\begin{gathered} 0.93[0.31- \\ 2.76] \end{gathered}$ | 0.9 | 0.54 |
|  | Recessive AA vs. GA+GG | $\begin{gathered} \hline 3(2.5) \\ \text { vs. } 119(97.5) \end{gathered}$ | 0 vs. 24 (100) | nd. |  | 0.58 |
| rs4969170 |  |  |  |  |  |  |
|  | Codominant 1 GG vs. GA | $\begin{gathered} 58(47.5) \\ \text { vs. } 51(41.8) \end{gathered}$ | 7 (29.2) vs. 12 (50) | $\begin{gathered} \hline 0.51[0.19- \\ 1.42 \end{gathered}$ | 0.19 | 0.14 |
|  | Codominant 2 GG vs. AA | $\begin{gathered} 58(47.5) \\ \text { vs. } 13(10.7) \end{gathered}$ | 7 (29.2) vs. 5 (20.8) | $\begin{gathered} 0.31[0.08- \\ 1.17] \end{gathered}$ | 0.09 | 0.08 |
|  | Dominant GA+AA vs. GG | $\begin{gathered} 64(52.5) \\ \text { vs. } 58(47.5) \end{gathered}$ | $\begin{gathered} 17(70.8) \\ \text { vs. } 7(29.2) \end{gathered}$ | $\begin{gathered} 0.45 \text { [0.17- } \\ 1.18] \end{gathered}$ | 0.09 | 0.07 |
|  | Overdominant GA vs. GG+AA | $\begin{gathered} 51(41.8) \\ \text { vs. } 71(58.2) \end{gathered}$ | 12 (50) vs. 12 (50) | 0.72 [0.3-1.74] | 0.46 | 0.3 |
|  | Recessive AA vs. GA+GG | $\begin{gathered} 13(10.7) \\ \text { vs. } 109(89.3) \end{gathered}$ | 5 (20.8) vs. 19 (79.2) | $\begin{gathered} 0.45[0.14- \\ 1.43] \end{gathered}$ | 0.19 | 0.15 |

Data are presented as number (\%). Abbreviations: CI, confidence interval; OR, odds ratio. For other please refer to Table S1 in supplementary file.

Table S3. Distribution of genotypes in a different genetic models between rheumatoid factor positive and rheumatoid factor negative patients.

| $\begin{gathered} \text { SOCS3 } \\ \text { SNPs } \end{gathered}$ | Model | RF positive, $\mathrm{n}=82$ | RF negative, $\mathrm{n}=40$ | OR [95\% CI] | p-value | Fisher's exact p-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs4969168 | Codominant 1 GG vs. GA | $\begin{gathered} \hline 67(81.7) \\ \text { vs. } 12(14.6) \end{gathered}$ | 28 (70) vs. 12 (30) | $\begin{gathered} 2.39[0.95- \\ 6.02] \end{gathered}$ | 0.06 | 0.0504 |
|  | Codominant 2 GG vs. AA | $67 \text { (81.7) }$ <br> vs. 3 (3.7) | 28 (70) vs. 0 | nd. |  | 0.36 |
|  | Dominant GA+AA vs. GG | $\begin{gathered} 15(18.3) \\ \text { vs. } 67(81.7) \end{gathered}$ | 12 (30) vs. 28 (70) | $\begin{gathered} 0.52[0.22- \\ 1.27] \end{gathered}$ | 0.15 | 0.11 |
|  | Overdominant GA vs. GG+AA | $\begin{gathered} 12(14.6) \\ \text { vs. } 70(85.4) \end{gathered}$ | 12 (30) vs. 28 (70) | 0.4 [0.16-1.00] | 0.05014 | 0.0412 |
|  | Recessive AA vs. GA+GG | $\begin{gathered} \hline 3(3.7) \\ \text { vs. } 79(96.3) \end{gathered}$ | 0 vs. 40 (100) | nd. |  | 0.30 |
| rs4969170 |  |  |  |  |  |  |
|  | Codominant 1 GG vs. GA | $\begin{gathered} \hline 41(50) \\ \text { vs. } 33(40.2) \end{gathered}$ | 17 (42.5) vs. 18 (45) | $\begin{gathered} 1.32[0.58- \\ 2.97] \end{gathered}$ | 0.50 | 0.32 |
|  | Codominant 2 GG vs. AA | $\begin{gathered} \hline 41(50) \\ \text { vs. } 8(9.8) \end{gathered}$ | 17 (42.5) vs. 5 (12.5) | $\begin{gathered} \hline 1.51[0.42- \\ 5.39] \end{gathered}$ | 0.53 | 0.37 |
|  | Dominant GA+AA vs. GG | $\begin{gathered} 41(50) \\ \text { vs. } 41(50) \end{gathered}$ | $\begin{gathered} 23(57.5) \\ \text { vs. } 17(42.5) \end{gathered}$ | 0.74 [0.34-1.6] | 0.44 | 0.28 |
|  | Overdominant GA vs. GG+AA | $\begin{gathered} \hline 33(40.2) \\ \text { vs. } 49(59.8) \end{gathered}$ | 18 (45) vs. 22 (55) | $\begin{gathered} \hline 0.82[0.38- \\ 1.78] \end{gathered}$ | 0.62 | 0.38 |
|  | Recessive AA vs. GA+GG | $\begin{gathered} 8(9.8) \\ \text { vs. } 74(90.2) \end{gathered}$ | 5 (12.5) vs. 35 (87.5) | $\begin{gathered} 0.76 \text { [0.23- } \\ 2.51] \end{gathered}$ | 0.65 | 0.43 |

Data are presented as number (\%). Abbreviations: please refer to Tables S1 and S2 in supplementary file.

Table S4. Distribution of genotypes in a different genetic models between anti-citrullinated protein antibodies positive and anti-citrullinated protein antibodies negative patients.

| $\begin{gathered} \text { SOCS3 } \\ \text { SNPs } \end{gathered}$ | Model | ACPA positive, $\mathrm{n}=104$ | ACPA negative, $\mathrm{n}=18$ | OR [95\% CI] | p-value | Fisher's exact p-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs4969168 | Codominant 1 GG vs. GA | $\begin{gathered} 81(77.9) \\ \text { vs. } 20(19.2) \end{gathered}$ | 14 (77.8) vs. 4 (22.2) | $\begin{gathered} 0.86 \text { [0.25- } \\ 2.95] \end{gathered}$ | 0.82 | 0.51 |
|  | Codominant 2 GG vs. AA | $\begin{gathered} \hline 81(77.9) \\ \text { vs. } 3(2.9) \end{gathered}$ | 14 (77.8) vs. 0 | nd. |  | 0.63 |
|  | Dominant GA+AA vs. GG | $\begin{gathered} 23(22.1) \\ \text { vs. } 81(77.9) \end{gathered}$ | 4 (22.2) vs. 14 (77.8) | $\begin{gathered} 0.99[0.32- \\ 3.09] \end{gathered}$ | 0.99 | 0.6 |
|  | Overdominant GA vs. GG+AA | $\begin{gathered} \hline 20(19.2) \\ \text { vs. } 84(80.8) \end{gathered}$ | 4 (22.2) vs. 14 (77.8) | $\begin{gathered} 0.83 \text { [0.24- } \\ 2.84] \end{gathered}$ | 0.77 | 0.49 |
|  | Recessive AA vs. GA+GG | $\begin{gathered} \hline 3(2.9) \\ \text { vs. } 101(97.1) \end{gathered}$ | 0 vs. 18 (100) | nd. |  | 0.62 |
| rs4969170 |  |  |  |  |  |  |
|  | Codominant 1 GG vs. GA | $51(49)$ vs. $43(41.3)$ | 7 (38.9) vs. 8 (44.4) | $\begin{gathered} 0.74 \text { [0.24- } \\ 2.23] \end{gathered}$ | 0.58 | 0.39 |
|  | Codominant 2 GG vs. AA | $\begin{gathered} 51(49) \\ \text { vs. } 10(9.6) \end{gathered}$ | 7 (38.9) vs. 3 (16.7) | 0.46 [0.1-2.13] | 0.33 | 0.26 |
|  | Dominant GA+AA vs. GG | $\begin{gathered} 53(51) \\ \text { vs. } 51(49) \end{gathered}$ | $\begin{gathered} 11(61.1) \\ \text { vs. } 7(38.9) \end{gathered}$ | $\begin{gathered} 0.66 \text { [0.24- } \\ 1.86] \end{gathered}$ | 0.42 | 0.3 |
|  | Overdominant GA vs. GG+AA | $\begin{gathered} \hline 43(41.3) \\ \text { vs. } 61(58.7) \end{gathered}$ | 8 (44.4) vs. 10 (55.6) | $\begin{gathered} 0.88 \text { [0.32- } \\ 2.44] \end{gathered}$ | 0.81 | 0.5 |
|  | Recessive AA vs. GA+GG | $\begin{gathered} 10(9.6) \\ \text { vs. } 94(90.4) \end{gathered}$ | 3 (16.7) vs. 15 (83.3) | $\begin{gathered} 0.53[0.13- \\ 2.19] \end{gathered}$ | 0.4 | 0.29 |

Data are presented as number (\%). Abbreviations: please refer to Tables S1 and S2 in supplementary file.

Table S5. Genotypes and alleles distribution.

|  |  | Number of carriers (\%) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs4129267 | Allele/ Genotype | RA RFpositive, $\mathrm{n}=82$ | RA RFnegative, $\mathrm{n}=40$ | RA ACPApositive, $\mathbf{n = 1 0 4}$ | $\begin{gathered} \text { RA ACPA- } \\ \text { negative, } n=18 \end{gathered}$ | RA overall, $\mathrm{n}=122$ | Controls, $n=24$ | Subjects in a methylation study, $\mathbf{n}=76$ |
|  | MAF (T allele) | 29.9\% | 25\% | 29.8\% | 19.4\% | 28.3\% | 33.3\% | 30.9\% |
|  | CC | 43 (52.4) | 22 (55) | 54 (51.9) | 11 (61.1) | 65 (53.3) | 11 (45.8) | 37 (48.7) |
|  | CT | 29 (35.4) | 16 (40) | 38 (36.5) | 7 (38.9) | 45 (36.9) | 10 (41.7) | 31 (40.8) |
|  | TT | 10 (12.2) | 2 (5) | 12 (11.5) | 0 | 12 (9.8) | 3 (12.5) | 8 (10.5) |
| rs2228145 | Allele/ Genotype |  |  |  |  |  |  |  |
|  | MAF (C allele) | 30.5\% | 26.3\% | 30.3\% | 22.2\% | 29.1\% | 31.3\% | 32.2\% |
|  | AA | 43 (52.4) | 22 (55) | 54 (51.9) | 11 (61.1) | 65 (53.3) | 12 (50) | 37 (48.7) |
|  | AC | 28 (34.1) | 15 (37.5) | 37 (35.6) | 6 (33.3) | 43 (35.2) | 9 (37.5) | 29 (38.2) |
|  | CC | 11 (13.4) | 3 (7.5) | 13 (12.5) | 1 (5.6) | 14 (11.5) | 3 (12.5) | 10 (13.2) |

Abbreviations: IL6R; Interleukin-6 receptor gene. For other please refer to Table S1 in supplementary file.

Table S6. Distribution of genotypes in a different genetic models between patients and controls.

| IL6R SNPs | Model | RA overall, $\mathrm{n}=122$ | Controls, $n=24$ | OR (95\% CI) | p-value | Fisher's exact p-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs4129267 | Codominant 1 CC vs. CT | $\begin{gathered} \hline 65(53.3) \\ \text { vs. } 45(36.9) \end{gathered}$ | $\begin{gathered} \hline 11(45.8) \\ \text { vs. } 10(41.7) \end{gathered}$ | 0.76 [0.3-1.96] | 0.57 | 0.37 |
|  | Codominant 2 CC vs. TT | $\begin{gathered} 65(53.3) \\ \text { vs. } 12(9.8) \end{gathered}$ | $\begin{gathered} 11(45.8) \\ \text { vs. } 3(12.5) \end{gathered}$ | $\begin{gathered} 0.68[0.16- \\ 2.84] \end{gathered}$ | 0.6 | 0.42 |
|  | Dominant CT+TT vs. CC | $\begin{gathered} \hline 57(46.7) \\ \text { vs. } 65(53.3) \end{gathered}$ | $\begin{gathered} 13(54.2) \\ \text { vs. } 11(45.8) \end{gathered}$ | 0.74 [0.31-1.8] | 0.5 | 0.33 |
|  | Overdominant CT vs. $\mathrm{CC}+\mathrm{TT}$ | $\begin{gathered} \hline 45(36.9) \\ \text { vs. } 77(63.1) \end{gathered}$ | $\begin{gathered} \hline 10(41.7) \\ \text { vs. } 14(58.3) \end{gathered}$ | $\begin{gathered} 0.82[0.33- \\ 2.01 \end{gathered}$ | 0.66 | 0.41 |
|  | Recessive TT vs. $\mathrm{CC}+\mathrm{CT}$ | $\begin{gathered} \hline 12(9.8) \\ \text { vs. } 110(90.2) \end{gathered}$ | $\begin{gathered} \hline 3(12.5) \\ \text { vs. } 21(87.5) \end{gathered}$ | 0.76 [0.2-2.98] | 0.7 | 0.46 |
| rs2228145 |  |  |  |  |  |  |
|  | Codominant 1 AA vs. AC | $\begin{gathered} 65(53.3) \\ \text { vs. } 43(35.2) \end{gathered}$ | $\begin{gathered} 12(50) \\ \text { vs. } 9(37.5) \end{gathered}$ | $\begin{gathered} 0.88 \text { [0.34- } \\ 2.29] \end{gathered}$ | 0.8 | 0.49 |
|  | Codominant 2 AA vs. CC | $\begin{gathered} 65(53.3) \\ \text { vs. } 14(11.5) \end{gathered}$ | $\begin{gathered} 12(50) \\ \text { vs. } 3(12.5) \end{gathered}$ | $\begin{gathered} \hline 0.86 \text { [0.21- } \\ 3.53] \end{gathered}$ | 0.84 | 0.54 |
|  | Dominant $\mathrm{AC}+\mathrm{CC}$ vs. AA | $\begin{gathered} 57(46.7) \\ \text { vs. } 65(53.3) \end{gathered}$ | $\begin{gathered} 12(50) \\ \text { vs. } 12(50) \end{gathered}$ | $\begin{gathered} 0.88 \text { [0.36- } \\ 2.12] \end{gathered}$ | 0.77 | 0.47 |
|  | Overdominant AC vs. $\mathrm{AA}+\mathrm{CC}$ | $\begin{gathered} 43(35.2) \\ \text { vs. } 79(64.8) \end{gathered}$ | $\begin{gathered} \hline 9(37.5) \\ \text { vs. } 15(62.5) \end{gathered}$ | 1.1 [0.44-2.75] | 0.83 | 0.5 |
|  | Recessive CC vs. $\mathrm{AA}+\mathrm{AC}$ | $\begin{gathered} 14(11.5) \\ \text { vs. } 108(88.5) \end{gathered}$ | $\begin{gathered} \hline 3(12.5) \\ \text { vs. } 21(87.5) \end{gathered}$ | $\begin{gathered} 0.91[0.24- \\ 3.48] \end{gathered}$ | 0.89 | 0.56 |

Data are presented as number (\%). Abbreviations: please refer to Tables S1, S2 and S5 in supplementary file.

Table S7. Distribution of genotypes in a different genetic models between rheumatoid factor positive and rheumatoid factor negative patients.

| IL6R SNPs | Model | RF positive, $\mathrm{n}=82$ | RF negative, $n=40$ | OR [95\% CI] | p-value | Fisher's exact p-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs4129267 | Codominant 1 CC vs. CT | 43 (52.4) vs. 29 (35.4) | 22 (55) vs. 16 (40) | $\begin{gathered} 1.08[0.48- \\ 2.42] \end{gathered}$ | 0.85 | 0.51 |
|  | Codominant 2 CC vs. TT | 43 (52.4) vs. 10 (12.2) | 22 (55) vs. 2 (5) | $\begin{gathered} 0.39 \text { [0.08- } \\ 1.99] \end{gathered}$ | 0.22 | 0.20 |
|  | Dominant CT+TT vs. CC | 39 (47.6) vs. 43 (52.4) | 18 (45) vs. 22 (55) | $\begin{gathered} 1.11 \text { [0.51- } \\ 2.39] \end{gathered}$ | 0.79 | 0.47 |
|  | Overdominant CT vs. $\mathrm{CC}+\mathrm{TT}$ | 29 (35.4) vs. 53 (64.6) | 16 (40) vs. 24 (60) | 0.82 [0.37-1.8] | 0.62 | 0.38 |
|  | Recessive TT vs. $\mathrm{CC}+\mathrm{CT}$ | 10 (12.2) vs. 72 (87.8) | 2 (5) vs. 38 (95) | $\begin{gathered} \hline 2.64[0.54- \\ 12.87] \end{gathered}$ | 0.19 | 0.18 |
| rs2228145 |  |  |  |  |  |  |
|  | Codominant 1 AA vs. AC | 43 (52.4) vs. 28 (34.1) | 22 (55) vs. 15 (37.5) | $\begin{gathered} 1.05[0.46- \\ 2.38] \end{gathered}$ | 0.91 | 0.54 |
|  | Codominant 2 AA vs. CC | 43 (52.4) vs. 11 (13.4) | 22 (55) vs. 3 (7.5) | $\begin{gathered} \hline 0.53 \text { [0.13- } \\ 2.16] \end{gathered}$ | 0.35 | 0.28 |
|  | Dominant AC+CC vs. AA | 39 (47.6) vs. 43 (52.4) | 18 (45) vs. 22 (55) | $\begin{gathered} 1.11[0.51- \\ 2.39] \end{gathered}$ | 0.79 | 0.47 |
|  | Overdominant AC vs. $\mathrm{AA}+\mathrm{CC}$ | 28 (34.1) vs. 54 (65.9) | 15 (37.5) vs. 25 (62.5) | $\begin{gathered} 0.86[0.39- \\ 1.91] \end{gathered}$ | 0.72 | 0.43 |
|  | Recessive CC vs. AA+AC | 11 (13.4) vs. 71 (86.6) | 3 (7.5) vs. 37 (92.5) | 1.91 [0.5-7.38] | 0.32 | 0.26 |

Data are presented as number (\%). Abbreviations: please refer to Tables S1, S2 and S5 in supplementary file.

Table S8. Distribution of genotypes in a different genetic models between anti-citrullinated protein antibodies positive and anti-citrullinated protein antibodies negative patients.

| IL6R SNPs | Model | ACPA positive, $\mathrm{n}=104$ | ACPA negative, $\mathrm{n}=18$ | OR [95\% CI] | p-value | Fisher's exact p-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs4129267 | Codominant 1 CC vs. CT | $\begin{gathered} 54(51.9) \\ \text { vs. } 38(36.5) \end{gathered}$ | $\begin{gathered} \hline 11(61.1) \\ \text { vs. } 7(38.9) \end{gathered}$ | $\begin{gathered} 1.11[0.39- \\ 3.15] \end{gathered}$ | 0.85 | 0.53 |
|  | Codominant 2 CC vs. TT | $\begin{gathered} 54(51.9) \\ \text { vs. } 12(11.5) \end{gathered}$ | $\begin{gathered} 11(61.1) \\ \text { vs. } 0 \end{gathered}$ | nd. |  | 0.13 |
|  | Dominant CT+TT vs. CC | $\begin{gathered} 50(48.1) \\ \text { vs. } 54(51.9) \end{gathered}$ | $\begin{gathered} 7(38.9) \\ \text { vs. } 11(61.1) \end{gathered}$ | $\begin{gathered} 1.46[0.52- \\ 4.09] \end{gathered}$ | 0.47 | 0.32 |
|  | Overdominant CT vs. $\mathrm{CC}+\mathrm{TT}$ | $\begin{gathered} \hline 38(36.5) \\ \text { vs. } 66(63.5) \end{gathered}$ | $\begin{gathered} \hline 7(38.9) \\ \text { vs. } 11(61.1) \end{gathered}$ | 0.9 [0.32-2.56] | 0.85 | 0.52 |
|  | Recessive TT vs. $\mathrm{CC}+\mathrm{CT}$ | $\begin{gathered} 12(11.5) \\ \text { vs. } 92(88.5) \end{gathered}$ | 0 vs. 18 (100) | nd. |  | 0.13 |
| rs2228145 |  |  |  |  |  |  |
|  | Codominant 1 AA vs. AC | $\begin{gathered} 54(51.9) \\ \text { vs. } 37(35.6) \end{gathered}$ | $\begin{gathered} 11(61.1) \\ \text { vs. } 6(33.3) \end{gathered}$ | 0.8 [0.27-2.37] | 0.68 | 0.45 |
|  | Codominant 2 AA vs. CC | $\begin{gathered} 54(51.9) \\ \text { vs. } 13(12.5) \end{gathered}$ | $\begin{gathered} \hline 11(61.1) \\ \text { vs. } 1(5.6) \end{gathered}$ | 0.38 [0.04-3.3] | 0.32 | 0.32 |
|  | Dominant AC+CC vs. AA | $\begin{gathered} 50(48.1) \\ \text { vs. } 54(51.9) \end{gathered}$ | $\begin{gathered} \hline 7(38.9) \\ \text { vs. } 11(61.1) \end{gathered}$ | $\begin{gathered} 1.46[0.52- \\ 4.09] \end{gathered}$ | 0.47 | 0.32 |
|  | Overdominant AC vs. $\mathrm{AA}+\mathrm{CC}$ | $\begin{gathered} \hline 37(35.6) \\ \text { vs. } 67(64.4) \end{gathered}$ | $\begin{gathered} \hline 6(33.3) \\ \text { vs. } 12(66.7) \end{gathered}$ | 1.1 [0.38-3.22] | 0.85 | 0.54 |
|  | Recessive CC vs. $\mathrm{AA}+\mathrm{AC}$ | $\begin{gathered} 13(12.5) \\ \text { vs. } 91(87.5) \end{gathered}$ | $\begin{gathered} 1(5.6) \\ \text { vs. } 17(94.4) \end{gathered}$ | $\begin{gathered} 2.43[0.29- \\ 20.24 \end{gathered}$ | 0.36 | 0.35 |

Data are presented as number (\%). Abbreviations: please refer to Tables S1, S2 and S5 in supplementary file.

Figure S1. Linkage disequilibrium between rs4969168 and rs4969170.

```
Query SNPs:
rs4969168 (chr17:76353793)
rs4969170 (chr17:76360538)
CEU Haplotypes:
    rs4969170
    A G
    A |25 | 1 | 26 (0.131)
rs4969168
    G|43 | 129 | 172 (0.869)
        68 130 198
        (0.343) (0.657)
    G G: 129 (0.652)
    G_A: 43 (0.217)
    A_A: }25\mathrm{ (0.126)
    A_G: 1 (0.005)
    D': 0.9414
    R2: 0.256
    Chi-sq: 50.7121
    p-value: <0.0001
rs4969168(A) allele is correlated with rs4969170(A) allele
rs4969168(G) allele is correlated with rs4969170(G) allele
```

Figure S2. Linkage disequilibrium between rs4129267 and rs2228145.

```
Query SNPs:
rs4129267 (chr1:154426264)
rs2228145 (chr1:154426970)
CEU Haplotypes:
            rs2228145
            A C
            C|129 | 0 | 129 (0.652)
rs4129267
            T|0 | 69 | 69 (0.348)
            129 69 198
            (0.652) (0.348)
            C_A: 129 (0.652)
            T_C: 69 (0.348)
            C_C: 0 (0.0)
            T_A: 0(0.0)
            D':}1.
            R2:1.0
Chi-sq: 198.0
\[
\text { p-value: }<0.0001
\]
rs4129267(C) allele is correlated with rs2228145(A) allele
rs4129267(T) allele is correlated with rs2228145(C) allele
```

