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Cigarette smoke (CS) was known for its efect of increasing oxidative stress that could trigger tissue injury and endothelial
dysfunction mediated by free radicals and reactive oxygen species (ROS). ROS itself is a key signaling molecule that plays a role in
the development of infammatory disorders. Nuclear factor erythroid2 related factor2 (Nrf2) is the main regulator of antioxidant
cellular response to cell and tissue-destroying components caused by CS. Nrf2 protein that is signifcantly activated in the smokers’
small airway epithelium is followed by a series of gene expression changes in the same cells. Tis study aims to observe dif-
ferentially expressed genes (DEGs) in the human small airway epithelium of smokers compared to genes whose expression
changes due to astaxanthin (AST) treatment, an antioxidant compound that can modulate Nrf2. Gene expression data that was
stored in the GEO browser (GSE 11952) was analyzed using GEO2R to search for DEG among smokers and nonsmokers subject.
DEG was further compared to those genes whose expression changes due to astaxanthin treatment (AST) that were obtained from
the Comparative Toxicogenomics Database (CTD; https://ctdbase.org/). DEG (p< 0.05) analysis result shows that there are 23
genes whose expression regulation is reversed compared to gene expression due to AST treatment. Te gene function annotations
of the 23 DEGs showed the involvement of some of these genes in chemical and oxidative stress, reactive oxygen species (ROS),
and apoptotic signaling pathways. All of the genes were involved/associated with chronic bronchitis, adenocarcinoma of the lung,
non-small-cell lung carcinoma, carcinoma, small cell lung carcinoma, type 2 diabetes mellitus, emphysema, ischemic stroke, lung
diseases, and infammation. Tus, AST treatment for smokers could potentially decrease the development of ROS and oxidative
stress that leads to infammation and health risks associated with smoking.
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1. Introduction

Oxidative stress occurs due to an imbalance between the
increased production of free radicals and decreased anti-
oxidant capacity [1]. Under physiological conditions, oxi-
dative stress will trigger an increase in the expression of
endogenous antioxidant genes and cytoprotective proteins
to prevent or limit tissue damage. Tis process is mediated
by nuclear factor erythroid2 related factor2 (Nrf2) activity
which then activates transcription way for antioxidant gene
and enzyme detoxifcation [1, 2]. Tus, impaired activation
of Nrf2 will cause a decrease in antioxidant capacity.

Cigarette smoke (CS) component that is dissolved in
water is known to directly increase oxidative stress that
could trigger tissue injury. Smoking tobacco has also been
associated with vascular endothelium dysfunction through
causative methods depending on the dose. Tis is mainly
related to tobacco content of reactive oxygen species (ROS),
nicotine, and infammation driven by oxidative stress [3]. In
particular, chronic CS exposure to respiratory tract tissue
causes an increase in radical concentration, volatile com-
pound (particularly oxygen species and reactive nitrogen),
and CS condensate deposition, which will trigger a pleio-
tropic adaptive response, aimed at restoring tissue ho-
meostasis [4]. Chronic exposure to CS generally encounters
a cellular defense system characterized by activation of Nrf2.
Nrf2 as the main regulator of antioxidant cellular response is
proven to regulate the frst line of defense against CS-
induced cell and tissue-damaging components. Tis is in-
dicated by the higher expression of Nrf2 in PBMC in
moderate smokers compared to nonsmokers (p< 0.01). An
increase in Nrf2 was not found in heavy smokers who
possess a high level of nuclear transcription factor (NF-kB)
and C-reactive protein (CRP) (p> 0.01) [5]. Tis indicates
disruption of the Nrf2 role in heavy smokers with an in-
fammatory problem. Nrf2 genetic efect also afects
smokers’ health status. Tis is indicated by the signifcant
interaction between genotype rs6726395 with accompanied
by the decrease of forced expiratory volume in one second
(FEV1) (p � 0.011) [6]. Te Haplotype rs2001350T/
rs6726395A/rs1962142A/rs2364722A/rs6721961T is also as-
sociated with a lower annual decline in FEV1 (p � 0.004) [6].

Astaxanthin (AST) is a food xanthophyll that is often
found in sea organisms, and because of its unique molecular
feature, it possesses good antioxidant activity. More evidence
has suggested AST’s protective role to counter several diseases
where oxidative stress and infammation occur continuously.
AST is known to modulate Nrf2 binding to antioxidant re-
sponse elements (AREs) in the promoter region of most
cytoprotective or detoxifying enzymes [7]. Recent studies
have also shown that AST modulates the NF-B signaling
network by increasing infammation and oxidative stress in
various experimental models [8, 9]. Several studies have
shown that the anti-aging efect, as well as attenuation of
oxidative stress and infammation of AST, is carried out
through Nrf2 activation and NF-kB inhibition [10–12].

Diferentially Expressed Gene (DEG) is important to
understand the biological diference between a healthy and
ill condition. Identifcation of genes involved in disease is an

important tool for revealing the molecular mechanisms of
disease development. In pharmaceutical and clinical studies,
DEG also plays an important role to choose biomarker
candidates, therapeutic targets, and genetic signatures for
diagnosis [13]. In this study, an analysis of changes in gene
expression patterns due to smoking was carried out in the
Gene Expression Omnibus (GEO) database [14, 15] which
was compared with changes in profle expression genes due
to AST treatment obtained from Comparative Tox-
icogenomics Database (CTD; https://ctdbase.org/) [16]. By
comparing these two research data, it is intriguing to know
what genes have the potential expression to be afected by
AST, so it is hoped that it could further explain the potential
of AST as a candidate for antioxidant supplements in terms
of its mechanism of action in reducing the health efects that
can appear on smokers.

2. Methods

Tis study gathers data from Gene Expression Omnibus
(GEO) database, a study conducted by Hübner et al. [17].
Te inclusion criteria of a healthy nonsmoker and smoker
referred to those study. Healthy nonsmoker was people with
normal physical examination, lung function, and chest X-
ray, with smoking-related blood and urine within the
nonsmoker range. Te criteria for a healthy smoker were
current smoking history, followed by normal physical ex-
amination, lung function, chest X-ray, and smoking-related
blood and urine parameters consistent with current
smokers. In the study, the age of the subjects was not dis-
tinguished [17]. Human small airway epithelium samples
was obtained using fber-optic bronchoscopy of 38 healthy
nonsmokers and 45 healthy smokers, and Nrf2-associated
gene expression was assessed using the Afymetrix HG-U133
Plus 2.0 microarray. Compared to healthy nonsmokers, it
was found that the Nrf2 protein was signifcantly activated in
the human small airway epithelium of healthy smokers and
localized in the nucleus (p< 0.05). Te research gene ex-
pression data stored in the GEO browser (GSE 11952) was
then analyzed using GEO2R to look for DEG between
smokers and nonsmokers subjects. Furthermore, DEGs of
smoker’s vs nonsmokers were compared with genes that
changed expression due to AST treatment obtained from the
CTD, with the target of fnding genes that were opposite in
expression between the 2 datasets.

Genes with opposite expressions were then made into
protein networks and clustered using STRING (string-
db.org) [18]. In these genes, gene function annotations were
made using the GO biological process [19, 20]. Relationships
between genes and smoking-related diseases obtained from
CTD. At this stage, it was expected to know the role of AST
on changes in biological processes that occur in smokers and
the diseases that can accompany them based on gene ex-
pression profles.

3. Results

Te results of DEG analysis of research data from Hübner
et al. [17] stored in the GEO browser (GSE 11952), showed

2 International Journal of Infammation

https://ctdbase.org/


that there were 4912 signifcantly diferentially expressed
genes (DEGs) in the human small airway epithelium of
smokers compared to nonsmokers (p< 0.05). If the 4192
DEGs was compared with genes or proteins whose ex-
pression changed because of AST administration obtained
from CTD, then the results are as shown in Table 1.

Table 1 shows 23 Nrf2-related genes/proteins that ex-
pression regulation was opposite between smokers (against
nonsmokers) with the efect of AST treatment. Te efect of
AST in infuencing the gene expression/protein could
happen directly or indirectly. In the case of it happening
indirectly, the AST slows down the reaction that infuences
a particular gene expression/protein. For instance, slowing
down LEPR mutant reaction. LEP is known to be associated
with leptin receptor (LEPR) and took part in activating
several intracellular signaling channels [21]. Te increase of
LEP in the lungs and serum is associated with potentially
worsening or hastening the development of lung diseases,
including acute lung injury (ALI), acute respiratory distress
syndrome, chronic obstructive pulmonary disease (COPD),
airway remodeling associated with asthma, and lung cancer
[21]. In addition, the presence of polymorphism LEPR is
known to show a statistically signifcant diference between
lung cancer patients and controls (p � 0.007) [22]. LEPR
mutant is also known to cause kidney [23] and bone marrow
fbrosis [24].

Te relationship between these 23 genes and compounds
found in environmental tobacco smoke (ETS) can be seen in
Table 2. ETS is smoke that originated from burning tobacco
products and smoke exhaled by smokers [25]. ETS consist of
40 biologically and toxicologically active compounds
according to Hofmann’s list [26]. Tree compounds from
Hofmann List are produced in milligrams per cigarette (tar,
nicotine, and CO), while the remaining are in nanograms or
micrograms level per cigarette [26, 27]. In Table 2, it could be
seen that 6 out of 23 genes that undergo changes in profle
expression in human small airway epithelium on smoker
subjects are associated with the compounds from ETS
according to the Hofmann List. In addition to explaining
how smoking can afect the expression profle of these genes,
this can also clarify the potential benefts of giving AST to
smokers.

From the 23mentioned genes, the protein networks were
made using STRING (string-db.org) as could be seen in
Figure 1. Tere are 4 clusters with the red node as the central
cluster (C1). Te central cluster consists of 7 genes/proteins:
SOD1, IDH1, TKT, PRDX1, GPX3 SKAP2, and BECN1 with
SOD1 as central nodes. If Nrf2 (NFE2L2) was administrated
into the networks, it could be seen that these genes were in
the central cluster (C1). In Table 3, the annotations of the 7
(seven) genes/proteins which contain 10 (ten) groups of
gene annotations (gene ontology and GO biological process)
can be seen based on the smallest adjusted p value [28]. In
Table 3, the genes/proteins can be seen to be involved in
chemical and oxidative stress, reactive oxygen species (ROS),
and apoptotic signaling pathway. Smoking is known to
induce oxidative stress, as well as activate infammatory
response pathways, which trigger a cascade of events in
which ROS production is an early but indispensable step

[29]. CS is also known to induce in vivo epithelial cell ap-
optosis, however, fbrotic changes occur only after a viral
exacerbation [29, 30].

Gene function annotation (GO biological process) of
other clusters (C2, C3, and C4) can also be seen in Table 3.
C2 cluster is related to the regulation of extrinsic apoptotic
signaling pathways and the regulation of immune response.
C3 cluster is related to transcription process regulation,
programmed cell death, signaling receptor activity, and
deacetylation reaction. While the C4 cluster is related to
aerobic and cellular respiration, as well as the electron
transport process in mitochondria. Based on the relationship
between the central cluster and other clusters, it can be seen
how chemical oxidative stress caused by ROS due to
smoking activity could afect the transcription process
regulation, signaling process related to apoptosis and re-
ceptor activity, as well as electron transfer process and other
cellular processes.

If the 23 genes that change expression due to smoking
were associated with diseases caused by smoking, it was
known that all of genes were involved/associated with
chronic bronchitis, adenocarcinoma of the lung, non-
small-cell lung carcinoma, carcinoma, small cell lung car-
cinoma, type 2 diabetes mellitus, emphysema, ischemic
stroke, lung diseases, and infammation (Table 4). While the
ones related to pulmonary heart disease are known to be as
many as 19 genes. Te interesting thing is that the 23 genes
are also related to the infammation disease category. It
appears that this evidence suggests that the association
between ROS and oxidative stress induced by smoking and
smoking-related disease may be mediated by the in-
fammatory process. On the other hand, the administration
of AST, thus has the potential to reduce the risk of the
development of these diseases in smokers.

4. Discussion

Smoking activity is a major factor in various diseases, in-
cluding immune-mediated infammation disease. Te con-
cept of chronic or prolonged ROS production is central to
the development of infammatory diseases [31]. On tobacco,
ROS production is mainly contributed by nicotine, the main
component in tobacco. A low concentration of nicotine
(0.1 μM) could induce ROS to about 35%, however, a sig-
nifcant increase in the amount of ROS could be observed at
1 and 10 μM nicotine concentrations of 54% and 80%, re-
spectively [32]. Aside from nicotine, ROS development is
also stimulated by various agents such as pollutants in ETS
such as heavy metals (lead, nickel, mercury, arsenic, cad-
mium, chromium, and cobalt), or other organic compounds
such as hydroquinone, acrylonitrile, acrolein, formaldehyde,
acetaldehyde, benzene, dan benzo(a)pyrene. Reactive oxy-
gen species (ROS) is a key signaling molecule that plays an
important role in the development of infammatory disor-
ders. Te increase in ROS generation by neutrophils poly-
morphonuclear (PMN) at the sites of infammation can for
example lead to endothelial dysfunction and tissue injury
[31]. However, nicotine-induced neutrophil activation by
nicotine is also known to be ROS-independent [33].
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Some of the associations between genes that changed
expression in smokers with infammation, endothelial
dysfunction, and tissue injury can be explained as follows: in
Table 2, it is known that an increase in histone deacetylase2
(HDAC2) expression, which is also caused by nicotine,
hydroquinone, and benzo(a)pyrene compound, happens in

smokers. Te increase in expression also happens on se-
creted phosphoprotein1 (SPP1), transketolase (TKT), cy-
tochrome b-245 beta chain (CYBB), and peroxiredoxin 1
(PRDX1) in smoker subjects compared to nonsmokers
(Table 1). In atherosclerosis, overexpression of HDAC2 in
endothelial cells under proatherogenic conditions and

Table 2: Relationship between smoking-associated genes with biologically and toxicologically active compounds in ETS. Biologically and
toxicologically active compounds data obtained from CTD [16].

Gene symbol Chemical name Organism Interaction actions
ARG1 Hydroquinone Homo sapiens Increaseŝexpression

BAX Cobalt, hydroquinone, acrylonitrile, acrolein, formaldehyde, acetaldehyde, benzo(a)
pyrene, chromium, nickel, arsenic, cadmium Homo sapiens Increaseŝexpression

BECN1 4-cresol, hydroquinone, hydroquinone, benzo(a)pyrene Homo sapiens Increaseŝexpression
CSF2 Benzene, benzo(a)pyrene Homo sapiens Increaseŝexpression
CTSS Nickel Homo sapiens Increaseŝexpression
CYBB Nickel, acetaldehyde Homo sapiens Increaseŝexpression
GPX3 Selenium Homo sapiens Increaseŝexpression
HDAC2 Nicotine, hydroquinone, benzo(a)pyrene Homo sapiens Increaseŝexpression

IL1B Cobalt, phenol, hydroquinone, resorcinol, formaldehyde, acetaldehyde, Benzo(a)
pyrene, styrene, lead, nickel, mercury, arsenic, cadmium, selenium Homo sapiens Increaseŝexpression

ND6 Formaldehyde Homo sapiens Increaseŝexpression
PRDX1 Hydroquinone, benzo(a)pyrene, arsenic, cadmium Homo sapiens Increaseŝexpression
SOD1 Hydroquinone, Benzo(a)pyrene, arsenic, cadmium, chromium Homo sapiens Increaseŝexpression
SPP1 Acetaldehyde, benzo(a)pyrene, nickel, mercury, cadmium Homo sapiens Increaseŝexpression
TKT Hydroquinone, arsenic, selenium Homo sapiens Increaseŝexpression
UBB Cadmium Homo sapiens Increaseŝexpression
ARG1 Benzo(a)pyrene Homo sapiens Decreaseŝexpression
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Figure 1: Nrf2-related protein network (NFE2L2) with reverse gene/protein expression regulation between smokers (against nonsmokers)
and the efect of Astaxanthin administration.
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oxidative injury suppresses the expression of Arginase2
(ARG2), which further reduces the expression of endothelial
nitric oxide synthase (eNOS) [34]. Endothelial dysfunction
is known to be caused by a decrease in eNOS expression. In
chronic diabetic foot ulcer (DFU) an increase of HDAC2
expression also happens where dysfunctional endothelial
progenitor cells (EPCs) plays a major role in inhibiting
vascular complication in DFU patient [35]. Inhibition of
HDAC2 is known to prevent infammatory disorders and
ROS production in EPCs with high glucose levels [35]. SPP1
is highly expressed after stimulation of oxidized low-density
lipoprotein (oxLDL) and plays a role in causing in-
fammation of human coronary artery endothelial cells
(HCAECs) [36]. High TKTexpression is also associated with
advanced tumor stage and TKT inhibitors promote apo-
ptosis of lung adenocarcinoma cells and cell cycle blockade
[37]. CYBB, also known as NADPH-oxidase (NOX2) is
known to be involved in angiotensin II-induced hyperten-
sion and endothelial dysfunction, as well as abundantly
expressed in the endothelium [38]. PRDX1 is also signif-
cantly higher in stroke patients compared to control. PRDX1
level is also higher on blood samples taken 3 and 6 hours
after the stroke attack compared to the control [39].

Te 23 DEGs generated from the analysis of gene ex-
pression data in the GEO browser (GSE 11952) were the
genes expressed in the human small airway epithelium of
smokers vs nonsmokers, where the Nrf2 protein is also
signifcantly activated and localized in the nucleus of the
same cell [17]. Tis can also indicate how these genes are
related to Nrf2. Furthermore, if we look at the protein
network in Figure 1 where Nrf2 (NFE2L2) was in the central
cluster (C1), there is a strong indication that the 23 DEGs
produced are related to Nrf2 (NFE2L2). In mammals, Nrf2
has long been known to function as an evolutionarily
conserved intracellular defense mechanism against oxidative
stress. Nrf2 has been shown to contribute to the regulation of
the heme oxygenase1 (HO-1) axis, which is a strong anti-
infammatory target, and has shown a relationship with the
expression of infammatorymediators in the NF-kB pathway
and macrophage metabolism through the Nrf2/antioxidant
response element (ARE) system [40]. Lungs are highly
vulnerable to oxidative stress-inducing factors such as in-
fection, allergen, and pollutant such as ETS. Oxidative stress
that triggers Nrd2 activation has been shown in several
human respiratory diseases such as asthma and chronic
obstructive pulmonary disease (COPD), or pulmonary
parenchyma-related diseases such as acute respiratory dis-
tress syndrome (ARDS) and lung fbrosis [41]. In this study,
it has been shown (in Table 4) the association of the 23 DEGs
with these diseases and other smoking-related diseases such
as pulmonary heart disease, ischemic stroke, and type 2
diabetes mellitus (T2D).

Tis study shows that AST could also act as a very good
candidate to improve diseases related to infammation [42].
AST is also known to increase Nrf2 and HO-1 expression in
the lung, and suppress emphysema due to cigarette smoke in
rats [43]. From the various previous explanations, it can be
concluded that AST treatment in smokers has the potential
to reduce the formation of ROS and the occurrence of

oxidative stress that triggers infammation, as well as the
accompanying diseases. Te potential for AST can then be
confrmed through the next stage of research (e.g., clinical
trials) including through observation of changes in gene
expression biomarkers of the 23 DEGs.

5. Conclusion

From this study, we found that the 23 DEGs (smokers vs
nonsmokers) in the human small airway epithelium were
found to be inversely regulated by genes that changed ex-
pression due to AST treatment. Based on the GO biological
process, some of these genes are known to be related to
oxidative stress and ROS. AST has been confrmed to be
efcacious in relieving chronic and acute infammation in
a variety of diseases, including neurodegenerative disorders,
diabetes, gastrointestinal diseases, kidney infammation, and
skin and eye diseases.
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