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In the realm of high-dimensional data analysis, numerous felds stand to beneft from its applications, including the biological and
medical sectors that are crucial for computer-aided disease diagnosis and prediction systems. However, the presence of a sig-
nifcant number of redundant or irrelevant features can adversely afect system accuracy and real-time diagnosis efciency. To
mitigate this issue, this paper proposes two innovative wrapper feature selection (FS) methods that integrate the ant colony
optimization (ACO) algorithm and hybrid rice optimization (HRO). HRO is a recently developed metaheuristic that mimics the
breeding process of the three-line hybrid rice, which is yet to be thoroughly explored in the context of solving high-dimensional FS
problems. In the frst hybridization, ACO is embedded as an evolutionary operator within HRO and updated alternately with it. In
the second form of hybridization, two subpopulations evolve independently, sharing the local search results to assist individual
updating. In the initial stage preceding hybridization, a problem-oriented heuristic factor assignment strategy based on the
importance of the knee point feature is introduced to enhance the global search capability of ACO in identifying the smallest and
most representative features. Te performance of the proposed algorithms is evaluated on fourteen high-dimensional biomedical
datasets and compared with other recently advanced FS methods. Experimental results suggest that the proposed methods are
efcient and computationally robust, exhibiting superior performance compared to the other algorithms involved in this study.

1. Introduction

High-dimensional data are increasingly prevalent in diverse
felds such as medical diagnosis and genomics, presenting
signifcant challenges to the construction of intelligent
systems. Data from medical imaging generally comprise
a variety of features that delineate patient conditions.
Similarly, microarray data from high-throughput gene ex-
pression experiments concurrently measure the expression
levels of thousands of genes [1]. Such high dimensionality
creates difculties in terms of storage, computation, and
analysis [2]. Specifcally, the abundance of features may lead
to the “curse of dimensionality,” where data sparsity occurs
and the distance between sample points loses signifcance.

Tis situation, in turn, can lead to the overftting of data
mining models and increased computation time. Terefore,
selecting representative features that positively impact in-
telligent systems becomes critical. Feature selection (FS) is
employed to minimize the feature space, thereby not only
conserving storage space but also facilitating information
discovery and mitigating the potential for model overftting.

FS techniques directly identify the optimal feature subset
(OFS) from the original feature space, preserving the in-
terpretability of the chosen features and enhancing the
comprehension of underlying data patterns and relation-
ships. Te broad applicability of FS spans areas such as text
classifcation [3], image processing [4, 5], fnance [6, 7], and
other felds. As an NP-hard problem in nature, the search
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space of FS grows exponentially with the number of features,
making traditional search methods inefective in fnding the
OFS within polynomial time. Existing FS methods primarily
fall into three categories: flter, wrapper, and embedded, each
distinguished by its selection process. Te flter method
independently evaluates the relevance and redundancy of
each feature using statistical or ranking measures, irre-
spective of the particular classifer employed in subsequent
steps. Te wrapper method integrates a specifc learning
algorithm within the FS process, treating FS as a search
problem and seeking the OFS by assessing the performance
of each feature subset on the classifer. Although wrappers
entail a higher computational cost compared to highly ef-
fcient flter methods, they can handle nonlinear feature
interactions and dependencies. Furthermore, wrappers can
determine the OFS for a specifc learning algorithm, po-
tentially enhancing predictive performance [8]. Te em-
bedded method incorporates the FS process within the
training process of the learning algorithm. Te superior
performance of the wrapper method has attracted increasing
research interest, marking it as a popular FS technique. To
tackle the computational intensity of wrapper methods,
researchers are investigating the use of metaheuristics in FS
to boost search efciency and OFS quality.

Metaheuristics have surfaced as promising alternatives
for FS in high-dimensional data, efciently balancing
exploration and exploitation in the search space to con-
verge towards near-optimal solutions. Various high-
performance metaheuristics have been successfully
employed across diverse FS tasks [9, 10]. For instance, Jia
et al. [11] enhanced the slime mould algorithm (SMA) [12]
for FS, wherein the FS process and the parameter opti-
mization of SVM occur concurrently. To improve pop-
ulation diversity, a composite mutation strategy was
introduced, and a trial-based restart strategy was designed
to circumvent the local optima. Qu et al. [13] proposed
a novel gene selection method based on Harris hawk
optimization (HHO). Te F-score is initially employed for
preliminary feature fltering to condense the feature space,
followed by a variable neighborhood learning strategy for
balancing the exploration and exploitation of HHO.
Ghosh et al. [14] studied eight diferent transfer functions
from two series (S-shaped and V-shaped) and suggested
an improved binary manta ray foraging optimization
(MRFO) [15] for FS. Ewees et al. [16] modifed the seagull
optimization algorithm (SOA) using the Levy fight
mechanism to overcome its linear search defciency in the
search space, expanding the search area and enhancing the
capability of individuals to escape from local optima. To
select the optimal gene combination efectively in
microarray data, Pashaei [17] utilized mRMR to flter the
top m promising genes in the initial stage to reduce the
feature space and then applied the Aquila Optimizer (AO)
with a mutation mechanism and TVMS transfer function
to search the OFS. Awadallah et al. [18] developed a new
enhanced binary rat swarm optimizer (RSO), in which the
local historical optimal strategy of PSO was introduced to
enhance individual exploitation. Furthermore, three
crossover operators, namely, one-point crossover, two-

point crossover, and uniform crossover, are incorporated
into the individual update process and randomly selected
with equal probability. A multi-strategy integrated grey
wolf optimizer (MSGWO) was presented for biological
data classifcation [19]. It adopted the convergence factor
concept to adjust the transition between exploration and
exploitation explicitly. Additionally, multiple exploration
and exploitation strategies were employed to boost the
global search and local exploitation processes.

Te no-free lunch (NFL) theorem suggests that no single
algorithm can resolve all optimization problems due to the
inability to strike a perfect balance between global search and
local exploitation. Consequently, recent research has in-
creasingly focused on hybrid metaheuristics to address the
limitations of individual algorithms. For instance, Pashaei [2]
introduced a hybrid FS method that integrates the dragonfy
algorithm (DFA) and the black hole algorithm (BHA), in
which the optimal solution derived from DFA serves as the
initial solution for BHA. A hybrid FS method, merging the
binary arithmetic optimization algorithm (BAOA) and
simulated annealing (SA), was proposed in [20], utilizing SA
as a local search operator to discover potential solutions near
the optimal solution of BAOA. Stephan et al. [21] put forward
a method combining the artifcial bee colony (ABC) and
whale optimization algorithm (WOA) to concurrently search
the OFS of breast cancer data and optimize the artifcial neural
network parameters. ‘In addition, there are several studies
attempting to integrate the HHO with other metaheuristic
algorithms.’ We hope this revision is more clear and accurate
[22–24]. Beyond metaheuristic hybrids, the combination of
flters and wrappers has also been extensively researched,
aiming to determine the OFS at a lower computational cost.
Zhu et al. [25] combined the Fisher fltering method with the
artifcial immune optimizer for high-dimensional FS, in-
troducing a lethal mutation mechanism and a Cauchy mu-
tation operator with an adaptive adjustment factor to enhance
population diversity. A new high-dimensional FS method in
conjunction with mRMR was developed in [26]. Tis method
improved the recently proposed COOT algorithm using
a crossover operator and employed the hyperbolic tangent
transfer function for continuous numerical binarization. Te
improved COOTwas hybridized with SA and applied to FS of
microarray data. While these studies have demonstrated the
performance of metaheuristic-based FS methods, the risk of
local optima entrapment persists due to the stochastic
strategies inherent in metaheuristics that ensure the global
search of the algorithm. Terefore, the development of
a computationally efcient and robust high-dimensional FS
method remains a crucial and ongoing research endeavor.

Hybrid rice optimization (HRO) algorithm, proposed by
Ye et al. [27], is a novel population-based metaheuristic
inspired by the real-world breeding process of three-line
hybrid rice. Te heterosis theory suggests that the frst
generation of hybrids manifests superior physical, re-
productive, and behavioral characteristics compared to their
parent generation. Echoing this concept, HRO has exhibited
several desirable properties, including high search efciency,
fewer control parameters compared to other metaheuristics,
and ease of implementation. Its high fexibility and reduced
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parameter dependency have encouraged researchers to
apply it to the 0-1 knapsack problem [28] as well as the FS
problem [29].

While most metaheuristics necessitate conversion to
binary form via a specifc transfer function to indicate
whether the feature is selected, this approach may be ap-
propriate for all situations, as they were initially designed to
manage continuous optimization problems. As a classic
swarm intelligence algorithm, ant colony optimization
(ACO) is more suitable for FS tasks, given its origin as
a combinatorial optimization algorithm. ACO strikes a well-
balanced ratio between exploration and exploitation by
dynamically adjusting pheromone density. Numerous
studies have demonstrated the robustness and adaptability
of ACO in resolving FS problems. Wang et al. [30] in-
troduced a novel approach for FS, namely, the probabilistic
sequence-based graphical representation ACO, in-
corporating symmetric uncertainty (SU) into the algorithm.
Paniri et al. [31] presented an innovative multi-label FS
method based on ACO, which used both unsupervised and
supervised heuristic functions to seek features with minimal
redundancy and maximal correlation with class labels.
Moreover, a recent study [32] put forth a semisupervised FS
method based on ACO that employs a nonlinear heuristic
function trained using temporal diference (TD) re-
inforcement learning instead of the traditional linear heu-
ristic functions. Despite the standard ACO and HRO having
demonstrated commendable optimization performance in
low-dimensional optimization problems, their performance
may encounter difculty in achieving ideal performance
when dealing with high-dimensional FS problems. Tis
challenge motivates us to combine the strengths of both
algorithms, aiming to create a more robust and efcient
method for high-dimensional FS.

Tis paper proposes a two-stage hybrid technique for
solving high-dimensional FS problems, leveraging the
strengths of both ACO and HRO. Considering the limi-
tations of standard ACO, this paper seeks to enhance it in
the frst stage prior to hybridization. A novel problem-
oriented heuristic factor assignment strategy based on the
importance of the knee point feature is designed to
augment the search capability of ACO in high-di-
mensional FS. In the second stage, two hybrid models
merging the improved binary ACO (IBACO) and HRO
are presented and applied to high-dimension FS tasks. Te
hybridization manifests in two forms: low-level relay
hybrid (LRH) and high-level teamwork hybrid (HTH)
[33]. In the case of LRH, IBACO serves as an operator
within HRO to guide the evolution of the maintainer line.
Tis hybrid mode has been introduced due to the notable
absence of suitable maintainer line update strategies
within HRO, a factor of particular importance for high-
dimensional FS tasks, while in HTH, subpopulations of
HRO and IBACO evolve independently and share their
local search results after each iteration. A comprehensive
list of acronyms and symbol annotations used throughout
this paper is provided in Table 1. Te main contributions
of the paper are summarized as follows:

(1) Two unique hybridizations of IBACO and HRO,
namely, R-IBACO and C-IBACO, are presented to
efectively leverage the advantages of the two algo-
rithms and obtain a more promising solution.

(2) A new problem-oriented assignment strategy for the
heuristic factor (HF) based on the feature correlation
of the knee point feature is proposed.

(3) Te proposed methods are applied in high-di-
mensional FS tasks and compared with existing
state-of-the-art metaheuristic-based FS methods.

(4) Te performance of the proposed methods is eval-
uated from multiple perspectives, and the results are
subjected to the Wilcoxon signed-rank test and
Friedman test.

Te remainder of this paper is structured as follows.
Section 2 presents an overview of the related work. Section 3
discusses the mathematical model of FS and provides some
theoretical background on BACO and HRO.Te specifcs of
the proposed methods are elucidated in Section 4. Section 5
outlines the experiments conducted and analyzes the ob-
tained results. Finally, Section 6 draws conclusions from this
study and indicates potential areas for future research.

2. Related Work

2.1. Metaheuristic-Based FS. In recent years, the application
of metaheuristics for FS problems has seen a signifcant rise.
Notably, many of the proposed wrapper FS methods draw
upon GWO due to its remarkable performance in solving
continuous optimization problems. In the work of Hu et al.
[34], an enhanced variant of the binary GWO was in-
troduced, incorporating a novel strategy for updating the
parameter governing exploration and exploitation, along
with fve transfer functions for mapping continuous values
to their binary counterparts, thereby enhancing the quality
of candidate solutions. Likewise, Abdel-Basset et al. [35]
proposed three distinct binary GWO variants, each utilizing
diferent transfer functions. In addition to GWO-based

Table 1: Te meaning of the used symbols.

Acronym Meaning
F Te feature space
D Dimensionality of feature
OFS Te optimal feature subset
PD Pheromone density
HF Heuristic factor

τi,j(k)
Te pheromone density from bit i to bit j on the kth

path
gbest Te global optimal solution
pbest Te best solution obtained during the current iteration
Vd

max Te maximum value in the dth dimension
Vd

min Te minimum value in the dth dimension
ρ Te evaporation factor of pheromone density
W Te descending order of feature correlation
λ Te weight of error rate
μ Te weight of selection rate
SC Te number of selfng of the restorer line in HRO
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research, PSO has been a focus in prior studies. For example,
Song et al. [36] proposed an improved integer PSO with
a fast correlation-guided feature clustering strategy that
markedly reduces the computation cost for FS. Te gaining-
sharing knowledge (GSK) optimization algorithm is a newly
devised metaheuristic that draws its inspiration from the
human process of acquiring and sharing knowledge [37]. Its
robustness and convergence properties have proven to be
highly efective in solving continuous optimization prob-
lems. Some enhanced versions of GSK have been success-
fully employed for FS tasks. As a continuous optimization
algorithm, Agrawal et al. [38] implemented eight S-shaped
and V-shaped transfer functions to map the individual codes
of GSK into the binary search space. In addition, a dynamic
population reduction strategy is introduced to facilitate the
adjustment of population size during the pursuit of OFS.
Another improved GSK integrating chaotic map strategies
was proposed in [39], which utilized a probability estimation
operator to represent its binary variant. Hanbay [40] pro-
posed an innovative standard error-based ABC for FS, in-
corporating new solution search mechanisms based on
standard error into the original ABC algorithm and utilizing
the Shannon condition entropy value for FS. Moreover, an
advanced salp swarm algorithm (SSA) was also suggested in
[41], utilizing opposition-based learning to augment pop-
ulation diversity and implementing a novel local search
mechanism to circumvent the local optima.

2.2. ACO-Based FS. ACO has displayed exceptional per-
formance in tackling a wide range of discrete optimization
challenges. For instance, Owuor et al. [42] performed
a detailed evaluation of three population-based optimization
techniques in the context of mining gradual patterns. Te
fndings suggested that ACO surpassed the other two
techniques and traditional counterparts. In another study,
Zhang et al. [43] introduced a knowledge-based local search
for multi-population ant colony systems to address the
multi-objective supply chain confguration problem in
supply chain management. By leveraging two independent
ant colonies, the cost of goods sold and the lead time were
concurrently minimized, facilitating an efcient search of
the target space. Moreover, Zhao et al. [44] enhanced ACO
using horizontal and vertical crossover search and applied it
in the feld of image segmentation. Te superior combina-
torial optimization capability of ACO has encouraged re-
searchers to extend its application to various types of FS
tasks, some of which have been successfully
implemented [45].

Te heuristic factor (HF) and the pheromone density
(PD) are two crucial parameters in ACO that can signif-
cantly infuence its performance. However, some FS
methods based on ACO have not appropriately set the HF,
even generating it randomly. Appropriately confguring the
HF and PD parameters can enhance the global and local
search capabilities of ACO. Recently, the impact of these
parameters on the performance of ACO has been explored.
Manbari et al. [46] introduced a circular graph-based ACO
algorithm for FS, wherein each feature is interconnected

with the subsequent one through a pair of select/deselect
edges.Te heuristic information pertaining to each feature is
determined based on its corresponding term variance.
Ghosh et al. [47] proposed an ACO-based wrapper-flter FS
method that employs a flter to assess feature subsets instead
of a wrapper, signifcantly reducing the computational
complexity. Te HF is estimated by calculating the similarity
between the last added feature and the feature whose ad-
dition probability is being calculated. Additionally, a novel
multi-label FS method based on ACO was proposed in [48],
which employed a heuristic learning approach instead of
a static heuristic function. Te heuristic function of ACO is
learned from experiences directly using TD reinforcement
learning, which signifcantly improves the quality of the
selected feature subset. Moreover, Hashemi et al. [49]
proposed an ensemble FS approach based on ACO that
utilized multiple heuristic information determined by
a multi-criteria decision-making procedure. Such distinctive
heuristic information supplies further insights about sub-
sequent nodes. Experimental results demonstrated that the
proposed method signifcantly outperforms other methods
across various evaluation indicators.

Despite the proven efectiveness of ACO in solving FS
problems, it still encounters issues such as limited global
search capability and slow convergence rates, particularly
when handling high-dimensional problems. To mitigate
these limitations, the concept of hybridizing with comple-
mentary metaheuristics has emerged as a promising solu-
tion. As detailed by Talbi [33], there exists a two-tiered
hybridization system encompassing low-level and high-level
hybridization, each comprising two distinct mechanisms of
hybridization. Building on this concept, Wan et al. [50]
proposed the VMBACO, a hybrid FS method that blends
a modifed binary ACO algorithm with a genetic algorithm
(GA). Tis hybrid method employs the solution derived
from GA as the assignment of the HF in BACO, resulting in
substantial improvements in both the quality of feature
subsets and classifer accuracy. In a similar vein, Li et al. [51]
introduced a hybrid FS model that combines ACO with the
antlion optimizer, which includes a novel mutation operator
to enhance exploration capability. Furthermore, Ma et al.
[52] suggested a two-stage hybrid ACO algorithm for high-
dimensional FS. Tis method employs an interval strategy to
determine the size of the OFS and integrates a hybrid model
that harnesses the inherent relevance attributes of features
and classifcation performance to direct the OFS search.Tis
advanced hybrid ACO assigns HF to a feature by calculating
its correlation with the chosen feature subset after softmax
normalization. Despite the improved performance of these
hybrid algorithms, they remain susceptible to the local
optima and often exhibit relatively high computational
complexity.

Te heterosis-inspired HRO has demonstrated high
search efciency and robust global search capabilities, as
illustrated by its successful application to the band selection
problem [29]. Moreover, the diverse set of operators
employed by HRO facilitates the efective maintenance of
population diversity in high-dimensional problem spaces.
Considering these benefts of HRO, it is hypothesized that
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integrating the improved, problem-oriented ACOwith HRO
may yield a more efcient and robust search for OFS in high-
dimensional FS tasks.

3. Preliminaries

3.1. Te Binary Coded Ant Colony Optimization Algorithm.
Binary ant colony optimization (BACO) is a metaheuristic
inspired by ant behavior, and it is designed to fnd the
optimal solutions for binary optimization problems. BACO
is particularly useful in optimizing scenarios such as FS and
intrusion detection [53]. BACO commences with a ran-
domly generated set of candidate solutions, depicted as
binary strings. Troughout each iteration, the algorithm
adjusts the probability of including each feature, drawing
from the information acquired from previously established
solutions. In BACO, the PD serves as a directive for sub-
sequent ants to decide whether a feature should be in-
corporated into their solution. Figure 1 presents a binary
directed acyclic graph, symbolizing the potential paths ants
can follow to fnd a solution. Figure 2 elaborates on the path
of an ant to construct a corresponding solution to a feature
subset. In this example, fve features (Fi, i � 1, 2, . . . 5) are
considered, and the bold black solid line represents the path
constructed by an ant. Te selected feature subset is
F2, F3, F5􏼈 􏼉, while features F1 and F4 are deselected.

Te node selection for the next bit is determined by the
state transition probability, a function derived from both the
PD and HF. Te mathematical expression for the state
transition probability is given by equations (1) and (2),

p
k
i,j(1) �

ταi,j(1) · ηβi,j(1)

ταi,j(0) · ηβi,j(0) + ταi,j(1) · ηβi,j(1)
, (1)

p
k
i,j(0) � 1 − p

k
i,j(1), (2)

where pk
i,j(1) denotes the probability that the kth ant selects

path 1 from bit i to bit j and τi,j(1) and ηi,j (1) are the
corresponding PD and HF values for this path. Similarly,
pk

i,j(0), τi,j(0), and ηi,j (0) represent the probability, PD, and
HF values for the case where the ant selects path 0 from bit i

to bit j. Te parameters α and β control the relative im-
portance of the PD and HF, respectively. Initially, the PD for
each path is set to be equivalent and then decreases as ants
make their selections. Te update rule for the PD from bit i

to bit j is described by equations (3) and (4).

τi,j(1)(t + 1) � (1 − ρ) · τi,j(1)(t) + ∆τ, (3)

τi,j(0)(t + 1) � (1 − ρ) · τi,j(0)(t). (4)

Te evaporation factor, denoted as ρ, signifes the rate of
pheromone decay on unselected paths. Conversely, the
chosen path experiences an increase in PD as described by
Δτ, which is defned by the ftness value of the optimal
candidate solution, fbest, procured in the current iteration.
BACO also maintains a record of the optimal solution found
to date, denoted as gbest. Additionally, each iteration records
its own optimal solution, pbest, with its ftness value being

compared against that of gbest. If the ftness value of pbest
surpasses that of gbest, gbest is updated with pbest at iteration
t. Upon the completion of all iterations, gbest serves as the
global optimal solution.

BACO is limited by the absence of a suitable HF for the
FS task, especially when the dimension is high. Tis makes
BACO tends to converge to a local optimal solution rather
than a global optimal solution. To fully exploit the per-
formance of BACO in FS, it is essential to introduce
a suitable HF assignment strategy specifcally for the FS
task and to improve the relevant update strategy. Te
improved strategies will be presented in detail in
Section 4.2.

3.2. Hybrid Rice Optimization Algorithm. Hybrid rice op-
timization (HRO), proposed by Ye et al. [27], is an in-
novative metaheuristic that draws upon the advantages of
heterosis, ofering superior search efciency and robust
global search capabilities. HRO divides the population into
three lines based on their ftness values. Let
X � (X1, X2, . . . , Xn) denote the population sorted by ft-
ness value, where n is the size of the population. Te frst
subpopulation, representing the best ftness within the entire
population, is referred to as the maintainer line and is
denoted by X1, X2, . . . , Xp(p � ⌊n/3⌋). Te second sub-
population represented by X2p+1, X2p+2, . . . , Xn possesses
the poorest ftness value and constitutes the sterile line,
which requires hybridization with the maintainer line to
enhance its ftness quality. Te remaining subpopulation is
the restorer line, denoted as Xp+1, Xp+2, . . . , X2p. It aims to
evolve into the maintainer line through a process referred to
as selfng. Te principle of HRO will be further elaborated in
the following sections.

F

F1
0 F2

0 F3
0 F0

N-1 F0
N

F1
1 F1

2 F1
NF1

3 F1
N-1

1 2 3 N-1 N

Figure 1: DAG of path constructed by BACO.
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Figure 2: Te construction process of a feature subset F2, F3, F5􏼈 􏼉.
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3.2.1. Hybridization. Te hybridization process involves
crossing the maintainer line and sterile line, which have the
greatest diference in ftness value. Tis process aims to
update the sterile line by substituting the original individual
with a newly generated hybrid individual if it displays su-
perior ftness. Te new individual within the sterile line can
be obtained using the following equation:

X
d
new(i)(t) � r1 · X

d
s (t) + 1 − r1( 􏼁 · X

d
m(t),

m ∈ 1, 2, . . . , p􏼈 􏼉; i, s ∈ 2p + 1, 2p + 2, n􏼈 􏼉,

⎧⎨

⎩ (5)

where Xd
new(i)(t) denotes the dth gene of the ith hybrid in-

dividual of the sterile line at iteration tth. Xd
s (t) represents

the dth gene of a randomly selected individual from the
sterile line, while Xd

m(t) is the dth gene of the individual
randomly selected from the maintainer line. r1 is a random
number generated from [0, 1].

3.2.2. Selfng. Te selfng process is designed to update the
restorer line, with the intention of steering the individual
towards the global optimal solution. Tis behavior can be
mathematically modeled using the following equation:

X
d
new(i)(t) � r2 X

d
best(t) − X

d
r(j)(t)􏼐 􏼑 + X

d
r(i)

(t),

i, j ∈ p + 1, p + 2, . . . , 2p􏼈 􏼉, j≠ i,

⎧⎪⎨

⎪⎩
(6)

where Xd
new(i)(t) represents the new gene produced by

selfng between the ith and jth restorer (j≠ i). Xd
best(t) de-

notes the dth gene of the best individual found so far and
Xd

r(j)(t) represents the dth gene of the restorer randomly
selected from the restorer line. Te variable r2 is a random
number generated within the range of [0, 1].

After generating a new individual through hybridization
and selfng, it is evaluated and compared to the original
candidate solution. Te substitution process, as defned in
equation (7), replaces the old individual with the new one
only if the ftness value of the new individual surpasses that
of the old one.

Xi(t + 1) �
Xnew(i)(t), if f Xnew(i)(t)􏼐 􏼑>f Xi(t)( 􏼁,

Xi(t), otherwise.

⎧⎨

⎩

(7)

3.2.3. Renewal. Te selfng process in HRO involves
tracking the number of iterations during which a restorer
has not undergone updates using a parameter called SC (self-
crossing). If a restorer’s SC reaches the upper limit, denoted
as tmax iterations without updates, a reset operation is
performed on that individual. Tis reset behavior is
mathematically encapsulated in the following equation:

X
d
r(i)(t + 1) � r3 V

d
max − V

d
min􏼐 􏼑 + X

d
r(i)(t) + V

d
min, (8)

where Xd
r(i)(t) represents the dth gene of the ith restorer that

has not been updated and Vd
max and Vd

min represent the
maximum and minimum values of the dth dimension, re-
spectively. r3 is a random number drawn from [0, 1]. It is

worth noting that the solution obtained by HRO is con-
tinuous, which needs to bemapped into the solution space of
FS through the application of the transfer function. In this
study, the sigmoid function is employed as a binary map,
which is defned by

sigmoid(x) �
1

1 + e
− x , (9)

X
d
i �

1, if sigmoid X
d
i􏼐 􏼑> rand,

0, otherwise.

⎧⎨

⎩ (10)

4. The Proposed Method

Although the efectiveness of traditional ACO-based
methods in solving low-dimensional combinatorial opti-
mization problems is well established, it is necessary to
further improve the strategies employed by BACO to tackle
high-dimensional FS problems. In pursuit of this aim, two
hybrid models have been proposed, integrating IBACO and
HRO to improve the efciency of exploring the global op-
timal solution and to enhance the rate of convergence.
Moreover, given the considerable impact of the HF as-
signment strategy on both the population update process
and the overall performance, a novel problem-oriented HF
assignment scheme is introduced, which is based on the
signifcance of the knee point feature.Tis scheme takes into
account the importance of the knee point feature to ensure
that the population is updated efectively. Lastly, the ob-
jective function that needs to be optimized has been fnessed,
taking into account not only the classifcation accuracy but
also the size of the feature subset.

4.1. Te Hybrid Models. To fully harness the convergence
rate and global search capability benefts of HRO, IBACO is
melded with HRO in two unique hybrid models: the relay
model (R-IBACO) and the collaborative model (C-IBACO).
Te details of these two hybrid models are discussed in the
following.

4.1.1. Te Relay Model. As described in Section 3.2, the
maintainer line in HRO symbolizes the optimal candidate
solutions discovered by the population. Te quality of the
maintainer line is crucial in determining the evolution of the
population and infuencing both the convergence rate and
the fnal result. Moreover, the sterile line is updated via
crossing with the maintainer line, underscoring the im-
portance of enhancing the quality of the maintainer line in
HRO. To this end, a LRH model is proposed, applying the
update strategies of IBACO to the update process of the
HRO maintainer line. Specifcally, the kth bit of the binary
string corresponding to each maintainer candidate solution
is evolved using the PD and HF of IBACO. Each individual
of the maintainer line selects a path determined by the
transition probability (equations (1) and (2)). Tis in-
tegration of the IBACO operator efectively enhances nu-
merous dimensions in the maintainer line during the early
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iterations, enabling R-IBACO to concentrate on global
search in discrete spaces and quickly converge towards the
vicinity of the global optimum. Furthermore, the best in-
dividual from the maintainer line is employed to update the
PD. Te detailed implementation of the relay model is
outlined in Algorithm 1.

4.1.2. Te Collaborative Model. In this section, a co-evo-
lutionary hybrid model, referred to as C-IBACO, is pro-
posed. Tis model maintains the efciency of IBACO in
tackling high-dimensional FS problems while integrating the
efective optimization performance of HRO. C-IBACO
consists of two subpopulations, with IBACO and HRO
independently executing their respective update strategies in
each iteration. Specifcally, ants select a path based on the
transition probabilities specifed in equations (1) and (2),
while the kth gene of the ith rice individual is updated using
equations (5), (6), and (8). Te HF of the 0th path assigns
importance to the knee point to measure the potential of
each feature to be selected. Features with a correlation
greater than the knee point are more likely to be included in
the feature subset while those with a low feature correlation
not losing the opportunity to be selected.

To promote co-evolution between these two parallel
algorithms, the search results from each subpopulation are
shared after each iteration. Te global optimal solution is
determined by comparing the ftness values of the best
candidate solutions from both subpopulations. If the best
individual from HRO outperforms that of IBACO, the
pheromone updated originally with the best candidate so-
lution from the ant colony is substituted by the best indi-
vidual from HRO. Conversely, if the best candidate solution
from IBACO prevails, the worst solution of the maintainer
line in HRO is supplanted by the best candidate solution of
IBACO.

By incorporating these improvement strategies and in-
formation sharing mechanisms, C-IBACO can potentially
identify a superior feature subset, selecting the most
promising features efectively. Te specifcs of the C-IBACO
procedure are detailed in Algorithm 2.

4.2.Te Improved Heuristic Factor. Te random assignment
of the HF in BACO has been identifed as a limitation in its
capability to optimize high-dimensional FS problems. Tis
limitation calls for a task-specifc HF assignment to enhance
performance. Nevertheless, traditional FS methods, such as
those based solely on high-correlation features, may be
arbitrary and do not consider the potential infuence of
combined features with low correlation on the fnal classi-
fcation result. To mitigate this issue, this paper proposes the
use of the weight of the knee point [54] as a threshold in the
HF assignment process. Tis approach obviates the need for
complex experimental verifcation and avoids signifcant
loss of class label information.

Initially, the proposed methods employ the random
forest (RF) algorithm to calculate the importance of each
feature. All features are then sorted based on their RF results,
and the knee point is defned as the feature with the

maximum distance from the straight-line projection con-
necting the features with the maximum and minimum
importance.Te detailed selection process for the knee point
is described in Algorithm 3 and is graphically represented in
Figure 3.

Equation (11) presents the HF assignment strategy in
the proposed IBACO method, where Ik denotes the im-
portance of the kth feature and Iknee point represents the
importance of the knee point feature. ηk(0) indicates that
the HF of the 0th path adopts Iknee point while ηk(1) means
that the HF of the 1th path adopts Ik. According to
equations (1) and (2), this assignment strategy prioritizes
selecting features with higher correlation while not dis-
regarding less signifcant features.

ηk(1) � Ik,

ηk(0) � Iknee point.

⎧⎨

⎩ (11)

4.3. Time Complexity Analysis. Te time complexity of the
proposed hybrid algorithms primarily hinges on four as-
pects: initialization, individual evaluation and update,
population sorting, and pheromone update. Table 2 con-
trasts the time complexity of the hybrid algorithms with
those of standalone algorithms at each stage. In this context,
N symbolizes the population size, while N1 and N2 denote
the subpopulation sizes of HRO and IBACO within C-
IBACO, respectively. D signifes the dimension of F. Te
detailed analysis of time complexity reveals that, in com-
parison to ACO, R-IBACO increases the computational
complexity merely at the population sorting phase. Con-
versely, in relation to HRO, it heightens the computational
overhead solely in updating the maintainer line and PD.
Owing to the cooperative updating of two subpopulations
engaged in C-IBACO, it manifests a higher time complexity
than the single algorithms. Tis increased complexity
emerges during the population initialization, population
sorting, and individual update process. Te total time
complexities of R-IBACO and C-IBACO stand at O(T ×

(N × (1 + D + logN) + D)) andO(T × ((2/3N1 + N2 + 1)×

D + N1 × (1 + logN1) + N2)), respectively, where T repre-
sents the maximum number of iterations. Overall, it can be
suggested the hybrid algorithm signifcantly improves the
overall performance of the model within an acceptable range
of increased computational overhead.

4.4.Te Objective Function. Te objective function serves as
the guiding principle in providing guidance for the update
process and determining the optimization direction of the
algorithms. In the context of FS, the objective is to identify
the most informative feature subset that can enhance the
performance of classifers. Te primary criterion for eval-
uating the efcacy of a classifer is its classifcation accuracy,
which is defned in equation (12). However, since the ob-
jective function is designed to beminimized, the error rate of
classifcation, which is the complement of accuracy (1-ac-
curacy), is employed as a primary factor in the objective
function. Moreover, it is desirable to maintain a minimal
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feature count in the subset, prompting the inclusion of the
selection ratio in the objective function, as specifed in
equation (13). By minimizing the objective function, the
proposed methods can identify the least redundant andmost
informative feature subset with the highest classifcation
accuracy.

Accuracy �
TP + TN

TP + TN + FP + FN
, (12)

Fitness � λ · (1 − Accuracy) + μ ·
n

N

s.t.λ ∈ [0, 1], λ + μ � 1,

1≤ n≤N, n � 1, 2, . . . , N.

(13)

In equation (12), TP and TN, respectively, denote in-
stances where the classifer correctly identifed a test sample
as positive or negative, whereas FP and FN represent in-
stances where the classifer incorrectly classifed a test
sample as positive or negative. In equation (13), the pa-
rameters n and N refer to the count of features included in
the selected feature subset and the total number of features,
respectively. Te fraction n/N signifes the feature selection
rate. Te ftness value, denoted by Fitness, is calculated by
weighing the error rate and the selection rate using the
weights λ and μ, respectively. As the classifer’s accuracy is
the primary component of the ftness value, λ is typically
assigned a larger value, such as 0.9.

5. Experimental Results and Discussion

In this section, the performance of the proposed methods is
evaluated on fourteen high-dimensional biomedical data-
sets, with feature sizes ranging from 2000 to 12533 di-
mensions. Te primary performance metrics considered are
classifcation accuracy, size of feature subset, and running
time. Te K-nearest neighbor (KNN) classifer serves as the
evaluation metric for the performance of the feature subset
selected by each algorithm.Te efectiveness of two methods
for computing feature importance on model performance is
also investigated. Five-fold cross-validation is employed to
avoid model overftting due to limited sample sizes, pro-
viding a more accurate assessment of model performance
metrics. To thoroughly analyze the FS performance of the
proposed methods, comparison experiments with thirteen
other metaheuristic-based FS methods are conducted in
three distinct groups. In the frst group, the proposed
methods are compared with standard HRO and IBACO,
which are components of the proposed hybrid methods. Te
standard ACO is also included in this group to validate the
efectiveness of the proposed heuristic factor. In the second
group, the proposed methods are compared with fve well-
known FS methods based on basic metaheuristics, such as
FPA, BQPSO, ABC, SSA [41], and GWO. In the fnal group,
the efectiveness of the proposed hybrid methods is validated
against fve state-of-the-art methods reported in recent
studies, which are CMSRSSMA [11], MBAO [17], MSGWO

Input: Dataset D and objective function Fitness
Output: OFS and corresponding classifcation accuracy

(1) Initialize population P and set the maximum number of iterations T

(2) Calculate feature importance and knee point feature using Algorithm 3
(3) Set heuristic factor and initialize PD
(4) while t<T do
(5) Calculate the ftness of the population f � Fitness(P)

(6) Sort P in descending order and divide it into three lines: M (Maintainer), R (Restorer), and S (Sterile)
(7) for Individual Xi in P do
(8) if Xi in M then
(9) Generate trial solution Xnew(i) using equations (1) and (2)
(10) else if Xi in S then
(11) Generate trial solution Xnew(i) using equation (5)
(12) else
(13) if SC< SCmax then
(14) Generate trial solution Xnew(i) using equation (6)
(15) else
(16) Generate trial solution Xnew(i) using equation (8)
(17) end if
(18) end if
(19) Compute fXnew(i)

� Fitness(Xnew(i))

(20) Update Xi using equation (7)
(21) if Xi is a binary vector with all bits set to 0 then
(22) Reinitialize the binary vector corresponding to Xi

(23) end if
(24) end for
(25) Update gbest, pbest, and PD
(26) end while

ALGORITHM 1: FS optimized by R-IBACO.
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[19], SCHHO [24], and HFSIA [25]. Tese advanced hybrid
algorithms allow the proposed methods to be benchmarked
against current leading solutions in the feld.

All algorithms employed in this research were imple-
mented using Python language version 3.6.9. Te experi-
mental results presented in this paper were obtained on
a personal computer equipped with an Intel (R) Core (TM)

i7-8700 CPU operating at 3.2GHz, 16.0 GB RAM, under
a Windows 10 system.

5.1. Description of Datasets. Table 3 outlines the key char-
acteristics of the datasets employed in this research. Tese
datasets span a range of medical disciplines, predominantly
serving binary or multi-class classifcation tasks. Notably,
each dataset is characterized by a large number of features,
varying from 2000 to 12533. A shared trait among these
datasets is the presence of numerous redundant and irrel-
evant features, compounded by a typically limited sample
size. It is imperative to apply dimensionality reduction to
such data, as the presence of unnecessary features can
compromise model performance.

5.2. Parameter Settings. Te parameters for all algorithms
are confgured as follows. Te maximum number of itera-
tions is fxed at 100 for all algorithms. To ensure fairness in
terms of maximum evaluation times of the ftness function
(FE_MAX� 3000), the population size of all algorithms is set
to 30 except for HRO, C-IBACO, and HFSIA. In consid-
eration of the fact that only the sterile line is updated during
the hybridization process of HRO and taking into account
that the subpopulation sizes in C-IBACO are required to

Input: Dataset D and objective function Fitness
Output: OFS and corresponding classifcation accuracy

(1) Initialize the subpopulations PX and PY and set the maximum number of iterations T

(2) Calculate feature importance and knee point feature using Algorithm 3
(3) Set heuristic factor and initialize PD
(4) while t<T do
(5) Calculate fX � Fitness(PX) and fY � Fitness(PY)

(6) Find pbestx and pbesty: individuals with min ftness in PX and PY

(7) Sort PX in descending order and divide into three lines: M (Maintainer), R (Restorer), S (Sterile)
(8) for Individual Xi in PX do
(9) if Xi in R then
(10) if SC< SCmax then
(11) Generate candidate solution Xnew(i) using equation (6)
(12) else
(13) Generate candidate solution Xnew(i) using equation (8)
(14) end if
(15) else if Xi in S then
(16) Generate candidate solution Xnew(i) using equation (5)
(17) end if
(18) Calculate fXnew(i)

� Fitness(Xnew(i))

(19) Update Xi using equation (7)
(20) Check if Xi is an all-zero binary vector
(21) end for
(22) for Individual Yi in PY do
(23) Update path of Yi using equations (1) and (2)
(24) Check if Yi is an all-zero binary vector
(25) end for
(26) Update pbestx and pbesty
(27) Update the PD and the worst individual in maintainer line
(28) end while
(29) gbest is the best of pbestx and pbesty

ALGORITHM 2: FS optimized by C-IBACO.
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Figure 3: Knee point-based heuristic factor assignment.

International Journal of Intelligent Systems 9



satisfy equation (14), where Np stands for the total pop-
ulation size (fxed at 30), the population size for the single
standard HRO is adjusted to 45. Additionally, the sub-
population sizes for HRO and IBACO in C-IBACO are set to
27 and 12, respectively. For HFSIA, the population size is set
at 14 and the crossover probability is set at 0.35 to maintain
consistency in the evaluation times of the ftness function.
Te flter ratio of Fisher in HFSIA is set at 0.3 to preselect the
top 30% of relevant features. Moreover, in the initial stage of
MBAO, the number of features fltered by mRMR is fxed at
100, aligning with the existing literature. Lastly, to mitigate
the efects of randomness and bolster the stability of the

experimental outcomes, each algorithm is executed in-
dependently on each dataset ten times.

Np �
2
3
NHRO + NIBACO. (14)

5.3. Experiment Analysis

5.3.1. Experimental Evaluation of Methods for Computing
Feature Correlation. In alignment with the high-di-
mensional FS research framework delineated in Section 4,
this section endeavors to assess and compare two feature
correlation computation methods, including ReliefF and RF.
Te results derived from the application of KNN with all
features serve as a control group. Classifcation accuracy and
average number of selected features (AvgN) are designated
as the principal evaluation metrics to provide a compre-
hensive performance appraisal of diferent feature correla-
tion computation methods. Te experimental fndings are
detailed in Table 4.

Te evaluation results underscore the efciency and
efectiveness of RF and ReliefF in determining feature
correlation and eliminating redundant features. It is noted
that ReliefF tends to select more features than RF across all
datasets, indicating the superior selection efciency of RF.
For example, the selection rate of RF in the lymphoma
dataset reaches 95.85%, which is 90.59% higher than that of
ReliefF. A similar outcome is observed in the warpAR10P
dataset, where the selection rate of RF outperforms ReliefF
by 88.32%. Moreover, both methods exhibit varying degrees
of improvement in classifcation accuracy compared to using

Input: Dataset D and feature space F

Output: Knee point and its weight I

(1) Set maximum vertical projection dmax←0
(2) Initialize index of knee point k and its weight I←0
(3) Compute feature correlation for each Di using RF
(4) Sort the feature correlation in descending order, denoted by W � (w1, w2, . . . , wn)

(5) Connect features with largest and smallest correlations to form line L (shown as red dotted line in Figure 3)
(6) for each feature fj in F do
(7) Calculate vertical projection distance from fj to line L, denoted as dj

(8) if dj >dmax then
(9) k←j

(10) I←wj

(11) end if
(12) end for
(13) Te knee point is the kth feature in F (as marked with a red circle in Figure 3) and its weight is I

ALGORITHM 3: Te selection process of the knee point.

Table 2: Comparative analysis of time complexity.

Stage ACO HRO R-IBACO C-IBACO
Initialization O(N) O(N) O(N) O(N1 + N2)

Evaluate and update population O(N × D) O(2/3N × D) O(N × D) O((2/3N1 + N2) × D)

Sort population — O(N × logN) O(N × logN) O(N1 × logN1)

Update PD O(D) — O(D) O(D)

Table 3: General information of the fourteen datasets.

Dataset Number of features Instances Number of
classes

Colon 2000 62 2
WarpAR10P 2400 130 10
Lung 3312 203 5
Lymphoma 4026 96 9
GLIOMA 4434 50 4
Leukemia_1 5327 72 3
DLBCL 5469 77 2
Brain_Tumor_1 5920 90 5
Prostate_GE 5966 102 2
ALLAML 7129 72 2
Brain_Tumor_2 10367 50 4
Prostate_Tumors 10509 102 2
Leukemia_2 11225 72 4
11_Tumor 12533 174 11
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all original, unfltered features. In the ALLAML dataset, the
classifcation accuracies of RF and ReliefF are recorded at
92.92% and 95.81%, respectively, marking improvements of
19.74% and 25.43% over the baseline. RF also delivers
a classifcation accuracy of 68.67% in the warpAR10P
dataset, which is 21.18% higher than the baseline. Te en-
hancement in classifcation accuracy, coupled with an av-
erage dimensionality reduction rate of 98.4%, testifes to the
ability of RF to efectively discard irrelevant features and
calculate feature correlation in high-dimensional data.

However, the selected feature subset does not invariably
guarantee improved classifcation accuracy. For instance, in
the Brain_Tumor_2 dataset, RF selects a small feature subset
of 60 features, achieving a dimensionality reduction rate of
99.42%. However, the classifcation accuracy merely attains
64.82%, marking a decrease of 7.99% from the baseline. Tis
trend is similarly observed in lymphoma, Leukemia_2, and
11_Tumor datasets. Te diminished classifcation accuracy
underscores the limitations of FS methods that rely solely on
feature correlation ranking, as crucial information tied to
features with lower correlations than the knee point may be
overlooked. Consequently, it might be more judicious to
consider the correlation of all features as the criteria for
high-dimensional feature ordering instead of discarding less
correlated features.

Te classifcation experiment results, detailed in Tables 5
and 6, demonstrate the efectiveness of employing the feature
correlation determined by RF and ReliefF as the heuristic factor
in the proposed IBACO. Te fndings suggest that C-IBACO
and R-IBACO surpassed standalone RF or ReliefF in classi-
fcation accuracy. For instance, when k is set to 3, the classi-
fcation accuracies of RF-based C-IBACO and R-IBACO on
the Brain_Tumor_2 dataset register at 88.82% and 86.82%,
respectively, which are 22.28% and 18.51% superior to the
accuracies of single RF. Furthermore, the classifcation accu-
racy obtained in the DLBCL dataset by C-IBACO using the
feature correlation calculated by RF achieved 100%, which

indicates the ability of the proposed methods to identify
samples that are challenging to distinguish between KNN and
RF-based KNN. Compared to K � 5, the proposed methods
exhibit an enhanced search capability when K is fxed at 3. As
a result, in subsequent comparative experiments, KNN (K� 3)
will serve as the fnal classifer to evaluate the performance of
feature subsets.

5.3.2. Comparison of the Proposed Methods with HRO and
IBACO. To substantiate the efectiveness of the proposed
heuristic factor assignment and hybrid strategies, the proposed
methods were contrasted with the standard single algorithms.
Table 7 summarizes the performance of the proposed methods
and the basic methods in terms of classifcation accuracy,
average number of selected features, and average runtime over
ten independent runs. Te results distinctly demonstrate that
the mean accuracy of the proposed methods surpasses that of
the original single algorithm across all datasets. Moreover, the
introduction of an improved problem-oriented HF propels
IBACO to outperform the standardACOon ten of the fourteen
datasets. Regarding the average number of selected features, the
proposed methods obtained the smallest feature subsets on
nine datasets. Although the standard ACO recorded the
shortest average runtime across all datasets except the lung
dataset, exhibiting its efcient selection capability, its lack of
enhanced strategies culminated in inferior classifcation
outcomes.

5.3.3. Comparison of the Proposed Methods with Other Basic
Metaheuristics. To further investigate the superiority of the
proposed methods, a fair comparison was conducted with fve
well-known basic metaheuristic-based FS methods, including
FPA, BQPSO, ABC, ISSA [41], and GWO. Te comparison
maintained an equal maximum number of ftness evaluations,
and the comparative outcomes of this group of methods are
presented in Table 8. Te proposed methods achieve the
highest average andmaximum classifcation accuracy across all
datasets. BQPSO and GWO also deliver impressive results on
most datasets, with classifcation accuracy on the Leukemia_1
dataset even surpassing that of C-IBACO, a pattern also ob-
served on the 11_Tumor dataset.

Regarding the size of the selected feature subset, the
proposed methods signifcantly outperform their counter-
parts. For instance, the feature selection rate of C-IBACO on
the Prostate_Tumors dataset is remarkably low, at only
0.41%. Tis is in stark contrast to the substantially higher
feature selection rate of 49.47% displayed by FPA and IBSSA,
a diference of 99.17%, which underscores the superior ef-
fectiveness of the proposed methods. Furthermore, C-
IBACO selected an average of 143.6, 32.2, 53.1, and 23.6
features on the warpAR10P, GLIOMA, Prostate_GE, and
ALLAML datasets, respectively, with a minimum di-
mensionality reduction rate of 94.02%. R-IBACO selects the
smallest average number of features on the Colon dataset,
with only 57 features selected, a reduction of 94.09%
compared to the average number of features chosen by
IBSSA. Te proposed methods record the shortest runtime
on seven out of fourteen datasets. Notably, IBSSA

Table 4: Experimental results for feature correlation.

Datasets
Original RF ReliefF

AvgN Acc
(%) AvgN Acc

(%) AvgN Acc
(%)

Colon 2000 83.97  7 87.05 232 88.4 
WarpAR10P 2400 56.67 192  8. 7 2142 54.67
Lung 3312 95.03 108 95.50 311 92.02
Lymphoma 4026 91.47 1 7 89.78 3663 92.72
GLIOMA 4434 76.77  0 82.41 384 67.14
Leukemia_1 5327 88.75 57 91.90 446 89.97
DLBCL 5469 89.46 45 9 .25 316 93.57
Brain_Tumor_1 5920 84.48 89 84.55 340 83.37
Prostate_GE 5966 80.38 7 89.24 396 92.14
ALLAML 7129 76.38 39 91.52 539 95.81
Brain_Tumor_2 10367 70.45  0  4.82 533 70.64
Prostate_Tumors 10509 76.62 71 88.24 332 79.52
Leukemia_2 11225 84.9 74 82.56 409 82.19
11_Tumor 12533 82.77 279 71.02 954 81.03
Average 6180.07 81.30 98.8 84.53 785.5 83.09
Bold numbers represent the best average number of selected features and
classifcation accuracy under each dataset.
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demonstrated higher computational efciency than other
methods on high-dimensional datasets (the last four datasets
with over ten thousand dimensions).

In general, as the problem dimension increases, the
performance gap between the proposed methods and other
algorithms widens, indicating that C-IBACO and R-IBACO
exhibit greater robustness and are more suitable for high-
dimensional FS tasks.

5.3.4. Comparative Study with the State of the Art. Apart
from comparing the proposed methods with single standard
algorithms and basic metaheuristic-based FS methods, this
study also probes into the performance comparison of C-
IBACO and R-IBACO with fve advanced metaheuristic-
based FS methods recently expounded in the literature,
including MBAO [17], HFSIA [25], SCHHO [24], MSGWO

[19], and CMSRSSMA [11]. Table 9 presents the comparison
results of multiple independent runs for each advanced
algorithm on each dataset. As evidenced in the table, C-
IBACO and R-IBACO surpassed their counterparts in terms
of classifcation accuracy on thirteen datasets, except for the
lymphoma dataset. In the case of the lymphoma dataset,
MBAO achieved the best classifcation accuracy while
selecting the least number of features. Tis hinted at the
limitations of the proposed methods in eliminating re-
dundant and irrelevant features while bolstering classifca-
tion accuracy. Although the application of flters
substantially diminished the time consumed in the FS
process, it consequently led to a drop in classifcation
performance. Tis is illustrated by the average classifcation
accuracy of MBAO, amounting to only 65.4 on the
11_Tumor dataset. In this case, the classifcation accuracy of
our proposed C-IBACO is 40.61% higher than that of

Table 6: Classifcation accuracy of IBACO using diferent feature correlations (KNN, K� 3).

Datasets Original RF ReliefF
RF+ ReliefF+

C-IBACO R-IBACO C-IBACO R-IBACO
Colon 80.77 88.59 90.26 95.27 93.71 94.97 95.94
WarpAR10P 60.00 74.33 58.00 83.07 82.87 76.33 76.30
Lung 96.01 95.06 94.02 98.44 98.54 97.48 97.93
Lymphoma 91.89 94.25 91.89 9 .33 9 .33 95.51 95.64
GLIOMA 78.95 86.23 68.95 91.02 91.09 86.90 88.21
Leukemia_1 87.21 91.70 85.67 99.15 99. 0 98.75 99.30
DLBCL 87.06 96.25 91.07 100.00 99.88 97.89 99.13
Brain_Tumor_1 87.88 83.50 85.66 92.29 92.08 91.18 90.45
Prostate_GE 80.52 90.24 90.19 95.71 95.52 94.22 94.70
ALLAML 79.05 92.95 93.05 99.30 98.86 95.73 98.29
Brain_Tumor_2 74.45 72.95 74.64 89.44 90.15 86.41 87.70
Prostate_Tumors 73.71 90.24 83.63 95.31 94.71 89.21 89.71
Leukemia_2 82.39 85.48 82.95 95.47 95.60 93.39 92.56
11_Tumor 83.84 75.08 78.52 91.5 90.90 90.06 89.13
AVERAGE 81.59 86.92 83.77 94.45 94.27 92.00 92.50
Bold numbers represent the best average classifcation accuracy for each dataset.

Table 5: Classifcation accuracy of IBACO using diferent feature correlations (KNN, K� 5).

Datasets Original RF ReliefF
RF+ ReliefF+

C-IBACO R-IBACO C-IBACO R-IBACO
Colon 83.97 87.05 88.46 96.27 94.50 95.86 9 .83
WarpAR10P 56.67 68.67 54.67 79.90 80.23 69.33 70.10
Lung 95.03 95.50 92.02 98.91 98.34 97.54 97.64
Lymphoma 91.47 89.78 92.72 95.97 9 .08 95.44 95.28
GLIOMA 76.77 82.41 67.14 90.14 88.86 88.21 88.23
Leukemia_1 88.75 91.90 89.97 99.33 99.33 98.73 98.87
DLBCL 89.46 96.25 93.57 100.00 99.75 98.00 98.75
Brain_Tumor_1 84.48 84.55 83.37 91.00 89.98 89.54 89.89
Prostate_GE 80.38 89.24 92.14 95.29 94.90 94.39 95. 7
ALLAML 76.38 91.52 95.81 99.00 99.14 94.77 98.44
Brain_Tumor_2 70.45 64.82 70.64 88.82 86.82 84.90 85.85
Prostate_Tumors 76.62 88.24 79.52 95.31 94.92 89.42 89.80
Leukemia_2 84.96 82.56 82.19 94.00 93.53 91.77 90.71
11_Tumor 82.77 71.02 81.03 91.09 90.42 90.76 90.02
AVERAGE 81.30 84.53 83.71 93.97 93.34 91.33 91.86
Bold numbers represent the best average classifcation accuracy for each dataset.
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Table 7: Results of comparison between the proposed hybrid methods and their original counterparts.

Datasets Algorithm Max Min Mean+ STD AvgN Time

Colon

C-IBACO 98.33 91.92 95.27 + 1.94 73.90 49.81
R-IBACO 95.26 91.92 93.71 + 1.32 57.00 51.51
BHRO 93.72 88.85 90.37 + 1.52 358.80 40.08
IBACO 91.92 90.26 91.76 + 0.50 59.40 39.92
ACO 93.59 90.26 92.04 + 1.42 902.10 30.72

WarpAR10P

C-IBACO 84. 7 81.33 83.07 + 0.98 143. 0 133.88
R-IBACO 84.00 81.00 82.87 + 0.79 153.90 87.36
BHRO 78.00 73.00 75.23 + 1.40 900.70 85.89
IBACO 83.67 81.00 82.43 + 0.93 156.30 62.56
ACO 53.08 51.54 52.08 + 0.52 1121.90 42.98

Lung

C-IBACO 98.50 98.00 98.44 + 0.15 323.00 278.02
R-IBACO 98.99 98.02 98.54 + 0.2 367.40 276.07
BHRO 98.49 97.97 98.24 + 0.25 818.10 256.76
IBACO 98.00 96.06 96.79 + 0.54 93.40 100. 0
ACO 97.52 96.05 97.08 + 0.49 1509.40 102.01

Lymphoma

C-IBACO 9 .33 9 .33 9 .33 + 0.00 145.20 132.89
R-IBACO 9 .33 9 .33 9 .33 + 0.00 140.50 119.55
BHRO 9 .33 95.08 96.11 + 0.45 577.60 96.42
IBACO 9 .33 95.08 95.21 + 0.38 138.80 80.40
ACO 92.68 91.63 91.95 + 0.51 1797.80 58.9 

GLIOMA

C-IBACO 92.55 90.05 91.02 + 1.00 32.20 103.66
R-IBACO 92.55 90.05 91.09 + 1.07 44.00 97.84
BHRO 90.05 84.41 87.81 + 1.42 617.30 78.20
IBACO 91.86 90.05 90.23 + 0.55 40.70 71.13
ACO 84.00 82.00 82.60 + 0.97 2024.70 51.47

Leukemia_1

C-IBACO 100.00 97.24 99.15 + 0.93 562.70 145.68
R-IBACO 100.00 98. 7 99. 0 + 0. 1 222.90 127.19
BHRO 100.00 98.46 99.04 + 0.63 1771.10 109.93
IBACO 97.24 95.81 96.96 + 0.55 41.30 83.20
ACO 98.67 95.81 97.35 + 1.03 2507.20  5. 7

DLBCL

C-IBACO 100.00 100.00 100.00 + 0.00 33.80 159.75
R-IBACO 100.00 98.75 99.88 + 0.38 34.30 134.91
BHRO 100.00 96.07 98.13 + 1.05 1272.70 135.82
IBACO 97.50 97.50 97.50 + 0.00 2 .70 87.01
ACO 96.08 94.75 95.82 + 0.56 2510.80  8.39

Brain_Tumor_1

C-IBACO 94.5 91.1 92.29 + 1.30 631.60 143.3
R-IBACO 93.44 91.1 92.08 + 0.88 527.40 136.09
BHRO 91.11 88.89 90.00 + 0.91 1730.80 151.05
IBACO 92.22 90.00 91.11 + 1.05 866.70 110.53
ACO 88.89 87.78 88.56 + 0.54 2725.50 81.58

Prostate_GE

C-IBACO 9 .10 95.14 95.71 + 0.47 53.10 190.07
R-IBACO 9 .10 95.14 95.52 + 0.47 54.30 181.44
BHRO 91.24 89.33 90.47 + 0.71 1055.40 179.52
IBACO 9 .10 94.19 95.24 + 0.51 63.10 109.26
ACO 87.29 83.29 85.95 + 1.06 2788.20 101.51

ALLAML

C-IBACO 100.00 98.57 99.30 + 0.71 23. 0 194.03
R-IBACO 100.00 98.57 98.86 + 0.57 23.90 172.54
BHRO 92.86 88.67 90.67 + 1.28 1269.10 151.43
IBACO 100.00 98.57 98.72 + 0.43 23.70 112.03
ACO 86.00 83.33 85.29 + 0.94 3390.60 94.55

Brain_Tumor_2

C-IBACO 92.05 87.27 89.44 + 1.34 1122.70 224.97
R-IBACO 94.55 88.23 90.15 + 2.00 711.90 234.40
BHRO 90.05 86.41 88.05 + 0.98 2455.50 185.15
IBACO 78.95 78.95 78.95 + 0.00 40.10 145.91
ACO 84.00 82.00 83.20 + 1.03 4958.10 10 .05

Prostate_Tumors

C-IBACO 97.05 92.14 95.30 + 1.59 43. 0 293.19
R-IBACO 96.10 92.14 94.71 + 1.62 52.60 283.53
BHRO 91.14 87.29 89.65 + 1.21 3287.60 317.04
IBACO 91.19 83.33 88.46 + 2.20 1932.10 243.51
ACO 89.29 85.38 87.24 + 1.61 5060.70 185.11
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Table 7: Continued.

Datasets Algorithm Max Min Mean+ STD AvgN Time

Leukemia_2

C-IBACO 97.32 94.5 95.47 + 1.11 715. 0 158.47
R-IBACO 97.32 93.40 95. 0 + 1.25 936.70 159.02
BHRO 94.48 91.62 92.80 + 0.88 1839.20 170.61
IBACO 94.48 88.86 91.83 + 2.00 1325.30 121.25
ACO 93.05 90.19 90.96 + 0.98 3364.10 81.99

11_Tumor

C-IBACO 94.99 89.43 91.9 + 1.1 2 29.20 382.04
R-IBACO 94.27 89.17 91.18 + 1.00 3156.30 378.14
BHRO 93.09 90.79 91.77 + 0.72 5342.90 448.75
IBACO 91.95 87.92 89.69 + 1.32 2728.80 290.66
ACO 91.93 89.04 90.15 + 0.96 6139.50 275.12

Bold numbers represent the best results on each dataset.

Table 8: Performance comparison with other basic metaheuristic-based methods.

Datasets Algorithm Max Min Mean+ STD AvgN Time

Colon

C-IBACO 98.33 91.92 95.27 + 1.94 73.90 49.81
R-IBACO 95.26 91.92 93.71 + 1.32 57.00 51.51
BFPA 88.97 87.31 88.17 + 0.81 922.80 44. 3
BQPSO 88.97 87.31 88.15 + 0.82 756.20 64.28
BABC 87.44 84.10 85.72 + 1.28 623.80 72.68
IBSSA 87.31 84.10 85.58 + 0.87 964.70 48.25
BGWO 90.51 87.31 88.60 + 0.95 827.00 84.15

WarpAR10P

C-IBACO 84. 7 81.33 83.07 + 0.98 143. 0 133.88
R-IBACO 84.00 81.00 82.87 + 0.79 153.90 87.3 
BFPA 75.00 72.33 73.93 + 0.74 1177.30 120.47
BQPSO 77.00 72.67 75.70 + 1.22 1055.80 135.75
BABC 75.67 69.67 72.80 + 1.73 889.80 202.24
IBSSA 72.67 69.33 71.20 + 1.03 1180.80 126.72
BGWO 77.00 73.67 75.70 + 0.86 1137.90 187.09

Lung

C-IBACO 98.50 98.00 98.44 + 0.15 323.00 278.02
R-IBACO 98.99 98.02 98.54 + 0.2 367.40 27 .07
BFPA 98.49 97.97 98.10 + 0.19 1569.80 383.08
BQPSO 98.49 97.97 98.24 + 0.25 1346.40 393.66
BABC 98.00 97.02 97.46 + 0.34 1217.70 665.02
IBSSA 98.00 97.02 97.56 + 0.26 1608.70 385.90
BGWO 98.49 97.97 98.23 + 0.25 1415.90 503.41

Lymphoma

C-IBACO 9 .33 9 .33 9 .33 + 0.00 145.20 132.89
R-IBACO 9 .33 9 .33 9 .33 + 0.00 140.50 119.55
BFPA 95.22 93.97 94.76 + 0.52 1816.80 146.87
BQPSO 95.22 93.97 94.78 + 0.53 1568.90 177.84
BABC 95.08 93.97 94.08 + 0.33 1522.70 226.52
IBSSA 95.22 93.97 94.21 + 0.47 1932.70 145.15
BGWO 95.22 93.97 94.76 + 0.52 1654.30 254.29

GLIOMA

C-IBACO 92.55 90.05 91.02 + 1.00 32.20 103.66
R-IBACO 92.55 90.05 91.09 + 1.07 44.00 97.84
BFPA 86.23 84.41 85.86 + 0.73 2009.90 93. 5
BQPSO 90.05 84.41 86.08 + 1.78 1759.70 122.37
BABC 84.41 82.59 82.77 + 0.55 1718.00 139.92
IBSSA 84.41 82.59 83.50 + 0.91 2124.30 94.11
BGWO 86.23 84.41 85.32 + 0.91 1840.40 218.09

Leukemia_1

C-IBACO 100.00 97.24 99.15 + 0.93 562.70 145.68
R-IBACO 100.00 98. 7 99. 0 + 0. 1 222.90 127.19
BFPA 100.00 98. 7 99.33 + 0.67 2589.90 135.48
BQPSO 100.00 98. 7 99.20 + 0.65 2261.50 186.38
BABC 98.67 94.57 97.36 + 1.30 2205.10 210.64
IBSSA 98.67 95.81 97.79 + 0.95 2623.70 133.27
BGWO 100.00 98. 7 99.47 + 0.65 2411.40 305.17
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Table 8: Continued.

Datasets Algorithm Max Min Mean+ STD AvgN Time

DLBCL

C-IBACO 100.00 100.00 100.00 + 0.00 33.80 159.75
R-IBACO 100.00 98.75 99.88 + 0.38 34.30 134.91
BFPA 97.32 96.07 97.20 + 0.38 2649.10 165.45
BQPSO 97.32 96.07 96.70 + 0.63 2311.40 206.95
BABC 96.07 93.57 94.82 + 0.97 2233.30 276.54
IBSSA 97.32 93.49 95.30 + 1.02 2680.50 172.03
BGWO 97.32 94.82 96.82 + 0.83 2436.80 357.81

Brain_Tumor_1

C-IBACO 94.5 91.1 92.29 + 1.30 631.60 143.30
R-IBACO 93.44 91.1 92.08 + 0.88 527.40 136.09
BFPA 90.10 87.88 89.21 + 0.70 2831.80 110.34
BQPSO 90.10 87.88 89.21 + 0.70 2479.80 157.36
BABC 88.89 86.67 88.00 + 0.88 2438.40 163.02
IBSSA 88.99 86.70 87.95 + 0.64 2867.50 105.20
BGWO 91.21 87.82 89.64 + 0.96 2625.80 236.60

Prostate_GE

C-IBACO 9 .10 95.14 95.71 + 0.47 53.10 190.07
R-IBACO 9 .10 95.14 95.52 + 0.47 54.30 181.44
BFPA 88.38 87.43 87.71 + 0.44 2861.80 269.91
BQPSO 87.43 87.43 87.43 + 0.00 2532.50 308.30
BABC 85.52 83.52 84.69 + 0.60 2474.40 434.64
IBSSA 87.43 83.52 85.58 + 1.19 2892.30 266.88
BGWO 89.33 86.43 87.51 + 1.01 2690.20 486.84

ALLAML

C-IBACO 100.00 98.57 99.30 + 0.71 23. 0 194.03
R-IBACO 100.00 98.57 98.86 + 0.57 23.90 172.54
BFPA 91.43 87.24 88.55 + 1.15 3456.50 198.63
BQPSO 90.00 87.24 88.68 + 0.86 3160.00 248.23
BABC 88.67 81.81 84.68 + 1.79 3057.10 319.67
IBSSA 86.00 83.14 84.82 + 1.03 3487.40 195.86
BGWO 91.43 87.33 88.98 + 1.47 3293.30 483.79

Brain_Tumor_2

C-IBACO 92.05 87.27 89.44 + 1.34 1122.70 224.97
R-IBACO 94.55 88.23 90.15 + 2.00 711.90 234.40
BFPA 88.23 86.41 87.50 + 0.89 5019.70 213.69
BQPSO 88.23 86.23 88.01 + 0.60 4620.00 318.11
BABC 86.41 80.77 83.57 + 1.51 4620.10 309.57
IBSSA 86.41 82.59 85.43 + 1.25 5125.80 210.23
BGWO 88.23 86.41 87.68 + 0.83 4788.90 770.95

Prostate_Tumors

C-IBACO 97.05 92.14 95.30 + 1.59 43. 0 293.19
R-IBACO 96.10 92.14 94.71 + 1.62 52.60 283.53
BFPA 90.29 87.38 89.00 + 0.91 5198.30 231.91
BQPSO 91.14 88.33 89.76 + 1.01 4834.80 334.19
BABC 88.29 84.43 85.66 + 1.12 4731.60 374.56
IBSSA 88.29 84.43 86.66 + 1.29 5198.80 229.40
BGWO 92.19 89.24 90.44 + 1.01 5018.40 613.25

Leukemia_2

C-IBACO 97.32 94.5 95.47 + 1.11 715. 0 158.47
R-IBACO 97.32 93.40 95. 0 + 1.25 936.70 159.02
BFPA 93.40 91.74 92.63 + 0.67 3488.80 115.89
BQPSO 93.40 91.98 93.09 + 0.59 3182.70 175.82
BABC 91.62 88.86 90.11 + 0.79 3046.00 171.42
IBSSA 91.98 87.72 89.90 + 1.18 3527.70 114.0 
BGWO 94.65 91.65 93.17 + 1.08 3316.80 297.47

11_Tumor

C-IBACO 94.99 89.43 91.9 + 1.1 2 29.20 382.04
R-IBACO 94.27 89.17 91.18 + 1.00 3156.30 378.14
BFPA 91.39 89.02 90.15 + 0.65 6422.00 345.36
BQPSO 93.28 90.23 91.88 + 0.95 6176.00 448.97
BABC 90.20 86.77 89.06 + 1.01 5771.90 568.54
IBSSA 89.53 86.79 88.15 + 0.88 6315.00 334.28
BGWO 92.52 89.33 91.73 + 0.93 6225.40 885.58

Bold numbers represent the best results on each dataset.
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Table 9: Comparative study between the proposed hybrid methods and the state-of-the-art methods.

Datasets Algorithm Max Min Mean+ STD AvgN Time

Colon

C-IBACO 98.33 91.92 95.27 + 1.94 73.90 49.81
R-IBACO 95.26 91.92 93.71 + 1.32 57.00 51.51
MBAO 95.00 93.33 93.76 + 0.66 29. 0 53.28
HFSIA 93.33 90.13 92.06 + 1.01 288.70 23.3 
SCHHO 93.46 88.72 91.08 + 1.34 641.10 99.91
MSGWO 93.46 91.92 92.69 + 0.81 866.50 39.30

CMSRSSMA 91.92 90.26 91.44 + 0.76 977.60 260.7

WarpAR10P

C-IBACO 84. 7 81.33 83.07 + 0.98 143.60 133.88
R-IBACO 84.00 81.00 82.87 + 0.79 153.90 87.36
MBAO 82.33 80.00 81.10 + 0.80 48.30 69.28
HFSIA 77.69 76.15 76.54 + 0.54 351.30 33.32
SCHHO 71.00 63.67 67.37 + 2.53 190.20 136.61
MSGWO 78.52 72.49 75.80 + 1.03 1098.90 53.70

CMSRSSMA 77.02 73.82 75.04 + 0.57 1182.10 348.66

Lung

C-IBACO 98.50 98.00 98.44 + 0.15 323.00 278.02
R-IBACO 98.99 98.02 98.54 + 0.2 367.40 276.07
MBAO 94.58 93.58 93.96 + 0.33 39.40 89.15
HFSIA 97.52 97.04 97.43 + 0.21 486.40 50.71
SCHHO 97.51 96.52 97.06 + 0.28 1023.30 299.71
MSGWO 97.52 96.54 96.88 + 0.41 1457.30 119.07

CMSRSSMA 97.02 96.54 96.78 + 0.26 1632.00 688.81

Lymphoma

C-IBACO 9 .33 9 .33 9 .33 + 0.00 145.20 132.89
R-IBACO 9 .33 9 .33 9 .33 + 0.00 140.50 119.55
MBAO 9 .33 9 .33 9 .33 + 0.00 31.50 55.85
HFSIA 95.79 94.74 94.97 + 0.43 587.00 37. 1
SCHHO 94.39 93.56 94.22 + 0.35 1109.20 199.45
MSGWO 92.68 91.63 92.47 + 0.44 1732.90 76.64

CMSRSSMA 92.68 91.68 92.48 + 0.42 1984.50 588.36

GLIOMA

C-IBACO 92.55 90.05 91.02 + 1.00 32.20 103.66
R-IBACO 92.55 90.05 91.09 + 1.07 44.00 97.84
MBAO 84.41 80.95 82.63 + 0.82 46.80 47.35
HFSIA 92.00 90.00 90.80 + 1.03 641.50 35.72
SCHHO 86.91 84.23 85.10 + 1.11 514.10 192.22
MSGWO 84.00 82.00 82.40 + 0.84 1921.50 69.39

CMSRSSMA 84.00 82.00 83.00 + 1.05 2182.00 621.72

Leukemia_1

C-IBACO 100.00 97.24 99.15 + 0.93 562.70 145.68
R-IBACO 100.00 98. 7 99. 0 + 0. 1 222.90 127.19
MBAO 87.30 83.41 85.26 + 1.20 24.50 50.76
HFSIA 100.00 97.33 98.61 + 0.63 790.80 42.72
SCHHO 98.46 92.62 96.39 + 1.59 2315.30 228.61
MSGWO 100.00 95.81 97.77 + 1.64 2415.70 88.81

CMSRSSMA 97.24 95.81 96.40 + 0.70 2656.30 803.21

DLBCL

C-IBACO 100.00 100.00 100.00 + 0.00 33.80 159.75
R-IBACO 100.00 98.75 99.88 + 0.38 34.30 134.91
MBAO 92.50 91.17 91.93 + 0.65 36.30 52.04
HFSIA 98.67 97.42 97.79 + 0.60 806.20 44.97
SCHHO 97.42 94.82 95.74 + 0.86 1407.10 238.84
MSGWO 97.42 94.75 96.49 + 1.09 2473.00 94.55

CMSRSSMA 97.42 96.08 96.25 + 0.41 2725.00 837.04

Brain_Tumor_1

C-IBACO 94.5 91.1 92.29 + 1.30 631.60 143.30
R-IBACO 93.44 91.1 92.08 + 0.88 527.40 136.09
MBAO 84.61 81.28 83.02 + 0.95 34.00 59.12
HFSIA 91.11 90.00 90.22 + 0.47 874.40 50.8 
SCHHO 90.11 87.76 88.51 + 0.80 710.50 266.94
MSGWO 90.10 87.82 88.72 + 0.89 2677.20 103.88

CMSRSSMA 88.99 87.82 88.20 + 0.52 2926.80 949.01
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MBAO. Similar trends were also observed in the Brain_-
Tumor_2 and warpAR10P datasets, where R-IBACO and C-
IBACO were 24.45% and 23.30% higher than MBAO and
SCHHO, respectively, which might be due to flters elimi-
nating features potentially useful for classifcation.

While emphasizing classifcation accuracy, the hybrid flter
approaches managed to select the minimum number of fea-
tures across all datasets, with MBAO achieving thirteen and
HFSIA securing one. Tis outcome can be ascribed to the
ability of flter to constrain the search space to a lower di-
mension, thereby signifcantly shrinking the size of the feature
subset to be searched. Regarding computational time, the
hybrid flter methods demonstrate superior search efciency as
they conduct the search within the fltered, low-dimensional

feature space. Specifcally, HFSIA registers the shortest com-
putational time on the initial nine datasets, whereas MBAO
exhibits exceptional search efciency on the fnal fve datasets
characterized by higher dimensionality. In the context of search
efciency across the full feature space, both C-IBACO and R-
IBACO perform slightly less efectively than MSGWO, which
does not utilize a hybrid strategy. However, C-IBACO and R-
IBACO prove to be more robust than SCHHO and
CMSRSSMA, particularly as the feature dimension increases.

Although the C-IBACO and R-IBACOmay not match the
computational efciency and selected feature subset size
exhibited by MBAO and HFSIA, they still demonstrated ac-
ceptable performance and robustness in classifcation accuracy
and stability, which is worth a slight sacrifce in time.

Table 9: Continued.

Datasets Algorithm Max Min Mean+ STD AvgN Time

Prostate_GE

C-IBACO 9 .10 95.14 95.71 + 0.47 53.10 190.07
R-IBACO 9 .10 95.14 95.52 + 0.47 54.30 181.44
MBAO 90.24 89.14 89.80 + 0.51 30.10 59.01
HFSIA 89.24 88.24 88.73 + 0.50 879.40 55. 7
SCHHO 93.05 85.29 88.55 + 2.98 337.40 330.33
MSGWO 87.29 85.29 86.86 + 0.68 2731.50 131.99

CMSRSSMA 86.24 85.24 85.58 + 0.46 2947.30 1044.34

ALLAML

C-IBACO 100.00 98.57 99.30 + 0.71 23. 0 194.03
R-IBACO 100.00 98.57 98.86 + 0.57 23.90 172.54
MBAO 92.95 90.10 91.30 + 1.08 34.90 52.  
HFSIA 97.24 95.71 95.90 + 0.47 1065.10 56.47
SCHHO 91.62 84.57 87.97 + 2.55 491.10 334.98
MSGWO 88.76 84.67 86.80 + 1.15 3301.10 122.14

CMSRSSMA 84.67 83.24 84.08 + 0.66 3543.00 1214.39

Brain_Tumor_2

C-IBACO 92.05 87.27 89.44 + 1.34 1122.70 224.97
R-IBACO 94.55 88.23 90.15 + 2.00 711.90 234.40
MBAO 75.23 71.14 72.44 + 1.20 31.70 47.45
HFSIA 86.00 84.00 84.60 + 0.97 1531.10 83.04
SCHHO 89.57 83.30 86.46 + 1.35 2263.40 368.85
MSGWO 92.48 83.43 88.45 + 1.84 4831.60 146.46

CMSRSSMA 90.51 85.19 87.80 + 1.23 5190.10 1980.1

Prostate_Tumors

C-IBACO 97.05 92.14 95.30 + 1.59 43.60 293.19
R-IBACO 96.10 92.14 94.71 + 1.62 52.60 283.53
MBAO 89.24 87.14 88.13 + 0.74 38.20  4.53
HFSIA 87.24 85.24 86.00 + 0.66 1566.30 101.11
SCHHO 93.10 86.24 88.46 + 2.38 377.00 575.53
MSGWO 90.24 87.29 88.49 + 0.90 5020.80 235.13

CMSRSSMA 88.29 84.43 85.77 + 1.03 5241.90 2348.15

Leukemia_2

C-IBACO 97.32 94.5 95.47 + 1.11 715.60 158.47
R-IBACO 97.32 93.40 95. 0 + 1.25 936.70 159.02
MBAO 87.46 85.06 85.95 + 0.84 42.90 55.32
HFSIA 93.05 91.62 91.77 + 0.45 1061.10 57.22
SCHHO 90.74 87.73 89.71 + 0.91 2425.50 293.48
MSGWO 93.40 90.31 91.79 + 1.11 3361.90 112.56

CMSRSSMA 90.40 89.06 89.78 + 0.62 3574.80 1173.43

11_Tumor

C-IBACO 94.99 89.43 91.9 + 1.1 2629.20 382.04
R-IBACO 94.27 89.17 91.18 + 1.00 3156.30 378.14
MBAO 66.36 64.41 65.40 + 0.65 59. 0 83.30
HFSIA 90.24 89.09 89.86 + 0.39 1872.40 149.68
SCHHO 89.07 84.15 87.12 + 1.70 5557.20 889.44
MSGWO 90.96 88.90 90.06 + 0.72 6087.90 341.85

CMSRSSMA 90.22 87.90 88.71 + 0.78 6258.60 3278.5
Bold numbers represent the best results on each dataset.
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5.3.5. Graphical Analysis. Figure 4 provides a visual rep-
resentation of the comparative superiority and efcacy of the
proposed methods against the single standard algorithms
and other metaheuristic-based FS approaches. Tis fgure
encapsulates the overall maximum and average classifcation
accuracy, along with the number of selected features for all
algorithms. Specifcally, Figures 4(a) and 4(b) depict the
overall maximum and average classifcation accuracies, re-
spectively. As the fgures suggest, the feature subsets selected
by C-IBACO and R-IBACO deliver markedly superior
classifcation performance compared to other methods.
Higher overall classifcation accuracy underscores the su-
perior search performance of the proposed methods and
a heightened likelihood of discovering more promising
candidate solutions. Conversely, MBAO did not exhibit
optimal performance in overall classifcation accuracy, as
discussed in the preceding section.Tis discrepancy could be
due to the classifer used, which difers from those docu-
mented in the literature. Figure 4(c) displays the overall
number of features selected by each algorithm. MBAO se-
lected the fewest features, followed closely by R-IBACO and
C-IBACO. It is worth noting that the number of features
chosen by the proposed methods was less than that of
HFSIA, even though the latter also employs a fltering
method. Tis result reafrms the efectiveness of the pro-
posed methods in reducing the number of selected features.

Te convergence results, illustrated in Figure 5, dem-
onstrate that both C-IBACO and R-IBACO converge
quickly to the vicinity of the global optimum before the
termination of iterations. Te hybrid algorithms possess an
advantage in achieving a superior initial solution by properly
selecting features with high correlation based on the
modifed heuristic factor in the frst stage. As the conver-
gence curves indicate, the proposed methods maintain
a certain exploratory capability in the fnal stage of iterations,
reducing the risk of getting trapped in the local optima. In
contrast, the convergence curves of MBAO reveal its rela-
tively underwhelming overall performance. Specifcally, on
datasets such as lung, Brain_Tumor_2, Leukemia_2, and
11_Tumor, MBAO prematurely converges to a local opti-
mum and fails to further search for a better feature subset.
One possible explanation for this is that mRMR flters out
informative feature combinations, resulting in a search space
with poor performance.

To provide a more intuitive understanding of the
computational complexity of diferent algorithms, Figure 6
displays the average running time of all algorithms for each
dataset. Evidently, HFSIA attains the shortest running time
for the frst nine datasets, whereas MBAO demonstrates
superior search efciency for the last fve datasets with
higher dimensionality. It is noticeable that IBACO achieves
a shorter average CPU running time than HRO and their
hybrid counterparts across all datasets, which can be at-
tributed to its ability to quickly select features with high
correlation using the modifed HF, thereby accelerating
convergence. However, this advantage is accompanied by
lower classifcation accuracy and unsatisfactory average
ftness values compared to the hybrid algorithms. Never-
theless, C-IBACO and R-IBACO display exceptional

robustness by generating acceptable candidate solutions
without incurring a signifcant computational cost. Overall,
the experimental results afrm the feasibility and potential of
deploying the proposed methods for practical high-di-
mensional FS tasks.

5.3.6. Experimental Results for Nonparametric Test. To de-
termine the signifcance of the diference between the
proposed hybrid algorithms and compared metaheuristic-
based FS approaches, the experimental results were analyzed
using the Wilcoxon signed-rank test and the Friedman test
[55]. Te results of the Wilcoxon signed-rank test are
presented in Table 10. In this table, W+ denotes the sum of
ranks where the proposed hybrid algorithm outperforms the
comparative method, whereas W− symbolizes the reverse.
Te p value signifes the level of signifcance, with p< 0.05
indicating a signifcant diference between the two algo-
rithms under comparison. Te outcomes reveal that C-
IBACO outperforms R-IBACO, suggesting that C-IBACO
maintains a lower individual ftness value and exhibits su-
perior performance in the FS process. Apart from the null
hypothesis being rejected between C-IBACO and R-IBACO,
both are signifcantly superior to other basic and advanced
methods, demonstrating signifcant diferences.

Table 11 presents the results of the Friedman test, in-
cluding average accuracy rankings and fnal ranks for each
algorithm across all datasets. As demonstrated in Table 11,
the proposed methods claim the top two positions in the
fnal ranking. Te Friedman test produces a p value of
2.61E− 18, which is less than the preset signifcance level of
0.01, indicating a statistical diference among the algorithms.
Table 12 provides the results of the Holm test, which serves
as a post hoc test to determine signifcant diferences be-
tween the control method and other algorithms in pairwise
comparisons. Te Holm test rejected the null hypothesis at
a signifcance level of 0.05, indicating signifcant diferences
between R-IBACO and other competing methods except for
C-IBACO, which is consistent with the fndings of the
Wilcoxon signed-rank test.

Based on the statistical test results, it can be inferred that
the hybrid algorithms incorporating IBACO and HRO ex-
hibit superior optimization performance compared to their
standalone counterparts. Tis emphasizes the efective
combination of the optimization strategies of every single
algorithm, leading to an enhancement in their competence
in high-dimensional FS tasks.

5.4. Discussion and Biological Interpretation. Based on the
results of three comparative experiments and statistical
analysis, it can be inferred that the hybrid models of HRO
and IBACO integrate the advantages of both single algo-
rithms, allowing them to converge more quickly to the most
promising region in the search space while maintaining
a certain level of global exploration capability in later it-
erations. Te problem-oriented HF enhances the ability of
ACO to select more important features while discarding
irrelevant ones. Moreover, the optimal solution obtained by
HRO guides the update of pheromones. Tis collaborative
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update process continues until the termination condition is
achieved. By combining HRO and IBACO, the population
benefts from greater diversity while reducing the probability
of a single algorithm getting stuck into the local optima.

Numerous metaheuristics have been developed to solve
low-dimensional continuous optimization problems, but
these often struggle when addressing high-dimensional
discrete optimization issues. Tis study introduces two
hybrid wrapper FS methods, and the experimental results on
fourteen high-dimensional datasets demonstrate that the
feature subset obtained by the hybrid algorithms had higher

classifcation accuracy and smaller size. Nevertheless, their
optimization performance still needs to improve in some
instances, a shortcoming attributable to the inherent traits of
metaheuristics. To enhance the potential of locating the
optimal solution, metaheuristics often adopt a global search
strategy that depends on certain randomness. Tis approach
inevitably raises the risk of the algorithm getting stuck in the
local optima. For instance, the algorithms only managed to
achieve an average classifcation accuracy of 83% on the
warpAR10P dataset, a rate that may not satisfy the stringent
standards demanded in practical medical scenarios.
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Figure 5: Continued.
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Furthermore, the introduction of advanced collaborative
hybrid strategies can reduce the optimization efciency of
the algorithm, given that updating the maintainer line and
independent subpopulations amplifes the complexity of
the model.

Te performance improvement of the hybrid algo-
rithms can primarily be attributed to the fact that they
leverage the outstanding traits of individual algorithms.
As illustrated in Table 7, BHRO exhibited superior clas-
sifcation accuracy, while IBACO surpassed in terms of
optimization efciency and robustness. Another crucial
factor contributing to performance enhancement is the
hybrid strategy and the improved HF. Tese elements
ensure adequate coverage of the search area, providing the
proposed methods with a better opportunity to locate the
global optimal solution within the entire search space.
Tis results in the leading performance regarding maxi-
mum classifcation accuracy across all datasets. However,

it is essential to note that the proposed methods still have
limitations. For instance, setting the selfng upper limit
parameter SC Max for HRO can be challenging since it is
crucial for the transition between the selfng and renewal
stages. Additionally, the inherent randomness in meta-
heuristics cannot guarantee the acquisition of the optimal
feature subset in a single run.

Te index of the most frequently selected features
(chosen in > rbin7 out of 10 runs) by C-IBACO is presented
in Table 13. Te results demonstrate that C-IBACO is ca-
pable of selecting a small number of highly discriminative
features on most datasets except for warpAR10P, Brain_-
Tumor_1, and Brain_Tumor_2, which suggests its potential
applications in disease diagnosis and gene expression
problems. Notably, the feature subsets composed of high-
frequency features on the Colon and Prostate_Tumors
datasets exhibit superior classifcation performance com-
pared to the results in Table 7. Moreover, the size of these
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Figure 5: Convergence curves of diferent algorithms on high-dimensional FS datasets. (a) Colon. (b) WarpAR10P. (c) Lung. (d)
Lymphoma. (e) GLIOMA. (f) Leukemia_1. (g) DLBCL. (h) Brain_Tumor_1. (i) Prostate_GE. (j) ALLAML. (k) Brain_Tumor_2. (l)
Prostate_Tumors. (m) Leukemia_2. (n) 11_Tumor.
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subsets is only 31.12% and 20.5% of the original average
selected features, respectively, which suggests that the
proposed methods still have the potential for enhanced
removal of irrelevant features. With more appropriate and

reasonable parameter settings in the future, the suggested
approaches can be applied to other practical problems such
as fault detection [56], scheduling problems [57, 58], text
classifcation [59], and sentiment analysis [60].
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the frst seven datasets. (b) Average running time of diferent algorithms on the last seven datasets.
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Table 10: Experimental results of Wilcoxon signed-rank test.

Algorithms
C − IBACOvs R − IBACOvs

W+ W− p W+ W− p

R-IBACO 72.5 32.5 0.104206 — — —
C-IBACO — — — 32.5 72.5 0.907882
BGWO 102 3 0.001049 102 3 0.001049
IBSSA 105 0 0.000549 105 0 0.000549
BQPSO 102 3 0.001049 104 1 0.000683
BFPA 105 0 0.000549 104 1 0.000683
BABC 105 0 0.000549 105 0 0.000549
BHRO 101 4 0.001292 105 0 0.000549
IBACO 105 0 0.000549 105 0 0.000549
MBAO 102.5 2.5 0.001053 104.5 0.5 0.000831
HFSIA 105 0 0.000549 105 0 0.000549
SCHHO 105 0 0.000549 105 0 0.000549
MSGWO 105 0 0.000549 105 0 0.000549
CMSRSSMA 105 0 0.000549 105 0 0.000549
ACO 105 0 0.000549 105 0 0.000549

Table 11: Average rankings in terms of classifcation accuracy using Friedman test.

Algorithm Average ranking Final rank p value
C-IBACO 1.64 1

2.61E− 18 < 0.01

R-IBACO 1.93 2
BHRO 5.14 3
BGWO 6.29 4
BQPSO 6.39 5
HFSIA 6.79 6
IBACO 6.93 7
BFPA 7.46 8
MSGWO 9.00 9
MBAO 10.43 10
SCHHO 10.93 11
ACO 11.21 12
IBSSA 11.71 13
CMSRSSMA 11.79 14
BABC 12.36 15

Table 12: Post hoc Holm test (0.05) for R-IBACO and other algorithms.

R − IBACOvs p value α/rank Hypothesis

C-IBACO 0.196051 0.050000 Not rejected
BGWO 0.003052 0.012500 Rejected
IBSSA 0.001709 0.003846 Rejected
BQPSO 0.003052 0.010000 Rejected
BFPA 0.001709 0.006250 Rejected
BABC 0.001709 0.003333 Rejected
BHRO 0.003052 0.016667 Rejected
IBACO 0.001709 0.007143 Rejected
MBAO 0.003743 0.005000 Rejected
HFSIA 0.001709 0.008333 Rejected
SCHHO 0.001709 0.004545 Rejected
MSGWO 0.001709 0.005556 Rejected
CMSRSSMA 0.001709 0.003571 Rejected
ACO 0.001709 0.004167 Rejected
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6. Conclusion

In this research, two innovative hybrid wrapper-based FS
methods that integrate HRO and IBACO are proposed to
identify the most informative features in high-dimensional
disease diagnosis and gene expression data. Te primary
objective of hybridization is to enhance the performance of
IBACO by harnessing the power of HRO to facilitate the
exploration and exploitation of the high-dimensional search
space. By combining the superior search efciency and
robustness of IBACO and the excellent performance of HRO
in searching the global optima, the proposed hybridmethods
manifest enhanced FS capabilities. Moreover, IBACO at-
tempts to boost performance through a problem-oriented
assignment strategy that employs the correlation of the knee
point feature, enabling the algorithm to exploit valuable
latent information in the features. Tis strategy is also in-
tegrated into HRO to compensate for the absence of update
to the maintainer line.

Two distinct forms of hybridization are presented in this
study: R-IBACO and C-IBACO. In R-IBACO, IBACO plays
a critical role in updating the maintainer line of HRO, with
the best solution derived from HRO subsequently used to
update PD at each iteration, while in C-IBACO, the sub-
populations of HRO and IBACO perform the update process
independently, and the local search results are shared to
update PD and maintainer line after each iteration. In the
methods proposed, the KNN algorithm functions as the
classifer, and RF is employed to calculate the feature im-
portance required for assigning HF. Te proposed methods
were evaluated on fourteen well-known biomedical datasets.
Teir performance was benchmarked against thirteen other
algorithms, including single standard algorithms that
comprise them, as well as basic and advanced metaheuristic-

based wrapper FS methods. Te experimental results in-
dicate that the proposed methods outperform the other
techniques in terms of both the number of selected features
and classifcation accuracy on most datasets. Furthermore,
the statistical results of the Wilcoxon signed-rank test and
Friedman test reveal that the proposedmethods achieved the
top rank in terms of classifcation accuracy, which cor-
roborates their efectiveness as practical strategies for
selecting the most representative features related to diseases.

Although the suggested approaches efectively enhance
the exploration and exploration capabilities of a single al-
gorithm, it is important to note that optimization efciency
might decline as the model complexity increases. Moreover,
optimal performance may not be achievable in certain
specifc scenarios. Consequently, future research should
prioritize the consideration of more efcient hybrid strat-
egies that can ensure the generalization capabilities of the
algorithms across problems of varying scales and di-
mensions. One direction for further research involves ex-
ploring more efcient parameter settings and integrated
optimization of algorithm and classifer parameters, which
will help determine synergistic settings that maximize the
overall performance. Additionally, it would be benefcial to
explore diferent transfer functions and advanced classifers,
as these components have the potential to further bolster the
performance of the algorithms in a variety of optimization
scenarios.

Data Availability

Te datasets analyzed during the current study are available
in the following websites: https://jundongl.github.io/scikit-
feature/datasets.html and https://ckzixf.github.io/dataset.
html.

Table 13: Te most frequent features selected by the C-IBACO for each dataset.

Datasets Index of features Accuracy

Colon
1507, 44, 1205, 1472, 1347, 95, 764, 1441, 1643, 1561
124, 1581, 1770, 770, 376, 755, 469, 494, 1953, 1670 98.33

484, 1052, 1439

WarpAR10P
720, 2059, 2170, 615, 2167, 2112, 677, 1328, 1423, 1920,

1078, 1912, 1022, 1021, 1506, 1517, 1748, 1556, 1566, 2220, 72.00
2235, 308, 43, 57, 59

Lung 1715, 2232, 2721, 2556, 2185 95.79
Lymphoma 1621, 3752, 2850, 2844, 308, 129, 3749, 1234 92.54
GLIOMA 554, 1913, 312, 4280, 3943, 128, 4157, 1789, 4331 89.27
Leukemia_1 4306, 821, 4199, 2072, 1982, 1380, 2861, 2782, 317, 3246 98.23
DLBCL 5451, 3126, 3463, 4069, 3289, 1105, 2811, 3459 98.75
Brain_Tumor_1 3955, 2508, 1868 74.22
Prostate_GE 125, 4282, 2585, 3380, 716, 4959, 5901, 4283, 497, 173 93.19
ALLAML 3983, 1673, 460, 4365, 6918, 1684, 2640, 206 99.23
Brain_Tumor_2 6995, 7961, 3471, 1810 56.77
Prostate_Tumors 4822, 10132, 6488, 8037, 3199, 8353, 2717, 6837, 7651 97.14
Leukemia_2 4679, 6224, 1867, 1778 90.13

11_Tumor 3945, 9629, 3623, 8016, 10063, 5408, 2796, 3604, 7688, 7057, 90.3933, 5816, 6625, 9431, 10339
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