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Obstacle avoidance is a key technology of multiagents focking control. However, most existing research studies assume that the
agent can obtain global information about obstacles and have specifc constraints on the shape and boundary of obstacles, which
easily limit their practical applications. To relax these constraints, we assume that the agent can only perceive the position of
obstacle boundary points within its sensing radius and propose an obstacle boundary point and an expected velocity-based
focking algorithm of multiagents with obstacle avoidance. In this algorithm, the attraction/repulsion potential is designed to
avoid collisions between agents and between the agent and obstacle boundary points, the expected velocity is designed to tow the
agent to move along the boundary of obstacles, and the virtual leader is designed to lead all agents to realize the group objective.
Finally, the sufcient conditions that the agent does not collide are demonstrated, and the performance of the proposed algorithm
is further verifed through simulations.

1. Introduction

Flocking is an orderly motion phenomenon generated by
relatively simple local interaction among multiagents, which
is very common in nature, such as the migration of birds
[1, 2], foraging of fsh schools [3, 4], avoiding predators of
deers [5], and swimming of bacteria [6, 7]. Multiagents often
encounter some obstacles in the process of focking motion
[8–10]. Terefore, obstacle avoidance is a key technology
problem to be solved in the research of focking control.

At present, the research on focking with obstacle
avoidance mainly concentrate on the collision cone ap-
proach, the velocity obstacle approach, the numerical so-
lution approach, and the potential feld approach. Te main
characteristics of the above four approaches are summarized
in Table 1. Te collision cone approach detects the collision
risk through the collision cone and converts the relative
velocity vector into the obstacle-avoidance vector to solve
the obstacle avoidance trajectory when the collision risk is

detected. Te velocity obstacle approach defnes the space
obtained by translating the collision cone along the obstacle
velocity vector as the velocity obstacle space and realizes
obstacle avoidance by bypassing the velocity obstacle space
along the shortest path. Obviously, both the collision cone
approach and the velocity obstacle approach solve the ob-
stacle avoidance problem based on the relative geometric
relationship between the agent and obstacles, but the dif-
fculty in constructing and solving the relative geometric
relationship will increase signifcantly with increasing the
scale of agents or obstacles. In the numerical solution ap-
proach, the collision process between the agent and obstacles
is constructed as a mathematical model under the motion
constraints, and the optimal obstacle-avoidance trajectory at
the current state is obtained by the intelligent algorithm
[19, 20].

Te potential feld approach generally maintains the
distance between the agent and obstacles through the
position-based virtual potential feld and guides the agent to
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bypass obstacles through the velocity-based virtual potential
feld. Olfati-Saber assumed that all agents can completely
obtain the smooth shape, position, and motion information
of a spherical obstacle or infnite wall and presented
a focking algorithm with obstacle avoidance [25]. Te al-
gorithm assumes that the velocity of the obstacle is the
projection velocity of the agent on the obstacle, which en-
ables the agent to bypass the obstacle along the tangent
direction of the obstacle but also restricts the obstacle to
a hyperplane or convex obstacle with a smooth boundary. Li
et al. proposed a flling scheme to change the nonconvex
obstacle into the convex obstacle to solve the problem of
obstacle avoidance under nonconvex obstacles [26]. Te
scheme can make the agent bypass the concave obstacle, but
it still needs to obtain global information about obstacles.
Tis constraint limits its practical applications. Terefore,
relaxing the constraints of obstacle information, shape, and
boundary is very challenging for the research of the focking
algorithm of multiagents with obstacle avoidance.

Te Bug algorithm is a kind of obstacle avoidance al-
gorithm for an agent without knowing the global in-
formation of a map and obstacle shape, such as the Bug2
algorithm [27, 28], the IBug algorithm [29], the FuzzyBug
algorithm [30], and the RandomBug algorithm [31, 32]. In
this kind of algorithm, the agent frstly moves along the
boundary of obstacles when encountering some, then leaves
these obstacles based on certain judgment criteria, and then
continues to move towards the target in a straight line.
Moving along the boundary of obstacles is an efcient
scheme to bypass complex obstacles [33]. Based on this, we
attempt to convert the expected position of the agent at the
next time into the expected velocity of the agent for all
obstacle boundary points within its sensing radius and make
the agent that perceives the obstacles preventing it following
bypass obstacles follow along the boundary of obstacles
using the expected velocity. Meanwhile, we regard the
agent, obstacle boundary point, and virtual leader as α-agent,
β-agent, and c-agent, respectively, attempt to ensure that
there is no collision between α-agents and between α-agent
and β-agent at any time through the attractive/repulsive
potential, and lead all α-agents to realize the group objective
following through the c-agent. In addition, to relax the
constraint of obstacle information, we assume that α-agent
can only perceive the position of β-agents within its sensing
radius. Unlike the Bug algorithm, this study aims to realize
collision avoidance and group objective following through
the attractive/repulsive potential, expected velocity, and c

-agent, which is to relax the constraints of the focking al-
gorithm with obstacle avoidance based on obstacle in-
formation, shape, and boundary.

Te main contributions of this paper can be summarized
as follows: frst, a novel method is established to calculate the
expected velocity of α-agent for all β-agents within its
sensing radius. Second, a novel obstacle boundary point and
expected velocity-based focking algorithm of multiagents
with obstacle avoidance is designed to relax the constraints
of obstacle information, shape, and boundary. Tird, the

sufcient conditions that α-agent does not collide in the
proposed algorithm are obtained.

Te rest of this paper is organized as follows: In Section
2, we formulate the multiagent motion model with velocity
limit and introduce some preliminaries. Section 3 describes
the design of the obstacle boundary point and the expected
velocity-based focking algorithm of multiagents with ob-
stacle avoidance. Te property analysis of the proposed
algorithm is presented in Section 4. Te simulations are
provided to verify the theoretical results in Section 5. Finally,
the main conclusions are drawn in Section 6.

2. Preliminaries

2.1. Problem Formulation. Consider N α-agents moving in
the m-dimensional (e.g., m � 2, 3) Euclidean space. Let
qi ∈ Rm denote the position vector of α-agent i at the current
time, pi ∈ Rm is the velocity vector of α-agent i at the current
time, and ui ∈ Rm is the control input vector of α-agent i at
the current time. Te movement of α-agent i is described as
[26]

_qi � pi, _pi � ui,∀i ∈ 1, · · · , N{ }. (1)

In the practical implementation, the velocity of α-agent i

is limited. Terefore, the movement of α-agent i can be
rewritten as

_qi � sat pi, pi
max

( 􏼁, _pi � ui,∀i ∈ 1, · · · , N{ }, (2)

where pi
max denotes the maximum velocity of α-agent i,

sat(pi, pi
max) � δpi + (1 − δ)pipi

max/‖pi‖, specifcally δ � 1
if ‖pi‖≤pi

max and δ � 0 otherwise, and ‖·‖ is the
Euclidean norm.

To relax the constraint of obstacle information, we
assume that the α-agent can perceive the position of
obstacle boundary points within the sensing radius and
obtain the position and velocity information of other α
-agents within the sensing radius by information in-
teraction. If the objects within the sensing radius of α
-agent i have other α-agents and obstacles, Nα

i is the set of
α-agents within the sensing radius r of α-agent i at the
current time, N

β
i is the set of obstacle boundary points

within the sensing radius r of α-agent i at the current time,
then the object set Ni within the sensing radius r of α
-agent i can be defned as

Ni � N
α
i ∪N

β
i ,

N
α
i � j ∈ 1, · · · , N{ }: qj − qi

�����

�����≤ r, i≠ j􏼚 􏼛,

N
β
i � k ∈ Ok: qk − qi

����
����≤ r􏽮 􏽯,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where qk denotes the position vector of obstacle boundary
point k, and Ok is the set of obstacle boundary points.

As in previous studies [25], we introduce a c-agent to
represent a group objective. Te movement of c-agent is
described as

_qc � pc, _pc � uc, (4)
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where qc ∈ Rm denotes the position vector of c-agent at the
current time, pc ∈ Rm is the velocity vector of c-agent at the
current time, and uc ∈ Rm is the control input vector of c

-agent at the current time.

2.2. Overview of Previous Flocking Algorithm with Obstacle
Avoidance. Te proposed algorithm is constructed by modi-
fying the control input in [25], which considers relaxing the
constraints of obstacle information, shape, and boundary. For
the sake of clarity, this section gives a brief overview of the
focking algorithm with obstacle avoidance in [25].

In Figure 1, when an α-agent i perceives an obstacle k within
the sensing radius r, it will generate a virtual β-agent k at the
closest point on the obstacle.Te position 􏽢qi,k of β-agent k is the
projection position of α-agent i on the obstacle k, and the
velocity 􏽢pi,k is the projection velocity of α-agent i on the obstacle
k. In the case where the obstacle is an infnite wall, the position
􏽢qi,k and velocity 􏽢pi,k of β-agent k are given by [25]

􏽢qi,k � Pqi +(1 − P)yk, 􏽢pi,k � Ppi, (5)

where yk is the passing point of infnite wall boundary, P �

I − akaT
k is the projection matrix, and ak � qi − yk/‖qi − yk‖.

In the case where the obstacle is a spherical obstacle, the
position 􏽢qi,k and velocity 􏽢pi,k of β-agent k are determined by
[25]

􏽢qi,k � μqi +(1 − μ)yk, 􏽢pi,k � μPpi, (6)

where yk is the center of spherical obstacle, Rk is the radius
of spherical obstacle, and μ � Rk/‖qi − yk‖.

Besides, following the results in [25], the control input ui

is composed of (α, α) interaction term uα
i , (α, β) interaction

term u
β
i , and (α, c) interaction term u

c
i . Te control input ui

is described as
ui � u

α
i + u

β
i + u

c
i . (7)

Te (α, α) interaction term uα
i in formula (7) is defned as

u
α
i �

−cα1 􏽐
j ∈ Nα

i

∇qi
ψα qj−qi

����
����σ

􏼐 􏼑

􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽
gradi ent−based  term

+
cα2 􏽐

j ∈ Nα
i

aij(q) pj−pi( 􏼁

􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽
consensus  term

,

(8)

where cα1 > 0 and cα2 > 0 are the feedback gains,
∇qi

ψα(‖qj − qi‖σ) is the gradient of the pairwise attractive/

repulsive potential ψα(‖qj − qi‖σ) between α-agent i and α

-agent j at position qi, ψα(‖qj − qi‖σ) � 􏽒
‖qj−qi‖σ

dα
ϕα(s)ds,

ϕα(s) � ρh(s/rα)ϕ(s − dα), ϕ(z) � 1/2[(a + b)σ1(z + c)+

(a − b)], σ1(z) � z/
�������

1 + ‖z‖2
􏽱

, b≥ a> 0, c � |a − b|/
���
4ab

√
,

dα � ‖d‖σ , aij(q) � ρh(‖qj − qi‖σ/rα), rα � ‖r‖σ , ‖z‖σ �

1/ε(
��������

1 + ε‖z‖2
􏽱

− 1), ε> 0, and the bump function ρh(z) for
h ∈ (0, 1) is defned as [21]

ρh(z) �

1, if  z ∈ [0, h),

1
2

1 + cos
(z − h)π
1 − h

􏼠 􏼡􏼢 􏼣, if  z ∈ [h, 1],

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Te (α, β) interaction term u
β
i in formula (7) is defned as

u
β
i � −c

β
1 􏽘

k∈Nβ
i

∇qi
ψβ 􏽢qi,k − qi

����
����σ􏼐 􏼑 + c

β
2 􏽘

k∈Nβ
i

bi,k(q) 􏽢pi,k − pi􏼐 􏼑,

(10)

where c
β
1 > 0 and c

β
2 > 0 are the feedback gains, bi,k(q) �

ρh(‖􏽢qi,k − qi‖σ/dβ), and 􏽐
k∈Nβ

i

∇qi
ψβ(‖􏽢qi,k − qi‖σ) is the gradi-

ent of the pairwise attractive/repulsive potential ψβ(‖􏽢qi,k−

qi‖σ) between α-agent i and β-agent k at position qi,

ψβ(‖􏽢qi,k − qi‖σ) � 􏽒
‖􏽢qi,k−qi‖σ

dβ
ϕβ(s)ds, ϕβ(s) � ρh(s /dβ)(σ1(z−

dβ) − 1), dβ � ‖d′‖σ .
Te (α, c) interaction term u

c
i in formula (7) is defned as

u
c
i � −c

c
1σ1 qi − qc􏼐 􏼑 − c

c
2 pi − pc􏼐 􏼑, (11)

where c
c
1 > 0 and c

c
2 > 0 are the feedback gains.

3. Algorithm Design

In this section, we design an obstacle boundary point and an
expected velocity-based focking algorithm of multiagents
with obstacle avoidance, which seeks to modify the gradient-
based terms in formulas (8) and (10) and the consensus term
in formula (10) to relax the constraints of obstacle shape and

q̂i, k

α-agent

qi
pi

r

p̂i, k

obstacle
β-agent

yk

(a)

α-agent

qi
pi

p̂i, k

β-agent

obstacle

r

Rk

q̂i, k

yk

(b)

Figure 1: Position and velocity of β-agent (previous algorithm). (a) Infnite wall. (b) Spherical obstacle.
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boundary in the previous focking algorithm with obstacle
avoidance.

3.1. Gradient-Based Term. A distinguishing feature of the
proposed algorithm as compared with the previous focking
algorithm with obstacle avoidance in Section 2 is that the po-
sition of β-agent is not the projection position of α-agent on an
obstacle surface but the position of the obstacle boundary point
within the sensing radius of α-agent. Each obstacle boundary
point within the sensing radius of α-agent corresponds to a β
-agent. When the distance between α-agents or the distance
between α-agent and β-agent is less than the minimum early-
warning distance de, the possibility of collision between them
may be greatly increased. To further reduce the possibility of
collision, we divide the sensing radius region of α-agent into
a separation region, an early-warning region, and an attraction
region (see Figure 2), and defne a nonnegative subsection
function to adjust the weight of attractive/repulsive potential in
these three regions.

Te nonnegative subsection function ηα1(dij) is defned
as

ηα1 dij􏼐 􏼑 �

ταa, dij ∈ (d, r],

ταe , dij ∈ de, d􏼂 􏼃,

ταs , dij ∈ 0, de( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

where ταa , τ
α
e , and ταs are the weight factors, ταs ≥ ταe ≥ ταa ≥ 0,

de � dmin + 2pi
max∆t, dmin is the minimum safe distance,

and dij � ‖qj − qi‖ is the distance between α-agent i and α
-agent j.

Te gradient-based term ωα
i in formula (8) can be de-

fned as

ωα
i � −c

α
1 􏽘

j∈Nα
i

ηα1 dij􏼐 􏼑∇qi
ψα qj − qi

�����

�����σ
􏼒 􏼓. (13)

Let the attractive/repulsive potential ψβ(‖qk − qi‖σ) be-
tween α-agent i and β-agent k be similar to ψα(‖qj − qi‖σ)

and ηβ1(di,k) be similar to ηα1(dij), then the gradient-based
term ωβ

i in formula (10) can be described as

ωβ
1 � −c

β
1 􏽘

k∈Nβ
i

ηβ1 dik( 􏼁∇qi
ψβ qk − qi

����
����σ􏼐 􏼑,

(14)

where di,k � ‖qk − qi‖ is the distance between α-agent i and β
-agent k.

3.2. Consensus Term. Another distinguishing feature of the
proposed algorithm is that 􏽢pi,k in formula (10) is not the velocity
vector of β-agent, but is the expected velocity of α-agent for all β
-agents. If the expected velocity of α-agent for all β-agents at the
current time is equal to the distance from the current position of
α-agent to the expected position of α-agent at the next time
divided by step time ∆t, then the key to the proposed algorithm
is determining the expected position of α-agent.

Before presenting the method to determine the expected
position of α-agent, we defne the split point Si of α-agent i as the
position where α-agent i was at the rejoin point Ri or did not
perceive the obstacles preventing it from following c-agent at the
previous time, but it perceives the obstacles preventing it from
following at the current time. In addition, we defne the rejoin
point Ri of α-agent i as the position where the distance between
α-agent i and c-agent is less than or equal to the distance be-
tween the split point Si and c-agent. Te generation process of
the split point Si and rejoin point Ri are shown in Figure 3.

Tomake the expected position choice of α-agent directional,
we translate the coordinate system to make the origin of the
coordinate system become the position of α-agent, rotate the
coordinate system to make the positive direction of the x-axis
point to the split point when α-agent is located in the open
interval between the split point and rejoin point, and rotate the
coordinate system to make the positive direction of the x-axis
point to c-agent when α-agent is located in the other interval.
Te expected position determination method of α-agent is
defned as follows in two cases

(1) If the α-agent i is located at the split point (A1
scenario), the open interval between the split
point and rejoin point (A2 scenario), or the rejoin
point where it is prevented from following by
some obstacles (A3 scenario) in Figure 4, we use
the phase comparison method to determine the
expected position of the α-agent i. Suppose that
Mi is the number of obstacle boundary points
perceived by α-agent i at the current time, θi,k(m)

is the phase between α-agent i and obstacle
boundary point k at sequence number m, θi is the
phase set between α-agent i and obstacle boundary
points perceived by α-agent i,
θi � sort θi,k(m), ∀k ∈ N

β
i andm ∈ 1, · · · , Mi􏼈 􏼉􏽮 􏽯,

sort ·{ } is the ascending function, and ∆θ is the
discrimination threshold of phase discontinuity.
If α-agent i chooses to bypass obstacles based on
counterclockwise motion, the phases are com-
pared from small to large. When θi,k(m) at se-
quence number m minus θi,j(m + 1) at sequence
number m + 1 is greater than or equal to ∆θ, the
expected position vector 􏽢qi of α-agent i is defned
as the position vector of obstacle boundary point k

corresponding to θi,k(m). It can be expressed as

􏽢qi � qk,∀θi,k(m) − θi,j(m + 1)≥∆θ and m � 1⟶Mi,

(15)

where qk is the position vector of obstacle boundary
point k, 1⟶Mi is the sequence number increasing

Separation region

Attraction region

Early-warning region

r

d

de

Figure 2: Te sensing radius of α-agent.
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from 1 to Mi. Similarly, if α-agent i chooses to bypass
obstacles based on clockwise motion, the phases are
compared from large to small. When θi,k(m) at
sequence number m minus θi,j(m − 1) at sequence
number m − 1 is greater than or equal to ∆θ, the
expected position vector 􏽢qi of α-agent i is defned as
the position vector of obstacle boundary point k

corresponding to θi,k(m). It can be expressed as

􏽢qi � qk,∀θi,k(m) − θi,j(m − 1)≥∆θ and m � Mi⟶ 1,

(16)

where Mi⟶ 1 denotes the sequence number de-
creasing from Mi to 1.

(2) If the α-agent i perceiving some obstacles is located
in the other interval (A4 Scenario), we defne the
expected position vector 􏽢qi of α-agent i as the po-
sition vector of c-agent. It can be expressed as

􏽢qi � qc. (17)

Tus, the consensus term ϖβi in formula (10) can be
modifed as

ϖβi � c
β
2 􏽘

k∈Nβ
i

bi,k(q) 􏽢pi,k − pi􏼐 􏼑,
(18)

where the expected velocity vector 􏽢pi,k � 􏽢qi − qi/∆t for all β
-agents within the sensing radius of α-agent i, and the ex-
pected position vector 􏽢qi under four scenarios are sum-
marized in Table 2.

In addition, the (α, c) interaction term u
c
i of the pro-

posed algorithm is defned as u
c
i � −c

c
1(qi − qc) − c

c
2(pi −

pc). Using formulas (7), (13), (14), and (18), the control input
ui of the proposed algorithm can be expressed as

ui � u
α
i + u

β
i + u

c
i ,

u
α
i � −c

α
1 􏽘

j∈Nα
i

ηα1 dij􏼐 􏼑∇qi
ψα qj − qi

�����

�����σ
􏼒 􏼓 + c

α
2 􏽘

j∈Nα
i

aij(q) pj − pi􏼐 􏼑,

u
β
i � −c

β
1 􏽘

k∈Nβ
i

ηβ1 dik( 􏼁∇qi
ψβ qk − qi

����
����σ􏼐 􏼑 + c

β
2 􏽘

k∈Nβ
i

bi,k(q) 􏽢pi,k − pi􏼐 􏼑,

u
c
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c
1 qi − qc􏼐 􏼑 − c

c
2 pi − pc􏼐 􏼑.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

4. Properties Analysis

Before presenting the properties analysis under the proposed
algorithm, we defne the system total energyH(q, p) as the sum

of the total potential energy between α-agents, the total potential
energy between α-agent and β-agent, the total potential energy
between α-agent and c-agent, and the kinetic energy between α
-agent and c-agent. It can be expressed as
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Figure 3: Generation process of split point and rejoin point. (a) A split point generation example in which α-agent did not perceive the
obstacles preventing it from following at the previous time. (b) Another split point generation example in which α-agent was at the rejoin
point at the previous time. (c) A rejoin point generation example.
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H(q, p) �
1
2

􏽘

N

i�1
c
α
1V

α
i (q) + 2c

β
1V

β
i (q) + c

c
1 qi − qc􏼐 􏼑

T
qi − qc􏼐 􏼑 + pi − pc􏼐 􏼑

T
pi − pc􏼐 􏼑􏼔 􏼕, (20)

where

V
α
i (q) � 􏽘

j∈Nα
i

ηα1 dij􏼐 􏼑ψα qj − qi

�����

�����σ
􏼒 􏼓, (21)

V
β
i (q) � 􏽘

k∈Nβ
i

ηβ1 dik( 􏼁ψβ qk − qi

����
����σ􏼐 􏼑.

(22)

We also defne the system total energy at t � 0 as H0.

Theorem 1. Consider a system with N α-agents applying the
control input (19) with multiagents motion model (2).

Suppose that the β-agent and c-agent are the static agent, the
weight factor ταs and τβs are big enough, and H0 is fnite, then
the following statements hold:

(i) Te distance between α-agent and c-agent is not
larger than

������

2H0/c
c
1

􏽱

for all t≥ 0;
(ii) Tere is no collision between α-agents and between α

-agent and β-agent at any time.

Proof. We frst prove the part (i) of Teorem 1. By difer-
entiating H(q, p) in formula (20), we have

_H(q, p) �
1
2

􏽘

N

i�1
c
α
1

_V
α
i (q) + 􏽘

N

i�1
c
β
1

_V
β
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N

i�1
c

c
1pi

T
qi − qc􏼐 􏼑 + 􏽘

N

i�1
pi

T
ui. (23)

Since β-agent and c-agent are the static agent, then we
have _qk � pk � 0 and _qc � pc � 0. In addition, since
∇qj−qi

Vα
i (q) � ∇qj

Vα
i (q) � −∇qi

Vα
i (q) and

∇qk−qi
V

β
i (q) � ∇qk

V
β
i (q) � −∇qi

V
β
i (q), formula (23) can be

rewritten as

_H(q, p) � c
α
1 􏽘

N

i�1
pi

T∇qi
V

α
i (q) + c

β
1 􏽘

N

i�1
pi

T∇qi
V

β
i (q) + 􏽘

N

i�1
c

c
1pi

T
qi − qc􏼐 􏼑 + 􏽘

N

i�1
pi

T
ui. (24)

Since 􏽢pi,k for all β-agents within the sensing radius of α
-agent i are equal, then let 􏽥p � col(p1, · · · , pN, 􏽢p1,k, · · · 􏽢pN,k).
Formulating (19), (21), and (22) into (24), we have
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Figure 4: Te process of determining the expected position. (a) A2 scenario. (b) A1 and A3 scenarios.

Table 2: Te expected position vector under four scenarios.

Scenario Motion mode Expected
position vector 􏽢qi

A1, A2, and A3 Counterclockwise 􏽢qi � qk,∀θi,k(m) − θi,j(m + 1)≥∆θ and m � 1⟶Mi

A1, A2, and A3 Clockwise 􏽢qi � qk,∀θi,k(m) − θi,j(m − 1)≥∆θ and m � Mi⟶ 1
A4 — 􏽢qi � qc
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_H(q, p) � −c
α
2 􏽘

N

i�1
􏽘

j∈Nα
i

aij(q)pi
T

pi − pj􏼐 􏼑 − c
β
2 􏽘

N

i�1
􏽘

k∈Nβ
i

bi,k(q)pi
T

pi − 􏽢pi,k􏼐 􏼑 − c
c
2 􏽘

N

i�1
pi

T
pi

� −􏽥p
T

L⊗ Im( 􏼁􏽥p,

(25)

where L �
c
α
2(∆(A) − A) + c

β
2∆(B) + c

c
2EN×N 0N×N

−c
β
2B 0N×N

􏼠 􏼡,

∆(A) is a diagonal matrix with diagonal elements 􏽐
j∈Nα

i

aij(q),

A is an adjacency matrix, A � (aij(q)), ∆(B) is a diagonal
matrix with diagonal elements 􏽐

k∈Nβ
i

bi,k(q), B is an adjacency

matrix, B � (bi,k(q)), EN×N is a N-order identity matrix, and
⊗ is the Kronecker product.

Since cα2 , c
β
2, and c

c
2 are the positive numbers, and ∆(A) −

A and ∆(B) are the positive semidefnite matrix, then L is
a positive semidefnite matrix. Consequently, we have
−􏽥pT(L⊗ Im)􏽥p≤ 0, that is _H(q, p)≤ 0, which implies that the
system total energy H(q, p) is a nonincreasing function, and
thus H(q, p)≤H0 for all t≥ 0. From formula (20), we have
c

c
1(qi − qc)T(qi − qc)≤ 2H0 for any α-agent i. Hence, the
distance between α-agent and c-agent is not greater than������

2H0/c
c
1

􏽱

for all t≥ 0.
Next, we prove the part (ii) of Teorem 1 by con-

tradiction. Suppose that α-agent i collides with α-agent j

or obstacle boundary point k at t∗. Since the weight factor
ταs and τβs are big enough, then Vα

i (q) or V
β
i (q) tends to

infnity. In addition, since H0 is fnite, we have
H(q, p)>H0. Tis contradicts the proof that H(q, p) is
a nonincreasing function. Consequently, there is no
collision at any time.

5. Simulations

In this section, we frst illustrate the efectiveness of the
proposed algorithm by comparing it with the Olfati-Saber
focking algorithm with obstacle avoidance. In this example,
the simulation is performed on 30 α-agents and a c-agent
moving in a two-dimensional Euclidean space with two
spherical obstacles and a wall obstacle. Te initial position
vectors of 30 α-agents are selected randomly from [10, 30] ×

[5, 20], the initial velocity vectors of 30 α-agents are selected
randomly from [0, 2] × [0, 2], the initial position vector of c

-agent is (75, 80)T, and the initial velocity vector of c-agent
is zero. Te parameters of the proposed algorithm and the
Olfati-Saber algorithm are shown in Table 3. Te experi-
ments were run continuously for 300 s under the three
scenarios of spherical and wall obstacle independence,
spherical obstacle combination, and spherical and wall
obstacle combination, and the results are shown in Figures 5
and 6.

In Figures 5(a) and 5(b), the black cylinder is the
spherical obstacle, the black cuboid is the wall obstacle, the
green triangle is the c-agent, the red Coccinella septem-
punctata is the α-agent, the blue solid line between red
circles is the neighborhood relationship between α-agents,
and the red dotted lines are the motion trajectories of 30 α
-agents. It can be seen from these fgures that the two al-
gorithms can enable all α-agents to bypass independent

Table 3: Simulation parameters.

Parameter Value
N 30
r 6
d 4
ε 0.5
h 0.2
a 2
b 20
cα1 1
cα2 1
c
β
1 1

c
β
2 1

c
c
1 1

c
c
2 1
ταa 0.1
ταe 10
ταs 10000
∆θ π/4
pi

max 5m/s
dmin 1m
∆t 0.1 s

8 International Journal of Intelligent Systems



spherical or wall obstacles on their way. In Figures 5(c) and
5(d), the red, blue, and green solid lines represent the center
positions (1/N 􏽐

N
i�1 qi) of 30 α-agents in the Olfati-Saber

focking algorithm with obstacle avoidance, the center po-
sitions of 30 α-agents in the proposed algorithm, and the
position of c-agent, respectively. It can be observed that the

convergence time of the proposed algorithm is decreased by
more than 80% compared with the Olfati-Saber focking
algorithm with obstacle avoidance, which indicates that the
proposed algorithm can make α-agent bypass obstacles
faster. Figure 6 shows the minimum distance between α
-agent and objects (e.g., other α-agents or obstacles), and it
can be observed that the minimum distances of the two
algorithms are greater than the minimum safe distance dmin.
Tis indicates that there is no α-agent that collided with
other α-agents or obstacles, and it also demonstrates that the
proposed algorithm can ensure that α-agent bypass obstacles
without collision.

In Figures 7 and 8, the black circle is the spherical
obstacle, the black solid line is the wall obstacle, the green
triangle is the c-agent, and the red circle is the α-agent.
Figures 7 and 8 show that many α-agents stop near the
combination position of two obstacles, and it is difcult to
bypass these obstacles in the Olfati-Saber focking algorithm
with obstacle avoidance. A possible reason for this is that the
projection velocity here does not point in the direction of
bypassing these obstacles. However, the proposed algorithm
can enable all α-agents to bypass these obstacles, as well as
enable all α-agents to regroup. Tis demonstrates that the
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Figure 5: Motion process of the two algorithms under the independence scenario of spherical and wall obstacles. (a) Olfati-Saber algorithm.
(b) Proposed algorithm. (c) x trajectories. (d) y trajectories.
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proposed algorithm can relax the constraints of obstacle
shape and boundary in the Olfati-Saber focking algorithm
with obstacle avoidance and has better environmental
adaptability.

To further demonstrate the environmental adaptability
of the proposed algorithm, we selected 30–60 α-agents and
a c-agent to move in a two-dimensional Euclidean space
with multiple obstacles such as a diamond obstacle,
a spherical obstacle, and a C-shaped obstacle. Te algorithm
parameters are shown in Table 3. Te initial position vectors
of 30–60 α-agents are selected randomly from
[2, 30] × [5, 30], the initial velocity vectors of 30–60 α-agents

are selected randomly from [0, 2] × [0, 2], the initial position
vector of c-agent is (75, 25)T, and the initial velocity vector
of c-agent is zero. Te experiments were run continuously
for 300 s.

Figure 9 shows themotion trajectories of 30 and 60 α-agents
under multiple obstacles. It can be seen that all α-agents can
move along the boundary of obstacles, bypass obstacles, and
fnally converge on the c-agent at the center position of all α
-agents. In Figure 10, we show theminimumdistance between α
-agent and objects (e.g., other α-agents or obstacles) for ran-
domly generated 30, 40, 50, and 60 α-agents following the c

-agent 100 times under multiple obstacles. It can be observed
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Figure 7: Motion process of the two algorithms under the combination scenario of two spherical obstacles. (a) Olfati-Saber algorithm. (b)
Proposed algorithm.
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from the fgure that theminimumdistance is always greater than
the minimum safe distance dmin, which illustrates that the
proposed algorithm can reduce the infuence of the number of α
-agents on theminimum distance and can also fnd a reasonable

route to bypass obstacles without collision and follow the c

-agent in the complex environment.

6. Conclusions

In this paper, we regarded each obstacle boundary point within
the sensing radius of α-agent as a virtual β-agent and designed
an obstacle boundary point and an expected velocity-based
focking algorithm for multiagents with obstacle avoidance.
Under the proposed algorithm, we proved that the collision-
free motion of multiagents can be realized when the sufcient
conditions in Teorem 1 hold. Tree examples under the
independence scenario of spherical and wall obstacles,
the combination scenario of two spherical obstacles, and the
combination scenario of spherical and wall obstacles are
presented to show that the proposed algorithm can relax the
constraints of obstacle shape and boundary in Olfati-Saber’s
focking algorithm with obstacle avoidance. Besides, an ex-
ample under multiple obstacles is given to illustrate that the
proposed algorithmwith better environmental adaptability can
make α-agent quickly bypass obstacles without collision and
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Figure 9: Motion process of 30 and 60 α-agents under multiple obstacles. (a) 30 α-agents. (b) 60 α-agents. (c) x trajectories. (d) y trajectories.
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follow the c-agent. Future works will consider the infuence of
time delay and external disturbance in the proposed algorithm.
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