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Retinal vein occlusion (RVO) is the second common cause of blindness following diabetic retinopathy. Te manual screening of
fundus images to detect RVO is time consuming. Deep-learning techniques have been used for screening RVO due to their
outstanding performance inmany applications. However, unlike other images, medical images have smaller lesions, which require
a more elaborate approach. To provide patients with an accurate diagnosis, followed by timely and efective treatment, we
developed an intelligent method for automatic RVO screening on fundus images. Swin Transformer learns the hierarchy of low-to
high-level features like the convolutional neural network. However, Swin Transformer extracts features from fundus images
through attention modules, which pay more attention to the interrelationship between the features and each other. Te model is
more universal, does not rely entirely on the data itself, and focuses not only on local information but has a difusion mechanism
from local to global. To suppress overftting, we adopt a regularization strategy, label smoothing, which uses one-hot to add noise
to reduce the weight of the categories of true sample labels when calculating the loss function.Te choice of diferent models using
a 5-fold cross-validation on our own datasets indicates that Swin Transformer performs better. Te accuracy of classifying all
datasets is 98.75± 0.000, and the accuracy of identifying MRVO, CRVO, BRVO, and normal, using the method proposed in the
paper, is 94.49± 0.094, 99.98± 0.015, 98.88± 0.08, and 99.42± 0.012, respectively. Te method will be useful to diagnose RVO and
help decide grade through fundus images, which has the potency to provide patients with further diagnosis and treatment.

1. Introduction

Retinal vein occlusion (RVO) is a common retinal vascular
disorder with an incidence of 0.86%–1.63% and increases
with age [1, 2]. Te results of Chinese epidemiological
surveys show that the incidence of RVO in people aged
40–49, 50–59, and 60–69 is 0.3%, 1.3%, and 2.1%, re-
spectively [3]. Fundus images in patients with RVO show
retinal vein flling, proximal vascular occlusion, and distal
vasodilation. Depending on the area of the lesion, RVO is
divided into macular retinal vein occlusion (MRVO) [4],
central retinal vein occlusion (CRVO) [5], and branch
retinal vein occlusion (BRVO) [6, 7]; BRVO is more
common among these [8]. Patients often miss the oppor-
tunity for timely and efective treatment because of the mild

or unnoticeable symptoms as well as problems, such as time-
consuming, laborious manual identifcation, too strong
subjectivity, and no guarantee of accuracy, which may cause
permanent and irreversible vision loss [9]. Moreover, lack of
specialized ophthalmologists, particularly in remote areas, is
an important issue. To solve the above problems, we urgently
need to build a screening system model for RVO, which can
quickly and accurately identify diseased fundus images and
determine the grade of RVO so that patients can grasp the
best time for treatment.

Diferent types of RVO behave somewhat diferently in
the lesion area. CRVO can form faming, bleeding, and
retinal edema. If CRVO is not treated, there may be sig-
nifcant macular edema or peripheral hard exudation
[10, 11]. Te lesion area of BRVO is triangular, and the tip
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points to the point of obstruction; the retinal vein dilates and
twists in the distal vascular distribution area of the ob-
struction point. Te retinal fame-like hemorrhage, retinal
edema, and cotton velvet spots become visible. In addition to
the manifestation of vascular bleeding [12, 13], MRVO also
occurs in the macular area that mostly afects vision. Te
vascular changes in MRVO are not obvious and primarily
seen as bleeding in the macular area, which can easily be
confused with a disease that can cause bleeding. We refne
RVO into three categories because of the varying specifc
conditions and vision damage of RVO. Tus, for timely and
accurate treatment, specifc categories of RVO must be
diagnosed.

With the improvement in the computing power of
computer and rapid development of machine-learning and
deep-learning (DL) algorithms, the development of artifcial
intelligence (AI) technology has been promoted and applied
to various industries. For example, the application of AI
technology in the medical feld is primarily to guide di-
agnosis and for treatment plan selection, risk prediction, and
reduction of medication errors. Ophthalmic diagnosis relies
heavily on imaging examination, and AI methods based on
DL can quickly and noninvasively analyze fundus image
information. Tey can identify, locate, and quantify disease
characteristics for purposes of screening, diagnosing,
grading, and guiding the treatment of diseases. Presently, AI
methods based on DL have been widely used in eye diseases
such as diabetic retinopathy, glaucoma, and cataract. For
example, Takahashi et al. [14] used a modifed GoogLeNet
DL neural network to grade 4,907 posterior polar photo-
graphs with an accuracy rate of 96%. Devalla et al. [15] used
an eight-layer CNN that was composed of three convolution
layers, three max-pooling layers, and two fully connected
layers which can digitally stain an optic disc, retinal pigment
epithelium, and choroid and sclera around the optic disc and
automatically measure their structural parameters. For all
tissues, the dice coefcient, sensitivity, specifcity, IU, and
accuracy (mean) were 0.84 ± 0.03,0.92 ± 0.03,0.99 ± 0.00,

0.89 ± 0.03, and 0.94 ± 0.02, respectively. Xu et al. [16]
proposed to use the global-local convolutional neural net-
work (CNN) automatic classifer to identify and classify
a total of 1200 cataract fundus images as normal, mild,
moderate, and severe; they used the sharpness of blood
vessels and the optic disc as a reference, with an average
accuracy of 81.86%, and a deconvolutional neural network to
visualize the layer-by-layer characterization of cataracts
from the middle layer feature transformation using CNN. In
addition, the team of Professor Liu Yizhi of Sun Yat-sen
University used DL algorithms to establish a congenital
cataract AI diagnosis and treatment platform [17], suc-
cessfully applied it to the clinic, and showed that the ap-
plication of AI technology to ophthalmic clinics has
excellent prospects.

DL methods have been widely used to diagnose diferent
fundus diseases. For the diagnosis of RVO, Anitha et al. [18]
used Kohomen to classify a total of 420 nonvalue-added
diabetic retinopathy, CRVO, central serous choroid reti-
nopathy, and central neovascular membrane; the average

accuracy, sensitivity, and specifcity obtained by using this
method were 97.7%± 0.8%, 96%, and 98%, respectively. Te
performance of this method is better; however, histogram
equalization, median fltering preprocessing of the images,
and texture-based feature extraction made the overall
process relatively complex. Nagasato et al. [19] used VGG-16
to classify ultrawide feld fundus images, including 237
BRVO fundus images and 176 healthy fundus images, and
compared the results; the results showed that the sensitivity,
specifcity, positive predictive values, negative predictive
values, and area under the receiver operating curve (AUC) of
BRVO were 94.0%, 97.0%, 96.5%, 93.2%, and 0.976, re-
spectively, using a deep CNN model. But this is only clas-
sifcation recognition of normal fundus images and BRVO
fundus images. Tere have been some studies on RVO;
however, only one of the CRVO and BRVO is mentioned,
and MRVO is rarely mentioned. In addition, most of the
diagnoses of fundus diseases use traditional machine-
learning methods and CNN, which have the image fea-
ture extraction problem and signifcantly long network
training time. In 2021, Liu et al. [20] proposed Swin
Transformer. Swin Transformer achieves the state-of-the-art
performance on COCO object detection and ADE20K se-
mantic segmentation, which shows that it performs better in
feature extraction. Zhao et al. [21] used Swin Transformer
and achieved a mean average precision of 0.934, presenting
an efcient and intelligent mutton multipart classifcation
method. Zhao et al. [22] proposed the frst Swin
Transformer-based mosquito species identifcation model
with a 99.04% accuracy and a 99.16% F1 score. Liu et al. [23]
used depthwise separable convolutional Swin Transformer
to classify cervical ultrasound lymph-node-level and
achieved average accuracy, precision, sensitivity, specifcity,
and F1 values of the model which were 80.65%, 80.68%,
78.73%, 95.99%, and 79.42%, respectively. Given the present
issues, this paper uses the Swin Transformer model com-
bined with the label smoothing method to process the
fundus images containing normal, MRVO, CRVO, and
BRVO and train a model that can accurately identify dis-
eased fundus images. Te main contributions are as follows.

Te grading method of retinal vein occlusion based on
Swin Transformer is introduced, and there is no need for
artifcial feature extraction of fundus images in the whole
process.

We propose a fne-tuning method to adapt to the pre-
training model of retinal fundus images, which is diferent
from the traditional convolutional neural network, in that
the model is mainly composed of multihead attention
modules, which is more targeted for the extraction of lesion
features of fundus images. To prevent the model from
predicting labels too confdently when training, we use label
smoothing to improve the generalization ability of the
model. For the trained model, Grad-CAM was used to vi-
sually interpret its lesion area and analyze fundus images
with incorrect predictions.

Te datasets we used were collected and annotated by the
team of professional ophthalmologists, providing strong
data support for the entire experiment.
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2. Methods

2.1. Data Collection. All data used during the study were
from Shenzhen Eye Hospital, and it contained a total of 805
color fundus images after rejecting poor quality, incorrect,
and unclear images. Tese images contained a variety of
resolutions from 1024×1024 to 2976× 2976, and all were
annotated by professional doctors.

Because of the varying resolution sizes and the small
number of datasets, the datasets were preprocessed to ac-
commodate model training. Te resolution of all fundus
images was uniformly modifed to 224× 224. Ten, the
images were randomly rotated horizontally, at a given
probability, for the purpose of data expansion. Finally, the
images were normalized. Image normalization is the cen-
tralization of data by de-mean; i.e., the pixels in the image are
adjusted to a distribution with an average of 0 and a variance
of 1. According to the convex optimization theory and data
probability distribution, data centering conforms to the law
of data distribution, which makes the network obtain good
convergence after training, and it is easier to obtain the
generalization efect after training.

Te datasets were divided into three parts: training set,
validation set, and test set. Te training set is a data sample
used for model ftting that degrades the error in the training
process and learns the weight parameters that can be trained.
Te validation set is a set of samples left separately during the
model training process, which can be used to adjust
hyperparameters, such as the learning rate, iteration, batch
size, and weights of each part of the loss function, and
preliminary evaluate the model. Te test set is used to
evaluate the generalization ability of the fnal model but
cannot be used as the basis for algorithm-related selection
such as tuning parameters and selecting features. A total of
483 fundus images were used as the training set. 161 fundus
images were in the validation set, and 161 fundus images
were in the test set. Te training, validation, and test sets all
contained four categories of images that were randomly
assigned by setting a random seed. Te specifc allocation of
the dataset is presented in Table 1.

2.2. Model Architecture. In this study, we use the Swin
Transformer [20] model for diagnosing diferent types of
RVO. Swin Transformer encodes the original image to
obtain pixel features, using a hierarchical construction

approach similar to that found in CNN. It uses window
multihead self-attention (W-MSA), which can divide feature
maps into multiple disjoint regions (windows) and multi-
head self-attention only within each window; this can reduce
the amount of computation; however, it will also isolate
information transfer between diferent windows. Tus, the
concept of shifted windows-multihead self-attention (SW-
MSA) is proposed, through which information can be
transmitted in adjacent windows.

Te entire Swin Transformer structure comprises one
patch partition, one linear embedding, one layer normali-
zation, one global pooling, one fully connected layer, three
patch mergings, and 12 Swin Transformer blocks, as shown
in Figure 1(a). First, the image was entered into the patch
partition module for chunking; i.e., every 4× 4 adjacent pixel
is a patch and then fattened in the channel direction. Te
datasets used in the study were RGB three-channel images,
and each pixel has three values of R, G, and B; thus, after
fattening, there were 48 channels, and after the patch
partition, the image shape was transformed from (H, W, 3)
to (H/4, W/4, 48). Te linear embedding layer then per-
formed a linear transformation of the channel data for each
pixel. Ten, diferent-sized feature maps were constructed
through the stages, except for linear embedding in stage 1.
Te remaining three stages were frst downsampled through
a patch merging layer, and then, they were all stacked re-
peatedly with the Swin Transformer block.Te block has two
structures, as shown in Figure 1(b).Tey consist ofMLP, LN,
W-MSA, and SW-MSA. Te MLP block consists of fully
connections, activation function (GELU), and dropouts. LN
is a layer normalization, which can normalize each token.
Te only diference between the two structures is that one
uses a W-MSA structure and the other uses a SW-MSA
structure. In addition, the two structures are used in pairs,
using a W-MSA structure and then a SW-MSA structure.
Because the study is a classifcation task, the output includes
a norm layer, a global pooling layer, and a fully connected
layer. Te main module of Swin Transformer is multihead
self-attention (MSA). Firstly, ai obtains qi, ki, and vi through
the three transformation matrices Wq, Wk, and Wv, re-
spectively. Ten, according to the number of heads used h,
obtained qi, ki, vi are further divided into h parts. As shown
in Figure 2, assuming that h� 2, and q1 is split into q1,1 and
q1,2, then q1,1 belongs to head1 and q1,2 belongs to head2.Te
specifc calculation process is as follows:

Multihead(Q, K, V) � Concat head1, . . . , headh( 􏼁W
o

headi � attention QWQ
i ,KWK

i ,VWV
i􏼐 􏼑 � softmax

QiW
Q
i KiW

K
i��

dk

􏽰􏼠 􏼡V
i
W

V
i ,

(1)

where the projections are parameter matrices
W

Q
i ∈ Rdmodel×dk , Wk

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dk , and

Wo ∈ Rhdv×dmodel (dk � dv � (dmodel/h), dmodel is the size of
the fusion of qi,1 ,. . ., qi,j).

Experimental hardware confguration is as follows:
Intel(R) Core (TM) i7-6700, CPU @ 3.40GHz, and GPU
NVIDIA GeForce RTX 1080. Experimental software con-
fguration is as follows: 64 bit Windows 10 operating system
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and PyCharm Community Edition 2021.3, Python 3.6.13.
Because there are too few samples for training, overftting is
easy; i.e., the model performs better on the training samples,
but the generalization efect on the test set is unsatisfactory.
To alleviate this phenomenon, we use diferent methods to
enhance the dataset, primarily including random horizontal
and vertical fipping and arbitrary direction rotation [24].
During training, the loss function takes cross-entropy loss,
using AdamW as the optimizer, and weight decay is set to

0.05; we use a transfer-learning approach that uses
ImageNet-based pretrained weights. After loading the
pretrained [25] weights, we froze all the parameters, except
the last layer, which not only improved the training speed
but also alleviated the model overftting phenomenon. In
addition, to further alleviate this, the label smoothing
method was used in the process of training the model. Te
entire training process iterated a total of 100 epochs, and the
initial learning rate was set to 0.0001.

Table 1: Dataset allocation.

Train Valid Test Total
Normal 155 52 52 259
MRVO 50 16 16 82
CRVO 82 28 28 138
BRVO 196 65 65 326
Total 483 161 161 805
Te dataset is divided into the training set, validation set, and test set.
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Figure 1: (a) Architecture of Swin Transformer; (b) two successive Swin Transformer blocks.
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For comparison, deep CNNs, VGG-16, VGG-19,
MobileNet-v2, ResNet-18, ResNet-50, WP-CNN-105, and
DenseNet-121 were also used during the study. VGG [26] is
a classic classifcation network.Te ResNet [27] series model
was proposed in 2015. Because its structure uses residual
structures, the image features acquired at the shallow level of
the network are superimposed into the deep network. Tis
can alleviate the problem of network degradation (as the
number of layers of the network deepens, the efect will
deteriorate) andmake it perform well in image classifcation;
it won frst place in the classifcation task in the 2015
ImageNet competition. In contrast to the previous deep
CNN, the ResNet series network is not just a simple stack of
convolutional layers, which is one of the reasons for
choosing the ResNet [28] series network. MobileNet-v2 [29]
was selected as the network for comparison because its
network structure model is small and its computation speed
is fast. Guo et al. [30] used MobileNet-v2 to predict diferent
fundus diseases, which performed well. WP-CNN-105 [31]
performs well on the grading of diabetic retinopathy.
DenseNet-121 [32] is a densely connected network that
extracts image features well. To verify generalization, we
used 5-fold cross-validation for diferent models, as shown
in Figure 3. Because of the similar hardware confguration
and software confguration of the comparison network, all
models adopt a transfer-learning [33] approach during
training. Te total training epochs of diferent models are
100. Te selected optimizer is Adam. Te loss function is
cross-entropy loss, and the initialization learning rate is set
to 0.00001.

2.3. Label Smoothing. In regression problems or classifca-
tion problems, the loss function is used to measure the
diference between the predicted value and true value, and
the resulting diference is also called “punishment.” For
regression models using neural networks, the most com-
monly used loss function is the mean squared error, where yi

is the true value of the ith data. yi
′ is the predicted value of the

ith data, and n is the total number of data:

L y, y′( 􏼁 �
􏽐i yi − yi

′( 􏼁
2

n
. (2)

For classifcation models, because the fnal output results
in a predicted probability for each class, the output layer
generally uses the sigmoid function (for binary classifca-
tion) or the softmax function (for multiclassifcation), and
the loss function uses a combination of cross-entropy
methods. Te fnal output of both the sigmoid function
and the softmax function is a value between 0 and 1 and can
be used to represent the probability of the classifcation. Te
cross-entropy loss function is similar to entropy in in-
formation theory:

L y, y′( 􏼁 � − 􏽘
i

yilog yi
′( 􏼁. (3)

Te closer the predicted value is to the true value, the
smaller is the loss function of cross-entropy. However, the
use of one-hot encoding has the disadvantage of making the
network heavily rely on training samples during training,
resulting in poor performance robustness. Artifcially re-
ducing the probability of the correct value of the sample label
and increasing the probability of the wrong value (such as
changing the label in the above example to [0.1, 0.9]) can
help train the model, further improve the prediction ability,
and avoid extreme cases. Tis method is called label
smoothing, and in many classifcation models, it performs
better than the original. In 2015, Szegedy et al. [34] proposed
label smoothing regularization (LSR), and LSR achieves the
desired goal of preventing the largest logit from becoming
much larger than all others. LSR would result in a large
cross-entropy loss.

2.4. StatisticalAnalysis. Tis is a multiclassifcation problem;
thus, two evaluation criteria are selected during the evalu-
ation process. Te frst is to convert a multiclass problem
into a binary classifcation problem and then evaluate the
model using the evaluation criteria sensitivity (SE), speci-
fcity (SP), precision (P), accuracy (AC), F1 score, and AUC
in the binary classifcation [35].Te second is to calculate the
kappa coefcient as the multiclassifcation evaluation
criteria.

Te classifcation categories in the study include four
types: normal, MRVO, CRVO, and BRVO. When using the
biclass evaluation criteria, positive and negative samples
should frst be determined. Taking BRVO as an example,
when calculating its relevant evaluation indicators, BRVO is
regarded as positive samples, and all other categories are
automatically regarded as negative samples. True negative
(TN) is a predicted negative sample but actually a negative
sample; false positive (FP) is a predicted positive sample but
actually a negative sample; true positive (TP) is a predicted
positive sample but actually a positive sample; false negative
(FN) is a predicted negative sample but actually a positive
sample. After understanding all concepts, we introduce the
SE, SP, P, AC, and F1 values of the evaluation criteria.

SE demonstrates the number of samples predicted to be
positive in the total of all actual positive samples, and the
higher the SE, the stronger is the ability to recognize the
positive samples:

SE �
TP

(TP + FN)
. (4)

SP is how many of the samples predicted to be negative
are negative samples, indicating the ability to recognize
negative samples:

SP �
TN

(TN + FP)
. (5)

P is the probability that total samples are correctly
judged to be positive for all judged positive samples:
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P �
TP

(TP + FP)
. (6)

AC is the ratio of the correct number that is predicted by
the model to the whole, and the higher the accuracy rate, the
better is the model:

Ac �
TP + TN

TP + TN + FP + FN
. (7)

Te F1 value is the harmonization value of P and SE, and
to balance P and SE evaluation, simply increasing one side
does not increase the F1 value:

F1 �
2∗P∗ SE
SE + P

. (8)

AUC is defned as the area under the ROC curve
enclosed by the coordinate axis. Te ROC curve is above the
line of y� x, so the value range of AUC is [0.5, 1.0]. Te
closer the AUC is to 1.0, the higher is the accuracy of the
model prediction.

Te kappa [36] coefcient is a method of assessing
consistency in statistics, and its value range is [0, 1]. When
evaluating a multiclassifcation model, the higher the Kappa
coefcient, the higher the classifcation accuracy of the
model. Te kappa coefcient is calculated as follows:

k �
p0 − pe

1 − pe

,

pe �
a1.b1 + a2.b2 + · · · + ac.bc

n.n
,

(9)

where p0 represents the classifcation accuracy, ai represents
the number of true samples of class i, and bi represents the
number of samples predicted in class i.

2.5. Diagnosis Visualization. To intuitively analyze the in-
fuence of each region on the fundus image classifcation
results, we determine whether the lesion area concerned by
the classifcation model is consistent with the medically
identifed one, i.e., determine whether the model has learned
the correct features or information so that the model rec-
ognition results can be better analyzed. We use gradient-
weighted class activation mapping (Grad-CAM) to visualize
Swin Transformer.

We used heat maps drawn by Grad-CAM [37] to vi-
sualize the areas of interest of the model. When the network
is forward propagated, it obtains the feature layer and the
predicted value. Te feature layer is the result of the network
extracting the features of the original image. Te deeper the
feature layer, the richer the semantic information. Because
the feature layer contains semantic information for all
classes, it is necessary to backpropagate the predicted value
to obtain the gradient information of the feature layer. Te
gradient information represents the contribution of each
element in the feature layer to the predicted value of a certain
category. Finally, a weighted sum can be performed to obtain
a heat map through ReLU, in which the larger the contri-
bution area, the warmer the color. Te specifc imple-
mentation of Grad-CAM is shown in (10) and (11):

L
C
Grad−CAM � ReLU 􏽘

k

αc
kA

k⎛⎝ ⎞⎠, (10)

αc
k �

1
Z

􏽘
i

􏽘
j

zy
c

zA
k
ij

, (11)

where A represents a feature layer, k represents the kth

channel in feature layer A, c represents category c, Ak

represents the data of channel k in feature layer A, αc
k
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Figure 3: Te process of 5-fold cross-validation.
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represents the weight for Ak, yc represents the score pre-
dicted by the network for category c, and Ak

ij represents the
data of feature layer A at coordinate i and j in channel k, and
Z is equal to the width of the feature layer x height.

3. Results

Te Swin Transformer model is used in the study, and other
models used for comparison were trained and verifed with
483 and 161 fundus images, respectively. All models used
label smoothing to avoid overftting. Te validation set is
used to adjust hyperparameters and make a preliminary
assessment of the model. Tus, we use the accuracy of the
validation set to make a preliminary evaluation of the model,
and the results can be obtained according to the experi-
mental details in Section 2.2, as shown in Table 2. Ablation of
the label smoothing approach on the task is reported in
Table 3. Swin Transformer with label smoothing out-
performs the counterpart by 0.5%, which indicates the ef-
fectiveness of using label smoothing.Te analysis of diferent
networks’ parameters is shown in Table 4.

Te trained Swin Transformer and comparable models
predicted a test set containing 161 fundus images, and the
model could successfully identify fundus images as normal,
MRVO, CRVO, and BRVO. Te specifcs of each category
identifcation are shown in the confusion matrix of
Figure 4—the horizontal axis represents the true label and
the vertical axis represents the predicted label. In 161 fundus
images used for testing, Swin Transformer only identifed
two images wrongly.

To compare the identifcation performance of diferent
models, MRVO, CRVO, BRVO, and normal through the test
set and the specifc results are shown in Tables 5–8, re-
spectively. For the identifcation of MRVO fundus images,
the results in Table 5 show that the Swin Transformer model
performs better on most indicators and that the SE, SP, P,
and F1 values are higher than those of comparable models
and reach more than 90%; specifcally, the SP value is
99.98%± 0.017. For the identifcation of CRVO, the results
are shown in Table 6, DenseNet-121 performs best in pre-
cision, and the indicators AC, SE, SP, and F1 acquired by
Swin Transformer had better performance than those of
comparable models. For the identifcation of BRVO, the
results are shown in Table 7, the AC, SE, SP, P, and F1 values
of Swin Transformer were 98.88%± 0.080, 98.55%± 0.056,
99.04%± 0.041, 98.56%± 0.066, and 98.56%± 0.068, re-
spectively, and it is evident that the values of each index
reached more than 95%, which shows better performance
than those models used for comparison, except MobileNet-
v2 in sensitivity. All models performed well in detecting
normal fundus images, and the results are shown in Table 8.
All things considered, Swin Transformer performed better in
grading RVO. Figure 5 shows the AUC values of the Swin
Transformer model in identifying MRVO, CRVO, BRVO,
and normal of 0.9991, 1.0000, 0.9992, and 1.0000,
respectively.

In addition to converting a multiclassifcation prob-
lem into multiple binary classifcation problems and using
the indicators of binary classifcation to evaluate the

model [38], we also used the evaluation indicator that can
directly implement the multiclassifcation model, namely,
the kappa coefcient. Te kappa coefcient is a method of
evaluating data consistency in statistics; the higher the
value of the kappa coefcient, the better the model per-
forms in multiclassifcation. Te kappa coefcient ob-
tained by diferent models by predicting the test set is
presented in Table 9, and it is evident that the kappa
coefcient of Swin Transformer is higher than those of
other models.

We use Grad-CAM to visualize diferent models in
identifying areas of concern, especially when identifying
diferent types of RVO, to demonstrate the interpretability of
the model [39]. As shown in Figure 6, from up to down are
BRVO, CRVO, and MRVO, respectively. Te frst line is the
original fundus images, and the other lines are the corre-
sponding heat maps of diferent models; the warmer the
color of the heat map, the greater the role it plays in the
classifcation process. From the heat map, we can see that the
lesion area of MRVO is mainly distributed near the macula.
Te bleeding spots in the lesion area of CRVO are irregular
in shape and difusely fame-like. Te lesion area of BRVO is
more concentrated than that of CRVO. Comparing the heat
maps obtained from fewer models, we found that the Swin
Transformer model extracted more accurate lesion features
when grading retinal vein occlusion.

Table 2: Average valid accuracy of diferent models.

Models Fold
1

Fold
2

Fold
3

Fold
4

Fold
5 Average

VGG-16 91.25 90.04 91.95 92.25 92.30 91.56
VGG-19 92.45 92.40 93.01 92.10 91.98 92.39
MobileNet-v2 93.75 93.80 93.65 93.82 93.70 93.74
ReaNet-18 94.98 94.95 95.01 95.02 95.08 95.01
ResNet-50 96.27 96.25 96.30 96.26 96.27 96.27
WP-CNN-105 95.60 95.75 95.50 95.63 95.63 95.62
DenseNet-121 97.05 97.13 97.10 97.08 97.09 97.09
Swin
Transformer 98.20 98.25 98.23 98.27 98.25 98.25

Bold represents the best performance.

Table 3: Ablation study on label smoothing.

Swin Transformer Swin Transformer with
label smoothing

Accuracy 98.25 98.75

Table 4: Te analysis of diferent networks’ parameters.

Prams (million)
VGG-16 138.26
VGG-19 142.67
MobileNet-v2 3.51
ResNet-18 11.69
ResNet-50 25.56
WP-CNN-105 13.27
DenseNet-121 7.98
Swin Transformer 28.27
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Figure 4: Confusion matrix obtained by diferent models predicting the test set.

Table 5: Accuracy, sensitivity, specifcity, precision, and F1 value for identifying MRVO by diferent models.

Models Accuracy± std Sensitivity± std Specifcity± std Precision± std F1± std
VGG-16 95.71± 0.026 56.24± 0.047 99.91± 0.091 99.94± 0.056 72.05± 0.052
VGG-19 96.33± 0.035 62.53± 0.032 99.93± 0.067 99.92± 0.076 76.93± 0.065
MobileNet-v2 98.85 ±  . 53 87.52± 0.042 99.95± 0.048 99.91± 0.088 93.33± 0.035
ResNet-18 96.36± 0.064 68.84± 0.048 99.39± 0.095 91.75± 0.054 78.63± 0.036
ResNet-50 98.82± 0.047 87.55± 0.056 99.96± 0.036 99.96± 0.039 93.32± 0.028
WP-CNN-105 98.14± 0.041 87.57± 0.075 99.38± 0.086 99.35± 0.064 90.32± 0.035
DenseNet-121 98.80± 0.032 87.59± 0.092 99.97± 0.029 99.89± 0.110 93.34± 0.042
Swin Transformer 94.49± 0.094 93.89 ±  . 95 99.98 ±  . 17 99.97 ±  . 26 96.81 ±  . 84
Bold represents the best performance.

Table 6: Accuracy, sensitivity, specifcity, precision, and F1 value for identifying CRVO by diferent models.

Models Accuracy± std Sensitivity± std Specifcity± std Precision± std F1± std
VGG-16 97.53± 0.055 96.46± 0.061 97.71± 0.015 90.16± 0.064 93.12± 0.031
VGG-19 98.12± 0.023 92.93± 0.032 99.99± 0.001 96.32± 0.027 94.66± 0.082
MobileNet-v2 95.73± 0.031 75.00± 0.0001 99.98± 0.015 99.92± 0.072 85.72± 0.044
ResNet-18 99.42± 0.025 96.42± 0.026 99.95± 0.048 99.81± 0.089 98.23± 0.034
ResNet-50 99.45± 0.052 87.55± 0.053 98.57± 0.083 99.91± 0.085 98.26± 0.063
WP-CNN-105 99.81± 0.017 96.47± 0.074 99.86± 0.065 93.64± 0.042 94.72± 0.028
DenseNet-121 99.47± 0.074 96.41± 0.028 99.75± 0.057 99.95 ±  . 43 98.27± 0.075
Swin Transformer 99.98 ±  . 15 99.97 ±  . 16 99.99 ±  .  6 99.73± 0.062 99.99 ±  .  6
Bold represents the best performance.

Table 7: Accuracy, sensitivity, specifcity, precision, and F1 value for identifying BRVO by diferent models.

Models Accuracy± std Sensitivity± std Specifcity± std Precision± std F1± std
VGG-16 91.93± 0.031 93.84± 0.044 90.62± 0.025 87.13± 0.034 90.32± 0.035
VGG-19 92.55± 0.055 96.96± 0.064 99.22± 0.023 86.33± 0.032 91.30± 0.031
MobileNet-v2 93.84± 0.052 98.57 ±  . 75 90.67± 0.072 87.74± 0.045 92.81± 0.014
ResNet-18 95.77± 0.071 96.95± 0.059 94.88± 0.085 92.68± 0.081 94.70± 0.011
ResNet-50 96.33± 0.034 98.53± 0.032 94.83± 0.036 92.87± 0.072 95.65± 0.056
WP-CNN-105 95.74± 0.041 93.83± 0.033 96.96± 0.062 95.35± 0.057 94.54± 0.043
DenseNet-121 98.16± 0.062 98.54± 0.049 97.94± 0.051 97.06± 0.064 97.78± 0.082
Swin Transformer 98.88 ±  . 8 98.55± 0.056 99. 4 ±  . 41 98.56 ±  . 66 98.56 ±  . 68
Bold represents the best performance.
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4. Discussion

We use the Swin Transformer model in this study to in-
telligently diagnose fundus images containing normal,
MRVO, CRVO, and BRVO. Presently, the combination of

image processing and medical images is becoming highly
extensive [40, 41] because image processing plays a signif-
cant role in medical diagnosis [42, 43]. In this study, for
intelligent diagnosis of RVO, we mainly attempted to use
Swin Transformer, VGG-16, VGG-19, MobileNetV2,

Table 8: Accuracy, sensitivity, specifcity, precision, and F1 value for identifying normal by diferent models.

Models Accuracy± std Sensitivity± std Specifcity± std Precision± std F1± std
VGG-16 98.81± 0.028 98.11± 0.041 99.12± 0.039 98.12± 0.035 98.24± 0.037
VGG-19 98.12± 0.031 96.21± 0.032 99.13± 0.021 98.00± 0.004 97.15± 0.052
MobileNet-v2 99.43± 0.026 99.97± 0.028 99.10± 0.054 98.14± 0.012 99.05± 0.055
ResNet-18 98.84± 0.041 99.96± 0.035 98.21± 0.045 96.32± 0.038 98.12± 0.032
ResNet-50 98.12± 0.035 96.21± 0.046 99.11± 0.048 98.02± 0.025 97.16± 0.064
WP-CNN-105 99.44 ±  . 21 99.98± 0.014 99.18 ±  . 85 98.13± 0.021 99.02± 0.023
DenseNet-121 98.81± 0.048 99.95± 0.037 98.24± 0.014 96.34± 0.042 98.18± 0.078
Swin Transformer 99.42± 0.012 99.99 ±  .   1 99.12± 0.031 98.19 ±  . 65 99.19 ±  . 85
Bold represents the best performance.
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Figure 5: (a–d): ROC curves of MRVO, CRVO, BRVO, and normal, respectively.
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ResNet-18, ResNet-50, WP-CNN-105, and DenseNet-121 to
screen out fundus images with normal, MRVO, CRVO, and
BRVO and then used Grad-CAM to visualize the retinop-
athy areas of diferent types of RVO, while demonstrating
the efciency of Swin Transformer in the classifcation
process.

To diagnose RVO, a classifcation method of fundus
images based on the Swin Transformer model was used,
which divides fundus images into four categories: normal,
MRVO, CRVO, and BRVO. When using Swin Transformer,
we primarily focus on two aspects, the high accuracy of the
model in the training process and the strong generalization
ability of the model in the application process; i.e., the model
must accurately identify the specifc category of RVO
through fundus images that have not been trained. Tis
specifc research has the following aspects: the dataset used
in this study has a total of 805 fundus images, of which 483
are used to train the network; the dataset is preprocessed,
such as image cropping and data expansion. Although data
expansion has been performed, the overall amount of data is
still very small, which is not enough to fully train the net-
work; thus, the fne-tuning method of transfer learning is
used to speed up the training speed. To further improve the
recognition accuracy and generalization ability of the model,
we also use the label smoothing method and 5-fold cross
validation. For Swin Transformer, training on fundus images
containing diferent categories is primarily a process of
learning characteristics regarding the diferent categories of
fundus images. Furthermore, we used the Grad-CAM

method to visualize the lesion area with a heat map of
the predicted image, and the visualization results show that it
is consistent with the medically determined lesion area.
Clinically, there is no known golden rule for the diagnosis of
diferent types of RVO; thus, the diagnosis process will be
afected by subjective cognition and the experience of
ophthalmologists [44, 45]. Compared with ophthalmolo-
gists’ diagnosis, the model proposed in this paper is not
afected by subjective factors in the process of diagnosis, and
it performs well in generalization.Te visualization results in
Figure 6 show that the Swin Transformer model focuses on
the lesion area and is negligibly afected by the background
when diagnosing RVO through fundus images and indicate
that the Swin Transformer model is interpretable.

Our research has the following advantages: First, the
Swin Transformer model used can automatically diagnose
RVO through fundus images, and its diagnostic accuracy is
higher than that of comparable models. In addition, it can
process datasets automatically and efciently without
manual assistance. Second, our model extracts and predicts
the morphological features of fundus images, which are not
easily afected by subjective cognition and experience. As
long as the diagnostic criteria are given, the prediction re-
sults of the model will always be consistent with the given
diagnostic criteria.Tird, we can not only diagnose RVO but
also accurately judge its specifc type, which has an im-
portant clinical signifcance in real life.

Tis study also has some limitations. First, the distri-
bution of diferent categories is uneven. In the future, we

Table 9: Kappa coefcients for diferent models on the test set.

Models Kappa
VGG-16 0.8816± 0.0012
VGG-19 0.8898± 0.0014
MobileNet-v2 0.9086± 0.0008
ResNet-18 0.9274± 0.0006
ResNet-50 0.9457± 0.0010
WP-CNN-105 0.9372± 0.0011
DenseNet-121 0.9639± 0.0004
Swin Transformer  .982 ±  .   2
Bold represents the best performance.

BRVO

CRVO

MRVO

Image VGG-19 MobileNet-v2 Resnet-50 WP-CNN-152 DenseNet-121 Swin Transformer

Figure 6: Te original fundus images of BRVO, CRVO, MRVO, and corresponding heat maps of diferent models.
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need larger datasets, a more balanced sample distribution,
and more training data to improve the classifcation accu-
racy of the model. Second, the Swin Transformer model
should be applied to evaluate the fundus images of diferent
ethnic groups [46] to verify the robustness in diagnosing
RVO. In this paper, because of the limitations of the dataset,
our research objects are all Asians. Tird, because of the
diferences of symptoms in diferent situations [47, 48], age,
gender, family genetic history, and other factors should be
considered when building the model to improve the accu-
racy of the algorithm for diferent categories of RVO. Finally,
for the lesion area, the analysis of fundus images with
wavelet transforms and the extraction of spectral charac-
teristics of bleeding point areas and edges can further im-
prove efciency [49].
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“Comment on “Evaluation of hyperrefective foci as

12 International Journal of Intelligent Systems

https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1801.04381


a prognostic factor of visual outcome in retinal vein occlu-
sion”,” International Journal of Ophthalmology, vol. 11, no. 5,
p. 898, 2018.

[46] L. P. Cen, J. Ji, J. W. Lin et al., “Automatic detection of 39
fundus diseases and conditions in retinal photographs using
deep neural networks,”Nature Communications, vol. 12, no. 1,
p. 4828, 2021.
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