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Tis paper addresses the task of semantic segmentation in computer vision, aiming to achieve precise pixel-wise classifcation. We
investigate the joint training of models for semantic edge detection and semantic segmentation, which has shown a promise.
However, implicit cross-task consistency learning inmultitask networks is limited. To address this, we propose a novel “decoupled
cross-task consistency loss” that explicitly enhances cross-task consistency. Our semantic segmentation network, TriangleNet,
achieves a substantial 2.88% improvement over the Baseline in mean Intersection over Union (mIoU) on the Cityscapes test set.
Notably, TriangleNet operates at 77.4% mIoU/46.2 FPS on Cityscapes, showcasing real-time inference capabilities at full res-
olution. With multiscale inference, performance is further enhanced to 77.8%. Furthermore, TriangleNet consistently out-
performs the Baseline on the FloodNet dataset, demonstrating its robust generalization capabilities. Te proposed method
underscores the signifcance of multitask learning and explicit cross-task consistency enhancement for advancing semantic
segmentation and highlights the potential of multitasking in real-time semantic segmentation.

1. Introduction

Te combination of image semantic segmentation and deep
learning has gone through a long period of time, accumu-
lating a large number of excellent works such as FCN [1], U-
Net [2], FastFCN [3], Gated-SCNN [4], DeepLab Series
[5–7], Mask R-CNN [8], and so on, as well as leaving un-
solved problems. Te main challenge is the fne-grained
localization of pixel labels [9]. Te prevailing structure of
semantic segmentation networks mostly follows the
encoder-decoder structure adopted by the FCN [1]. First,
downsampling is used to expand the receptive feld to extract
high-level semantics, and then, upsampling is used to re-
cover low-level details. Te edge details lost by conventional
downsampling operations in semantic segmentation net-
works are difcult to recover during upsampling. A com-
pensatory solution is to introduce additional knowledge
among which edge priors are intuitive and easily accessible.

In order to inject edge priors into semantic segmentation
networks, one way is to train a semantic edge detection
model and a semantic segmentation model jointly. General
practice is a two-stream framework that trains a semantic
edge detection branch and a semantic segmentation branch
in a hard parameter-sharing manner [10]. Te predictions of
the semantic edge detection branch on edge points may
difer from those of the semantic segmentation branch,
which implies the existence of cross-task inconsistency.
Conventionally, a fusion module is introduced to cope with
this confict, such as the study in [11, 12] does, which intends
to fuse features from the semantic edge detection branch to
improve the semantic segmentation branch. However, the
efects of these fusionmodules are sometimes not as efective
as expected. As the ablation experiments of the study in [11]
points out, the improvement of the mean of class-wise
Intersection-over-Union (mIoU) on the Cityscapes valida-
tion set mainly depends on duality loss (+1.44%) rather than
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semantic edge fusion (+0.22%) or pyramid context module
(+0.62%). A considerable amount of segmentation errors
along object boundaries still exist, which means the mutual
consistency between the semantic segmentation branch and
the semantic edge detection branch should be further
studied to improve the quality of segmentation results.

We have observed that many semantic segmentation
works can be loosely viewed as semantic edge detection
tasks, since applying edge detectors to semantic seg-
mentation outputs can yield semantic edge results. Teir
relationship can be modeled as shown in Figure 1. Log-
ically, in order to conserve consistency among tasks, the
results of inferring semantic edges from an input image
should be the same regardless of the inference paths, that
is, predicting semantic edges by frst predicting semantic
segmentation maps from an input image should achieve
similar predictions as directly predicting semantic edges
from the input image. Tis observation aligns with the
concept of inference-path invariance, which serves as the
guiding ideology in the work by Zamir et al. [13]. Te
concept emphasizes that predictions should remain
consistent regardless of the specifc inference paths. Te
input image domain, the semantic segmentation domain,
and the semantic edge domain form an elementary
consistency unit proposed by Zamir et al. [13], which is
illustrated in Figure 1.

By imposing a cross-task consistency loss on the end-
point outputs of the two paths, the consistency between
semantic segmentation and semantic edge detection can be
explicitly learned. Based on these analyses, we propose a new
framework to simultaneously train a semantic segmentation
branch and a semantic edge detection branch, and the
overall process is shown in Figure 2.

Te highlights of this paper are as follows:

(1) Figure 3 illustrates the superior balance between
speed and accuracy achieved by our framework on
the Cityscapes dataset, distinguishing it as one of the
few models capable of real-time inference at full
resolution. Notably, our model operates at an im-
pressive 77.4% mIoU while maintaining a fast frame
rate of 46.2 FPS on Cityscapes.

(2) We introduce a novel approach, “decoupled cross-
task consistency loss,” to explicitly enhance cross-
task consistency between semantic edge detection
and semantic segmentation, resulting in 1.83% im-
provement in mIoU on the Cityscapes test set. Te
decoupled loss efectively enforces consistency across
tasks, facilitating the learning of shared represen-
tations and leading to improved overall
performance.

(3) Our model demonstrates exceptional efcacy in
categories characterized by distinct edges and
boundaries, as evidenced by some categories
achieving signifcant IoU improvements, with
“train” nearly reaching an 18% increase in IoU on the
Cityscapes test set. Tese results further reinforce the
importance of incorporating edge information

through our approach, highlighting its impact on
enhancing segmentation performance.

(4) Te decoupled architecture we have designed allows
for joint training of multiple tasks without the need
for fusion modules during inference, thereby
avoiding the introduction of extra inference over-
head.Tis efcient and practical approach enables us
to leverage the advantages of multitasking for real-
time semantic segmentation without compromising
on performance.

2. Related Work

2.1. Semantic Segmentation. Strengths, weaknesses, and
major challenges of semantic segmentation are extensively
discussed in the literature [9, 14–16].Tere are currently two
approaches to semantic segmentation: improving the ob-
ject’s inner consistency or refning details along objects’
boundaries.

Te inner inconsistency of the object is attributed to the
limited receptive feld, by which the longer range re-
lationships of pixels in an image cannot be fully modeled.
Consequently, the dilated convolution [17] or high-
resolution network [18] is introduced to enlarge the re-
ceptive feld. Furthermore, many attempts have been made
to capture contextual information, such as recurrent net-
works [19, 20], pyramid pooling module [21], graph con-
volutional networks [22], CRF-related networks [5, 6, 23],
nonlocal operator [24], and attention mechanism [25, 26].

Te ambiguity along edges is caused by downsampling
operations in the FCNs that result in blurred predictions. It
is difcult to recover spatial information lost during
downsampling through simple upsampling. Tus, previous
papers have made eforts to add priors to guide the
upsampling process, many of which focus on the use of edge
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Figure 1: Te multitask learning framework of semantic seg-
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relates ψ1 to ψ2. S, E, and C, respectively, denote the outputs
processed through Γχψ1

, Γχψ2
, and Γψ1ψ2

.

2 International Journal of Intelligent Systems



priors. Te general practice is a two-stream framework that
trains an edge detection branch and a semantic segmenta-
tion branch jointly, which will be elaborated later.

2.2. Multitask Learning. Driven by deep learning, many
dense prediction tasks such as semantic segmentation and
instance segmentation have achieved signifcant perfor-
mance improvements. Typically, tasks are learned in iso-
lation, i.e., each task is trained with a separate neural
network. Recently, multitask learning (MTL) techniques
that learn shared representations by jointly processing
multiple tasks have shown promising results.

Almost all theories about MTL are based on the as-
sumption that tasks learned together should be relevant or
a phenomenon called negative transfer would occur. In
practice, it is more dependent on expert experience to fnd
relevant tasks. For example, [27–30] jointly train semantic
segmentation and depth estimation to achieve better results,
[31, 32] jointly train semantic segmentation and instance
segmentation to increase accuracy, and [4, 11, 12, 33, 34]
jointly train semantic segmentation and edge detection to
improve metrics. Among these, the edge priors can be
further subdivided into binary edge priors and semantic
edge priors. For example, in the GSCNN [4], the binary edge
is used as a gate to improve performance. In BFP [33], binary
edge information is used to propagate local features within
regions. Te study by [34] adopts domain transform to
perform edge-preserving fltering controlled by a binary

edge map derived from a task-specifc edge detection task.
Te study by [12] applies explicit semantic boundary su-
pervision to learn semantic features and edge features in
parallel and an attention-based feature fusion module to
combine the high-resolution edge features with wide-re-
ceptive-feld semantic features. Te RPCNet [11] presents an
interacting multitask learning framework for semantic
segmentation and semantic boundary detection.

Te most common multitask learning framework shares
some layers in the feature extraction stage and designs in-
dependent layers for each specifc task, which is called the
hard parameter-sharing approach [10].Tis approachmakes
it difcult to ensure that multiple tasks can work together.
Although there have been some means of using uncertainty
[35] to determine weights of tasks, the relationship between
tasks is still not very clear, which drives the study of explicit
consistency constraints between tasks.

2.3. Consistency Learning. It has been speculated that
multitask networks may automatically produce cross-task
consistent predictions since their representations are shared.
Numerous studies [13, 36–38] have observed that this is not
necessarily true, since consistent learning is not enforced
directly during training, indicating the need for explicit
enhancement of consistency during learning.

From the literature, two kinds of explicit consistency
constraints can be summarized. One idea is formulated as
the cross-task consistency theory based on inference path
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Figure 2: Te overall pipeline of TriangleNet. Te shared backbone network produces 5-layer features. Te task-specifc parts of the two
branches are enclosed by dashed boxes.
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invariance by the study in [13].Te authors in [13] frst analyse
the cross-task consistency theory of the triangular shown in
Figure 1 and deduce the formula based on the l1 norm as-
sumption. Ten, they generalize to cases where in the larger
system of domains, consistency can be enforced using in-
variance along arbitrary paths, as long as their endpoints are
same. Te study by [39] conveys the same insight, which uses
the predictions of one task as input to another network to
predict the other task, obtaining task-transferred predictions.
Explicit constraints are imposed between the transferred
predictions and the prediction of the other task.

Another idea is that for a specifc geometric feature, such
as the boundary, the results extracted by diferent tasks
should be consistent. For instance, the authors in [40] force
the depth border to be consistent with the segmentation
border through morphing. Te authors in [41] penalize
diferences between the edges of the semantic heatmap and
the edges of the depth map through a holistic
consistency loss.

2.4. Real-Time Semantic Segmentation. Real-time semantic
segmentation is a challenging and essential task in computer
vision, aiming to perform pixel-wise classifcation with high
accuracy and rapid inference speed. Te demand for real-
time processing in applications such as autonomous vehi-
cles, robotics, and augmented reality has driven extensive
research eforts to develop efcient algorithms and archi-
tectures. Attempts to achieve a balance between speed and
accuracy in real-time semantic segmentation include ef-
cient architectures [42, 43], lightweight convolutions
[44, 45], knowledge distillation [46–48], pruning and
quantization [49, 50], and optimization techniques [51].

Multitask learning has shown a promise in various
computer vision tasks, but it is relatively less popular in real-
time semantic segmentation. One of the challenges in
deploying multitask learning for real-time semantic seg-
mentation is the potential increase in inference overhead due
to fusion modules or additional processing steps. While
multitask learning can be benefcial during training by
leveraging shared representations and learning comple-
mentary features from related tasks, the goal is to in-
corporate this knowledge efectively without introducing
extra inference time. To achieve this, researchers are ex-
ploring methods to learn shared representations without the
need for explicit fusion modules during inference. Some
approaches to address this concern include decoupled ar-
chitectures [52], knowledge distillation, shared layers [53],
and weight sharing [42, 43].

2.5. Edge Detection. One notable method of applying deep
neural networks to train and predict edges in an image-to-
image fashion and end-to-end training is the holistically
nested edge detection (HED) [54]. HED is a binary edge
detection network, where the edge pixels are all set to 1 and
0 otherwise. Practically, edge pixels appear in contours or
junctions belonging to two or more semantics, resulting in
a challenging category-aware semantic edge detection
problem. A pioneering approach is given by CASENet [55]
that extends the work of HED. However, both HED and
CASENet employ fxed weight fusion to merge side outputs,
ignoring image-specifc and location-specifc information.
To address this, DFF [56] designed an adaptive weight fusion
module to assign diferent fusion weights for diferent input
images and locations adaptively.

In essence, compared to binary edge detection, semantic
edge detection is more coupled with semantic segmentation
since it provides semantic information about edge pixels
while locating edges.

3. Methods

In this section, we will frst introduce the overview pipeline
of our architecture illustrated in Figure 2 and then explain
the components in detail.

3.1. Model Overview. As shown in Figure 2, the overall
network is a two-stream framework following a hard
parameter-sharing manner [10]. It contains two branches:
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the upper one is an implementation of DFF [56] responsible
for semantic edge detection and the lower one is an FCN for
semantic segmentation integrated with PPM [21] and FPN
[57] as the decoder. Te backbone of the FCN is replaceable,
and the features extracted by the backbone are shared by the
semantic edge detection branch and the semantic seg-
mentation branch. Except for the shared backbone layers,
the other layers of the two branches are task-specifc and
parallel. An edge detector is used to transfer the segmen-
tation maps to semantic edges, which are enforced to be
consistent with the output of the semantic edge detection
branch by a consistency loss. We call this network Tri-
angleNet because its underlying theory can be formulated by
a triangular relation, as shown in Figure 1.

3.2. Edge Detector. Tere are various strategies to extract
semantic edges from the results of semantic segmentation.
An edge detection operator such as Canny [58], a spatial
gradient solution [11], and a transfer network are optional
solutions. To guarantee end-to-end training, the chosen
scheme must be diferentiable. For simplicity, we choose the
spatial gradient solution, which uses adaptive pooling to
derive a spatial gradient. Te formulation is as follows:

∇Sk(p) � Sk(p) − poolw Sk(p)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (1)

where S represents the probability map of semantic seg-
mentation, Sk(p) indicates the predicted probability on the
k-th semantic category at pixel p, and |·| remarks the absolute
value function. poolw is an adaptive average pooling operation
with kernel size w. Te same as in the study in [11], w is used
to control the derived boundary width and is set to 3.

3.3. Task-Specifc Elementary Consistency Unit.
TriangleNet consists of three domains: the input image
domain, the semantic segmentation domain, and the se-
mantic edge domain. As illustrated in Figure 1, χ denotes the
query domain (e.g., input RGB images) and ψ � ψ1,ψ2􏼈 􏼉 is
the set of two desired prediction domains. Specifcally, ψ1
represents the semantic segmentation domain and ψ2 rep-
resents the semantic edge domain. Te functions that map
the query domain onto prediction domains are defned as
Γχψi

(i � 1, 2) which outputs ψi given χ. Γψ1ψ2
denotes the

cross-task function that maps the semantic segmentation
domain to the semantic edge domain. According to the
elementary consistency unit theory proposed by the authors
in [13], predicting ψ2 by frst predicting ψ1 from χ should
achieve predictions similar to directly predicting ψ2 from χ.

To enhance the comprehension of the consistent con-
straint across the three domains, as shown in Figure 1, we
provided visual examples for each domain. S represents an
instance from domain ψ1, while E and C are the instances
from domain ψ2. Here, E corresponds to the output of the
semantic edge detection model, while C is the output of the
semantic segmentation model after undergoing the edge
detector process. Notably, E and C exhibit a high degree of
similarity, making them highly comparable and indicative of
strong consistency between the two outputs.

3.3.1. Ohem Cross-Entropy Loss. In our framework, Γχψi
are

the neural networks. Trough Γχψ1
, we can obtain the se-

mantic segmentation probability map S ∈ RH×W×K, where K

is the number of categories. A common way of training the
neural network in Γχψ1

is to fnd parameters of Γχψ1
that

minimize a loss called cross-entropy loss.
What we actually use is an improved version called the

Ohem cross-entropy loss implemented by PaddleSeg [59]. It
stands for “online hard example mining cross-entropy loss.”
Instead of considering the loss for all examples in a batch, it
selects only the hard examples and uses those examples to
update the model during training. Tis helps in dealing with
class imbalance and emphasizing difcult examples that can
lead to better generalization. Hard examples are considered
with those examples with low probabilities of the relevant
label. In other words, they are examples that the model fnds
challenging to classify correctly. We denote Ohem cross-
entropy loss as Ls, which measures the diference between S
and the semantic segmentation ground truth.

Te formula for Ohem cross-entropy loss can be
expressed as follows:

Ls � −
1

Nhard
􏽘

p∈hardexamples

Y(p)logP(p), (2)

where Y(p) denotes the ground truth label at pixel p. P(p)

represents the probability of the corresponding label at pixel
p. Nhard is the number of hard examples to be considered. It
can be a fxed number or a percentage of the batch size,
depending on implementation. In PaddleSeg [59], the
number of hard examples is determined by themin kept and
thresh hyperparameters, where min kept specifes the
minimum number of hard examples to be kept and thresh
sets the probability threshold below which examples are
considered hard.

3.3.2. Semantic Edge Loss. Trough Γχψ2
, we can obtain the

semantic edge probability map E ∈ RH×W×K. While training
the neural network in Γχψ2

, we minimize a loss called
multilabel loss, which is formulated as follows:

Le � − 􏽘
k

􏽘
p

Gk(p)logEk(p) + 1 − Gk(p)( 􏼁log 1 − Ek(p)( 􏼁,

(3)

where Gk(p) denotes the ground truth edge label on the k-th
semantic category at pixel p, and Ek(p) indicates the pre-
dicted edge probability on the k-th semantic category at pixel
p. Le measures the diference between E and the semantic
edge ground truth G.

3.3.3. Decomposed Cross-Task Consistency Loss. Γψ1ψ2
is

modeled as a spatial gradient operation formulated as
equation (1). Taking S as the input of Γψ1ψ2

, another semantic
edge probability map C ∈ RH×W×K can be obtained. C and E

should be consistent. Instead of directly penalizing the
diference between C and E, we penalize the diference
between C and G, and E and G separately, thus indirectly
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forcing the alignment between C and E. Te formulation is
as follows:

L
d
c � 􏽘

k

􏽘
p

Wk(p) Ck(p) − Gk(p)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Ek(p) − Gk(p)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑.

(4)

We call Ld
c the decomposed cross-task consistency loss,

in which

Wk(p) �
βk

, Gk(p) � 1,

1 − βk
, Gk(p) � 0,

⎧⎨

⎩ (5)

where βk � |Yk
−|/|Yk| and 1 − βk � |Yk

+|/|Yk|. |Yk
+| and |Yk

−|

denote the edge and nonedge ground truth label sets of the
k-th class semantic edge, respectively. Similar to Ek(p),
Ck(p) denotes another predicted edge probability on the
k-th semantic category at pixel p.

Te right-hand side of equation (4) satisfes the following
equation:

􏽘
k

􏽘
p

Wk(p) Ck(p) − Gk(p)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Ek(p) − Gk(p)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑

� 􏽘
k

􏽘
p

Wk(p) Ck(p) − Gk(p)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘
k

􏽘
p

Wk(p) Ek(p) − Gk(p)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.
(6)

For simplicity, we defne the following equations.

Lc1 � 􏽘
k

􏽘
p

Wk(p) Ck(p) − Gk(p)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (7)

Lc2 � 􏽘
k

􏽘
p

Wk(p) Ek(p) − Gk(p)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (8)

Equations (7) and (8) are variants of the l1 norm, and we
call this kind of variant the boundary-aware l1 norm.
Substituting equations (7), (8), and (6) into (4), we derive

L
d
c � Lc1 + Lc2. (9)

3.3.4. Loss Function. We perform a weighted sum of the
abovementioned three losses to obtain the loss to predict
domain ψ1 from χ while enforcing the consistency with
domain ψ2 as follows:

L � CsLs + CeLe + CcL
d
c , (10)

in which Cs, Ce, and Cc are the hyperparameters. As pointed
out by the authors in [15], grid search is competitive or better
compared to existing task balancing techniques in de-
termining the weights of the loss functions.Terefore, in our
experiments, Cs, Ce, and Cc are obtained by grid search.

First, we generate grids representing various coefcient
values that we wish to explore and search over during our
experiments. Te loss function Ls primarily computes the
loss for the majority of pixels in the image, leading to rel-
atively larger loss values compared to the other two loss
functions, which are specifcally designed for focusing on
object edges. However, we aim to prevent these two losses
from being overshadowed due to their smaller values. To
achieve this, we assign larger coefcients to the edge-related
loss functions, prompting the model to pay closer attention
to the edges during training. Specifcally, we set Cs ∈ 1{ } and
Ce, Cc ∈ 5, 10, 20{ }. Ten, we try all combinations of the
hyperparameter values from the defned grids. Since we have

only one value for Cs and three values for both Ce and Cc, we
have a total of 1× 3× 3� 9 combinations to try.

Substituting equation (9) into (10), we obtain

L � CsLs + CeLe + Cc Lc1 + Lc2( 􏼁, (11)

which is equivalent to the following equation:

L � CsLs + CcLc1( 􏼁 + CeLe + CcLc2( 􏼁, (12)

where the frst term is pertinent to the network Γχψ1
, while

the second term is pertinent to the network Γχψ2
. Tese two

terms are independent and can be dealt with in parallel for
task-specifc layers in networks Γχψ1

and Γχψ2
, which is ex-

actly the original intention of our defnition of Ld
c as two

independent parts.

4. Experiments

We frst conducted experiments on Cityscapes [60] which is
a popular computer vision dataset for semantic urban scene
understanding. It contains 5,000 annotated images with fne
annotations collected from 50 cities in diferent seasons. Te
images were divided into sets numbered 2,975, 500, and
1,525 for training, validation, and testing. Conventionally,
only 19 categories are used to assess the accuracy of category
segmentation. Although it also provides coarsely annotated
images, we only use fnely annotated images. In addition,
experiments on the FloodNet [61] were also performed to
further confrm the generalization and application values of
our method. Code andmodels are available at https://github.
com/nailperry-zd/PaddleSeg-TriangleNet.

4.1. Experiments on Cityscapes

4.1.1. Baseline. We append the PPM [21] and FPN [57] as
the decoder to naive FCN as the Baseline, where ResNet-18
[62] serves as the backbone, that is, training the semantic
segmentation branch shown in Figure 2 independently.
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4.1.2. Implementation Details. We use the 2.3.0 version of
the PaddlePaddle [63] framework to carry out the following
experiments. Te hardware platform adopts a single V100
GPU with a video memory of 32G. All networks with
ResNet-18 [62] as the backbone share some settings, where
stochastic gradient descent (SGD) with a batch size of 4 is
used as the optimizer, with a momentum of 0.9 and weight
decay of 5e− 4. All these ResNet-18 variants are trained for
300K batch iterations with an initial learning rate of 0.01.
Data augmentation contains normalization, random dis-
tortion, random horizontal fip, random resizing with a scale
range of [0.5, 2.0], and random cropping with a crop size of
1024×1024. During inference, we use the whole picture as
input. In terms of loss weights, Cs, Ce, and Cc are set to 1, 10,
and 20, respectively. For quantitative evaluation, mIoU is
used for accuracy comparison.

4.1.3. Comparison against State-of-the-Art Methods. We
present a comprehensive comparison of our method with
both real-time and non-real-time semantic segmentation
algorithms in Tables 1 and 2, respectively.

In Table 1, it is important to highlight that some of the
models listed have been ofcially integrated into Pad-
dlePaddle and are available in the PaddleSeg [59] open
source library. Tis integration facilitates a rigorous eval-
uation of the inference speed for these PaddlePaddle-
integrated models, as well as our model, TriangleNet. To
measure the speed accurately, we utilize the PaddleInference
API from the PaddleSeg [59] library on an A100 GPU with
40GB memory, using the f32 accuracy parameter. However,
in cases where certain models do not have a PaddlePaddle
implementation or when our direct measurements are not
available, we provide FPS data from the original papers or
third-party sources within brackets in the table for reference.
Tis meticulous approach ensures a comprehensive and fair
comparison, allowing us to draw reliable conclusions re-
garding TriangleNet’s performance in real-time semantic
segmentation in comparison to other state-of-the-art models.

For the real-time comparison, we ensure a fair assess-
ment by utilizing our best model based on ResNet-18 with
varying inference sizes: 512×1024, 768×1536, and
1024× 2048, represented by TriangleNet1-0.5, TriangleNet1-
0.75, and TriangleNet1-1.0, respectively. For the non-real--
time comparison, we adopt multiscale inference, denoted by
TriangleNet1-MS, incorporating scales of 0.75, 1.0, and 1.25.

As shown in Table 1, at a resolution of 512×1024, our
model not only surpasses ESPNetV2 in both speed and
accuracy but also outperforms STDC1-Seg50 and PP-Lite-
Seg-T1 in accuracy, despite achieving approximately 60%
and 70% of their respective speeds. Similarly, at 768×1536
resolution, while our model maintains 85% of BiSeNetV1-
L’s speed, it exhibits a 1.4% increase in accuracy compared to
it. In addition, our model’s speed, at around 50% of STDC1-
Seg75 and PP-LiteSeg-T2, is compensated by approximately
1% higher accuracy over them. Under a resolution of
1024× 2048, our model exhibits signifcantly higher accu-
racy than ICNet, SwiftNet, and FasterSeg.

Our method demonstrates a remarkable speed/accu-
racy trade-of across various resolutions when compared
to real-time counterparts. Notably, our model achieves
impressive accuracy without compromising on speed,
enabling real-time inference even at full resolution. No-
tably, in Table 2, our model demonstrates competitive
performance even compared to non-real-time models
based on ResNet-101 [62], achieving similar mIoU scores
while utilizing only one-ffth of the parameters. Tis
highlights the efciency and efectiveness of our approach
across diverse scenarios.

4.1.4. Ablation Studies. Our approach involves several ele-
ments compared to the Baseline. Each element may con-
tribute to the improvement of mIoU. To verify the necessity
of each element, we performed the following ablation
studies.

(1) Ablation Study on Joint Framework. From a multitask
perspective, joint training benefts from higher task corre-
lation. To explore this idea, we conducted experiments
combining diferent tasks. In Table 3, the second row
demonstrates joint training of Baseline with HED [54],
a classic binary edge detection model, resulting in a slight
improvement in mIoU on the Cityscapes test set. Sub-
sequently, we replaced HED with DFF [56], a superior se-
mantic edge detection model, in the third row. Tis change
led to a 0.59% improvement against the Baseline in mIoU on
the Cityscapes test set. Te results suggest a stronger cor-
relation between semantic segmentation and semantic edge
detection tasks. Tis correlation arises from the accurate
extraction of semantic edges under the constraints of se-
mantic segmentation, as semantic segmentation can sup-
press nonedge pixels, and in turn, relies on semantic edges to
distinguish between objects and background. Te two tasks
mutually complement each other, enhancing the overall
performance of the model.

During this process, we adopted the poly learning rate
policy, which is widely used and proven efective, as depicted
in Figure 4(a).

(2) Ablation Study on Ld
c . We introduced the Ld

c during the
last 50% iterations to verify its efect. Tis idea draws on the
study in [74], where a loss called ABL is added at the last 20%
epochs, since the gradient of ABL is not useful when the
semantic edges output by the network are far from the
semantic edge ground truth at the beginning of the training,
much similar to our case.

During this process, we employed a custom learning rate
policy named “2-cycle-SGDR poly,” which can be seen as
a variant of the cosine annealing policy [75]. Te visuali-
zations of the cosine annealing and 2-cycle-SGDR poly
policies are shown in Figures 4(b) and 4(c), respectively. In
the 2-cycle-SGDR poly policy, the learning rate periodically
increases. Tis phenomenon of decreasing the rate to the
minimum and then increasing the rate is called “restarts” in
SGDR [75].Te underlying idea is to encourage the model to
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traverse from one local minimum to another, particularly if
it is trapped in a steep trough.

After comparing the frst and second rows in Table 4, we
observed that employing the 2-cycle-SGDR poly policy alone
resulted in a 0.46% increase in mIoU on the Cityscapes test
set. Subsequently, with the introduction of Ld

c in the third
row, the mIoU exhibited a consistent growth trend on both
the validation and test sets, with a more signifcant im-
provement observed on the test set. Te inclusion of Ld

c

further boosted the mIoU by 1.83% on the test set, indicating
its positive impact on the overall performance of our model.

Furthermore, upon comparing the third and fourth rows
in Table 4, we found that both cosine annealing and 2-
cycle-SGDR poly policies can improve the model to some

extent, confrming the efectiveness of the “restarts” in
SGDR. Notably, 2-cycle-SGDR poly is more suitable for our
model. Terefore, for all subsequent TriangleNet variants,
we adopted the 2-cycle-SGDR poly learning rate schedule to
ensure consistent and superior optimization of our model.

(3) Ablation Study on Diferent Semantic Edge Detection
Strategies. In our exploration of state-of-the-art strategies for
semantic edge detection, we conducted a comparison be-
tween DFF [56] and CASENet [55]. Te two rows in Table 5
demonstrate that both DFF and CASENet, when employed
as semantic edge detection branches, lead to improved
segmentation accuracy. Tis fnding highlights the positive
role of injecting semantic edges into the semantic seg-
mentation process. Notably, as mentioned in the study in
[56], DFF surpasses CASENet in standalone semantic edge
extraction. Moreover, even after integrating with semantic
segmentation, DFF continues to deliver superior accuracy
improvements, reafrming its efectiveness in enhancing the
overall performance of the model.

(4) Ablation Study on Diferent Semantic Segmentation
Models. Our evaluation extends to various semantic seg-
mentationmodels, and the results presented in Table 6 reveal
that the integration of U-Net [2] and Baseline into our
framework for joint training yields remarkable improve-
ments in semantic segmentation accuracy, showcasing the
efectiveness and benefts of our approach in enhancing
semantic segmentation performance.

4.1.5. Analyses. Te results from the ablation studies
demonstrate that the semantic edge detection task ex-
hibits a stronger correlation with the semantic

Table 1: Accuracy comparison of our best models based on ResNet-18 against real-time models on the Cityscapes test set.

Model Backbone mIoU
FPS

1024× 2048 768×1536 512×1024
ICNet [66] PSPNet50 69.5 −(30.3)
ESPNetV2 [67] — 66.2 126.5 (114.7+)
SwiftNet [68] ResNet18 75.5 −(39.9)
BiSeNetV1 [69] Xception39 68.4 —(105.8)
BiSeNetV1-L [69] ResNet18 74.7 83.9 (65.5)
BiSeNetV2 [70] — 72.6 −(156)
BiSeNetV2-L [70] — 75.3 −(47.3)
FasterSeg [71] — 71.5 −(163.9)
STDC1-Seg50 [72] STDC1 71.9 262.1 (250.4)
STDC2-Seg50 [72] STDC2 73.4 207.4 (188.6)
STDC1-Seg75 [72] STDC1 75.3 152.7 (126.7)
STDC2-Seg75 [72] STDC2 76.8 131.5 (97.0)
PP-LiteSeg-T1 [73] STDC1 72.0 219.4 (273.6)
PP-LiteSeg-B1 [73] STDC2 73.9 184.3 (195.3)
PP-LiteSeg-T2 [73] STDC1 74.9 141.2 (143.6)
PP-LiteSeg-B2 [73] STDC2 77.5 118.4 (102.6)
TriangleNet1-0.5 ResNet18 72.7 157.4
TriangleNet1-0.75 ResNet18 76.1 71.0
TriangleNet1-1.0 ResNet18 77.4 46.2
“−” indicates that the corresponding data are not given. FPS, frames per second. TriangleNet1 is an instance of the framework shown in Figure 2. In the three
columns of FPS, the values outside the brackets are measured by our team, whereas the values within the brackets are either sourced from the original papers
or from third-party papers. “+” denotes the value is sourced from [64].

Table 2: Accuracy comparison of our best model based on
ResNet-18 against non-real-time models on the Cityscapes test set.

Model Backbone Params (M) mIoU (%)
DeepLab [5] ResNet-101 [62] 59 63.1
DepthSeg [65] ResNet-101 58 78.2
PSPNet [21] ResNet-101 65 78.4
TriangleNet1-MS ResNet-18 13 77.8

Table 3: Ablation study on joint framework.

Model LR policy
mIoU (%)

Val Test
Baseline Poly 76.77 74.48
Baseline +HED [54] Poly 77.33 74.66
Baseline +DFF [56] Poly 78.13 75.07
Te bold values indicate the maximum value in each column. In this
context, the bold values specifcally indicate that the model in the third row
demonstrates superior performance on both the validation and test sets.
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segmentation task compared to the binary edge detection
task. When we jointly train both tasks, we observe a 0.59%
improvement in mIoU on the Cityscapes test set. In

addition, the adoption of the 2-cycle-SGDR poly learning
rate policy leads to a slight yet meaningful improvement
of 0.46%.
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Figure 4: Visualization of diferent learning rate policies: (a) poly, (b) cosine annealing, and (c) 2-cycle SGDR poly.

Table 4: Ablation on Ld
c . All these models are trained for 300K iterations.

Model LR policy Ld
c involved

mIoU (%)
Val Test

Baseline +DFF Poly × 78.13 75.07
Baseline +DFF 2-cycl-SGDR poly × 78.41 (0.28 ↑) 75.53 (0.46 ↑)
TriangleNet1 2-cycl-SGDR poly √ 78.96 (0.55↑) 77.36 (1.83↑)
TriangleNet1 Cosine annealing √ 78.65 76.93
“×” means that Ld

c is not involved in all iterations. TriangleNet1 is an instance of the framework shown in Figure 2. In this situation, we get all the results by
single-scale inference. Te bold values indicate the maximum value in each column. In this context, the bold values specifcally indicate that the model
corresponding to the confguration detailed in the third row demonstrates superior performance on both the validation and test sets.

Table 5: Experiments on diferent semantic edge detection (SED) strategies.

Model SED strategy
mIoU (%)

Val Test
TriangleNet1 DFF [56] 78.96 77.36
TriangleNet2 CASENet [55] 78.87 77.11
TriangleNet2 is the same as TriangleNet1 except that TriangleNet2 uses CASENet [55] as the semantic edge detection. In this situation, we get all the results by
single-scale inference. Te bold values indicate the maximum value in each column. In this context, the bold values specifcally indicate that the model
corresponding to the confguration detailed in the frst row demonstrates superior performance on both the validation and test sets.

Table 6: Experiments on diferent semantic segmentation (SEM) strategies.

Model mIoU (%) on val
U-Net [2] 66.34
TriangleNet3 (SEM: U-Net) 69.12 (2.78 ↑)
Baseline 76.77
TriangleNet1 (SEM: Baseline) 78.96 (2.19 ↑)
TriangleNet3 is the same as TriangleNet1 except that TriangleNet3 uses U-Net [2] as the semantic segmentation branch.
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However, despite the benefts of multitask learning, the
implicit learning of cross-task consistency in multitask
networks is limited. To address this limitation, we in-
troduced an additional restriction called decoupled cross-
task consistency loss, denoted as Ld

c , to explicitly enhance
cross-task consistency between semantic edge detection and
semantic segmentation.

Te explicit enhancement of consistency through this
restriction resulted in a further signifcant improvement of
1.83% in mIoU on the Cityscapes test set. Tese fndings
underscore the importance of incorporating explicit con-
sistency constraints during the learning process to achieve
enhanced performance in multitask computer vision
systems.

Upon analysing the IoU of each category, as depicted in
Table 7, we observe signifcant improvements for several
categories, with some experiencing increases of more than
3%. Notably, the largest improvement amounts to nearly
18% of the IoU score. Tis further validates the signifcance
of incorporating edge information through our edge prior
augmentation approach, particularly for categories such as
“truck,” “bus,” and “train,” where distinct edges and
boundaries are prevalent.

Furthermore, we investigate the relationship between the
number of sample images per category and their respective
IoU scores, as visualized in Figure 5.Te analysis reveals that
categories with higher IoU scores tend to have more sam-
ples, while those with lower IoU scores have fewer samples,
aligning with our expectations. Notably, categories such as
“truck,” “bus,” and “train,” despite having smaller sample
sizes, exhibit remarkable improvements in IoU. Tis sug-
gests that TriangleNet can efectively generalize from limited

samples, resulting in enhanced performance in challenging
categories.

However, certain categories, such as “wall,” “fence,”
“pole,” and “trafcsign,” possess abundant samples but fail
to achieve the expected higher IoU values. Te under-
performance of these categories may be attributed to factors
such as complex semantic patterns or limitations in the
model architecture to accurately capture their unique fea-
tures. Further investigation is warranted to identify the
specifc reasons behind these discrepancies and to devise
strategies to enhance the segmentation performance for
these categories.

To summarize, TriangleNet demonstrates a remarkable
2.88% improvement in mean Intersection over Union
(mIoU) on the Cityscapes test set compared to the Baseline.
Our model outperforms the Baseline in all categories,
particularly in scenarios with distinct edges and boundaries,
substantiating the efcacy of multitask learning and explicit
cross-task consistency enhancement.

4.1.6. Visualization. We performed a qualitative compar-
ison by visualizing segmentation maps of various cate-
gories. In Figure 6, we present the segmentation maps
generated by diferent models for this purpose. Notably, in
the second row, TriangleNet demonstrates its ability to
accurately locate pixels along two objects by efectively
utilizing edge priors or shapes of objects, which the
Baseline fails to achieve. In addition, in the frst, third, and
fourth rows, TriangleNet leverages the priors obtained
from semantic edge detection to perceive trains, buses, and
walls as coherent entities, while the Baseline tends to split
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Figure 5: Category-level analysis of samples and Intersection over Union (IoU) on Cityscapes test set.

International Journal of Intelligent Systems 11



them into diferent categories.Tis highlights TriangleNet’s
capacity to beneft from edge information and enhance its
understanding of complex object structures, resulting in
improved semantic segmentation performance.

4.2. Experiments on FloodNet. We also performed experi-
ments on FloodNet [61] which is an unmanned aerial vehicle
(UAV) dataset to assess the damage from natural disasters to
further prove the compatibility of our method. Te dataset
contains 2,343 images in total, which were divided into sets
numbered 1,445, 450, and 448 for training, validation, and
testing. Tis dataset contains 10 classes, and the index and
specifc meaning of each class are given by Table 8.

4.2.1. Implementation Details. We verifed the performance
of the Baseline and TriangleNet aforementioned on the
FloodNet dataset. Diferent from experiments on Cityscapes,
some hyperparameters need to be changed. Specifcally, the
batch size of SGD is set to 16, and all these ResNet-18 [62]
variants are trained for 20K iterations with 4 V100 GPUs. In
terms of loss weights, Cs, Ce, and Cc are set to 1, 2, and 4,
respectively.

4.2.2. Analyses. We analysed prominently improved cate-
gories on FloodNet. As shown in Table 9, TriangleNet still
achieves better performance on all categories against the
Baseline. It is worth noting that although DeepLabV3+ [76]

GroundTruthTriangleNetBaseline+DFFBaselineOrigin

bus

truck

train

wall

Figure 6: Visualization on Cityscapes.

Table 8: Experiments on the FloodNet test set.

Index Class Images
0 Background —
1 Building-fooded 275
2 Building-non-fooded 1,272
3 Road-fooded 335
4 Road-non-fooded 1,725
5 Water 1,262
6 Tree 2,507
7 Vehicle 1,105
8 Pool 676
9 Grass —
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is based on ResNet-101 [62], its accuracy on FloodNet is not
as good as our model based on ResNet-18 [62].

4.2.3. Visualization. Te improvement can obviously be
visualized in Figure 7. In the frst row, TriangleNet is able to
segment the sharp edge of the non-fooded road, while
Baseline fails. In the second row, the non-fooded building is
well segmented in TriangleNet. In the third row, the water is
perceived as a whole, while Baseline divides it into parts.

5. Conclusion

In this paper, we presented TriangleNet, an innovative
model that utilizes a decoupled architecture for joint
training of multiple tasks without the need for fusion
modules during inference. Tis design allows our model to
reap the benefts of multitasking during training while
avoiding any additional inference time, making TriangleNet
a practical and efcient solution for real-time semantic
segmentation. By employing multitask learning and explicit
cross-task consistency enhancement, TriangleNet consis-
tently achieves improvements on both the Cityscapes and
FloodNet datasets, showcasing its robust generalization
capabilities in various environmental conditions.

In summary, TriangleNet showcases its potential in
semantic segmentation by efectively leveraging edge priors
and incorporating explicit cross-task consistency. Tis
unique combination not only enhances accuracy but also
enables real-time inference, making it well-suited for various
real-world applications. Further research exploring more
detailed explicit constraints may lead to even greater per-
formance improvements. Te achievements of TriangleNet
in the context of real-time semantic segmentation pave the
way for future advancements in efcient and accurate
computer vision systems.

Data Availability

Te code and well-trained models used to support the
fndings of this study are available at https://github.com/
nailperry-zd/PaddleSeg-TriangleNet.
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Table 9: Experiments on the FloodNet test dataset. Per-class results on the FloodNet test set.

Method Backbone 1 2 3 4 5 6 7 8 9 mIoU
DeepLabV3+ [76] ResNet-101 32.7 72.8 52 70.2 75. 77.0 42.5 47.1 84.3 61.53
Baseline ResNet-18 72.58 73.86 53.68 80.05 69.36 79.06 57.8 57.06 87.36 65.64
TriangleNet1 ResNet-18 78. 6 75.38 56.44 8 .45 74.57 8 .86 61.33 61.73 89.57 70.97
Note: Te results of the last two rows are obtained by single-scale inference. Bold values indicate the highest value in each column. In this context, the bold
values specifcally indicate that the model in the third row demonstrates superior performance on most of the classes.
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Figure 7: Visualization on FloodNet.
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