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When solving real-world optimization problems, the uniformity of Pareto fronts is an essential strategy in multiobjective
optimization problems (MOPs). However, it is a common challenge for many existing multiobjective optimization algorithms due
to the skewed distribution of solutions and biases towards specifc objective functions. Tis paper proposes a uniformity-
comprehensive multiobjective optimization evolutionary algorithm based on machine learning to address this limitation. Our
algorithm utilizes uniform initialization and self-organizing map (SOM) to enhance population diversity and uniformity. We
track the IGD value and use K-means and CNN refnement with crossover and mutation techniques during evolutionary stages.
Our algorithm’s uniformity and objective function balance superiority were verifed through comparative analysis with 13 other
algorithms, including eight traditional multiobjective optimization algorithms, three machine learning-based enhanced mul-
tiobjective optimization algorithms, and two algorithms with objective initialization improvements. Based on these compre-
hensive experiments, it has been proven that our algorithm outperforms other existing algorithms in these areas.

1. Introduction

Multiobjective optimization problems play a crucial role in
resolving many optimization issues in the real world [1]. Te
essence of MOP lies in the pursuit of solutions that efec-
tively meet the constraints imposed by multiple objective
functions, as exemplifed in the following equation:

MinimiseF(x) � f1(x), . . . , fm(x)( , x ∈ Ω, (1)

where x represents the decision variables, F(x) represents
the vector of objective functions, f1(x), . . . , fm(x) is each
objective function, and Ω represents the decision space.
Many multiobjective optimization algorithms struggle
with uneven solution distribution throughout the ex-
ploration process, afecting uniformity across the search
space. Tese issues intensify when handling high-
dimensional and complex problems, potentially losing
high-quality solutions and constraining the algorithm’s
global optimization capability. Given the complexity of

these problems’ objective functions, there is a pressing
need for algorithms with enhanced adaptability and
fexibility. Such limitations hinder their efectiveness and
broader application.

In recent years, multiobjective optimization algorithms
have shown signifcant potential in tackling complex
problems and optimizing decisions in various felds, in-
cluding network security [2], energy engineering [3, 4],
computer vision [5], and healthcare [6]. Tus, researchers
from various domains have been dedicated to exploring and
solving multiobjective optimization problems over the past
few decades. Currently, evolutionary algorithms ofer dis-
tinctive strategies to handle complex multiobjective opti-
mization issues with their unique global search capabilities
and robust adaptability. Terefore, the universality and ef-
fectiveness of evolutionary algorithms have played an in-
dispensable role in the study of multiobjective optimization
problems, exerting a profound infuence on optimization
decisions.
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Over the past three decades, the use of evolutionary
algorithms to solve multiobjective optimization problems
has received increasing attention from experts and scholars
in various disciplines. It has become a powerful focus of
research. Tis paper classifes the existing multiobjective
evolutionary algorithms into four categories. Te frst cat-
egory comprises multiobjective evolutionary algorithms
based on spatial partitioning techniques, with the MOEA/D
algorithm being an excellent example [7]. Tis algorithm
transforms a complex multiobjective problem into a series of
relatively more straightforward single-objective optimiza-
tion problems by leveraging weight vectors to signify the
objectives of each subproblem, thereby generating superior
and uniformly distributed solution sets. Recent advances in
research have further augmented the efciency of this
method [8–10]. Te second category involves distance-based
algorithms concentrating on attaining homogeneity by
calculating and preserving the distance between solutions to
prevent excessive aggregation or sparsity. Te NSGAII al-
gorithm exemplifes this approach [11], and recent designs of
novel learning mechanisms have been refned [12–14]. Te
third category refers to weight-based evolutionary algo-
rithms for multiobjective optimization. Tis method ach-
ieves homogeneity by integrating weights into the objective
function to control the impact of each objective function on
the optimization result. For example, MOEA/D-DDE en-
sures population homogeneity through a uniform weight
vector [15]. Interestingly, recent studies such as CCGDE3
[16] and GDE3 [17] have proposed enhancements to these
diferential evolutionary algorithms, efectively bolstering
their diversity and convergence. Te fnal category includes
evolutionary algorithms of multiobjective optimization
based on stratifcation, such as the SPEA2 algorithm [18].
Tis method stratifes individuals in the population based on
dominance relationships, where individuals within each
stratum do not dominate each other. Tis technique helps in
generating diverse and uniformly distributed set of solu-
tions. Subsequent studies have further enhanced the solution
capability of population SPEA2-based optimization algo-
rithms utilizing immunity algorithms [19–21].

In the discussion of various multiobjective evolutionary
algorithms (MOEAs), the signifcance of sample uniformity
becomes apparent in infuencing the algorithmic evolution
process. For example, NSGAII employs crowding distance
computation to ensure a uniformly distributed set of solu-
tions. MOEA/D, on the other hand, optimizes decomposed
single-objective subproblems using reference points to yield
uniformly distributed solution sets. Moreover, MOEA/D-DE
enhances this by incorporating diferential mutation opera-
tors to ensure sample diversity during iterative computations.
SPEA2 adopts a layer-based mechanism to generate di-
versifed and uniformly distributed solution sets. While these
algorithms demonstrate efcacy in achieving a uniform
distribution of solutions, it has been observed that they often
focus on uniformity during a specifc phase, overlooking the
signifcance of maintaining this uniform distribution
throughout the evolutionary process. Tis oversight can lead
to potential biases or inconsistencies in the solution distri-
bution.Terefore, rather than concentrating on uniformity in

just one phase, it is more benefcial to continuously monitor
and adjust the uniformity strategy throughout the entire
evolutionary process. Te primary objective of this research is
to explore methods for maintaining solution uniformity
throughout the entire algorithm and to consider dynamically
adjusting strategies throughout the evolution to ensure this
aim is achieved. Te research aims to maintain solution
uniformity by dynamically adjusting strategies throughout
the evolutionary process.

In light of our profound understanding of the impor-
tance of uniformity throughout the evolutionary process, we
introduce a novel multiobjective evolutionary algorithm:
uniformity-comprehensive multiobjective optimization
evolutionary algorithm based on machine learning (MOEA-
UCML). Tis algorithm emphasizes uniformity during the
population initialization phase and maintains a consistent
solution distribution throughout the evolutionary journey.
We incorporate a uniformity mechanism right from the
population initialization to ensure a comprehensive search
foundation from the outset. To sustain solution uniformity
throughout the evolutionary process, we adopt a dynamic
convergence determination mechanism and delineate the
process into three distinct phases, guiding the balance be-
tween search efciency and solution quality. Furthermore, to
address the complexity and dynamism of the problems, we
leverage machine learning techniques to dynamically adjust
the mutation strategy throughout the process, enhancing the
algorithm’s optimization prowess. Te main contributions
of our proposed MOEA-UCML are as follows:

(1) A unique multistage optimization strategy is pro-
posed, diverging from conventional methods that
achieve uniform distribution at specifc algorithm
stages. Te strategy integrates a uniformity mecha-
nism during population initialization and consistently
adopts SOM techniques throughout the optimization
process. Tis continuous application of SOM ensures
that the population upholds a uniform distribution of
solutions, guaranteeing solution diversity.

(2) A dynamic convergence detection mechanism is
incorporated to guide the algorithm’s progress. Tis
method diverges from traditional approaches that
use fxed-stopping criteria. Instead, it utilizes a dis-
tinct heterogeneity calculation method paired with
the IGD index for evaluating population diversity
and algorithm convergence. Te algorithm ensures
maintained solution diversity in a dynamically
changing optimization environment, bolstering the
algorithm’s robustness and fexibility.

(3) Integrating a convolutional neural network (CNN)
into the MOEA-UCML algorithm distinguishes it
from conventional multiobjective optimization al-
gorithms by utilizing a CNN, guiding mutation
operations to achieve a uniform distribution on the
Pareto frontier. Tis method enhances the efec-
tiveness of discovering high-quality and uniformly
distributed solutions in high-dimensional search
spaces, signifcantly improving the algorithm’s op-
timization performance.
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(4) Te MOEA-UCML algorithm is compared with 13
other algorithms, including traditional multi-
objective optimization algorithms, machine
learning-based improved multiobjective optimiza-
tion algorithms, and population initialization-based
improved multiobjective optimization algorithms.
Experiments covering 25 widely used test problems
from ZDT, DTLZ, WFG, and UF verify the algo-
rithm’s signifcant superiority over the existing so-
lutions’ distribution. Experimental analysis of the
algorithm’s uniform initialization strategy and
neuro-clustered optimization strategy further vali-
dates the robustness and universality of this
approach.

Te subsequent sections of this paper are structured as
follows. Section 2 reviews the relevant literature and pro-
vides a foundational understanding of multiobjective opti-
mization algorithms. Section 3 illustrates in detail the
proposed methodology, MOEA-UCML. Section 4 furnishes
experimental outcomes, supplemented by a comprehensive
analysis. Lastly, Section 5 encapsulates the salient fndings of
this study and suggests potential paths for future research.

2. Related Work

While traditional optimization techniques might need to be
revised when addressing intricate challenges, the integration
of machine learning ofers a paradigm shift in optimization
research. Tis section delves into current research on
strategies for population uniformity, optimization of mu-
tation strategies guided by machine learning, and the for-
mulation and improvement of evaluation metrics.

2.1. Population Uniformity. For the uniformity of pop-
ulations in multiobjective optimization problems, re-
searchers have delved into and enhanced population
uniformization strategies from various perspectives. Tese
perspectives encompass population diversity, solution space
coverage, exploration breadth, exploitation depth, and
adaptability. In 2016, Elsayed et al. [22] designed a series of
predefned sequences to customize the initial population,
covering the entire solution space, thus enhancing the di-
versity of the population and the potential of the solutions.
In 2019, Deniz and Kiziloz [23] proposed an initial pop-
ulation generation method based on information gain
ranking (IGR) to improve the initial performance of evo-
lutionary algorithms in feature subset selection (FSS). Tis
method signifcantly optimized the execution time and
learning performance of algorithms on medium and large
datasets and was proven to be an efcient strategy for
generating initial populations. In 2022, Huang and Zhang
[24] explored the uniformity issue in multiobjective opti-
mization and proposed a strategy based on adaptive com-
petitive swarm optimization. Tis method introduces an
enhanced competition mechanism and learning scheme and
incorporates external archiving and its maintenance strategy
to ensure solution diversity and convergence. Compared to
other leadingmethods, this strategy demonstrates signifcant

superiority in addressing multiobjective optimization
problems, especially ensuring a uniform distribution of
solutions. Similarly, in 2022, Wang and associates [25] in-
troduced an evolutionary algorithm based on particle swarm
prediction and predictive adjustment strategies. Tis
method merges information from the prechange population
with predictive adjustments to the new environment, aiming
to maintain high-quality and uniform solutions in dynamic
environments. Against other approaches, this strategy shows
remarkable advantages in uniformity and environmental
responsiveness. Summarizing the above research, main-
taining and enhancing population uniformity in multi-
objective optimization algorithms are pivotal.

2.2. Machine Learning-Guided Variation. In research on
multiobjective optimization guided by machine learning,
researchers have fully leveraged the advantages of machine
learning, improving the efciency and stability of solutions
to multiobjective optimization problems and providing
valuable theoretical tools and practical references for the
feld. In 2019, Lv and colleagues [26] devised a particle
swarm strategy for multiobjective optimization, in-
corporating proactive learning to amplify the model’s ap-
proximation capability. Tey also introduced a hybrid
mutation sampling method based on simulated evolution to
guarantee solution diversity. Tis strategy boosts the algo-
rithm’s operational efciency and reduces the complexity of
fnding solutions. In 2021, Zou et al. [27] proposed a re-
inforcement learning approach named RL-DMOEA. It es-
timates the severity of environmental changes through
corresponding changes in the target space, thereby relo-
cating individuals. Tis strategy proved efective in real-
world problems, further demonstrating its superiority in
handling dynamic multiobjective optimization problems.
Tat same year, Li’s team [28] integrated a methodology
founded on modular neural networks to predict population
dynamics efectively while factoring in evolutionary strat-
egies’ multiobjective optimization attributes. In scenarios
characterized by dynamic optimization changes, this ap-
proach optimizes the algorithm’s adaptability and prediction
accuracy, standing out as a profcient strategy for dynamic
multiobjective optimization. In 2022, Liu and his team [29]
incorporated a dual-layer sampling strategy to counteract
the search space’s exponential expansion. Tey unveiled an
ofspring sampling method to generate promising candidate
solutions. When dealing with large-scale decision variables,
the algorithm optimizes search efciency and solution
quality, marking its place as an efective multiobjective
optimization strategy. Also, in 2022, Tian et al. [30] proposed
a method using deep reinforcement learning (DRL) that
adaptively selects operators through deep neural networks,
efectively solving the operator selection problem in evo-
lutionary multiobjective optimization and enhancing the
efciency of solving such problems.

2.3. Evaluation Indicators. In the performance evaluation
and algorithm efciency optimization for multiobjective
optimization problems, numerous researchers have
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proposed improvements to evaluation metrics such as
inverted generational distance (IGD) and related solution
generation strategies. In 2020, Cai et al. [31] proposed an
improvement method based on a grid-based inverse gen-
erational distance (G-IGD), optimizing the calculation of
IGD by dividing the reference set into multiple grids. G-IGD
was used as a performance indicator to evaluate the per-
formance of multiobjective optimization and multiobjective
optimization algorithms, making performance evaluation
and comparison of diferent algorithms more efective. In
addition, in 2020, Chen et al. [32] proposed a generalized
hypervolume contribution (GHC) method. GHC provides
greater fexibility in various problem scenarios by in-
troducing user-defned weight vectors. GHC efectively
guides the initialization of the population in multiobjective
optimization problems, thus improving the quality of the
solution and algorithmic efciency and reducing the com-
plexity of solutions. In 2022, Han and his team [33] focused
on three core metrics in decision space: the inverse gen-
erational distance (IGD), the multimodal inverse genera-
tional distance (IGDM), and the hypervolume (HV). Tese
meticulous evaluation tools quantify algorithm perfor-
mance, convergence, and diversity within the decision space
and ofer insightful perspectives and methodological
foundations for assessing and comparing multimodal op-
timization algorithms. In 2023, Yan et al. [17] introduced an
improved inverse intergenerational distance (MIGD) met-
ric. MIGD considers the importance of each solution in the
reference set when calculating the distance between the
solution set and the reference set. Tis new measurement
method exhibits better performance and stability when
dealing with dynamic multiobjective optimization problems.
Tat same year, Song and colleagues [34] adopted the
IGD+metric, refecting both algorithms’ convergence and
diversity performance. Compared to the original IGD
metric, the performance comparisons derived from
IGD+ consistently align with the Pareto dominance
relationship.

3. Proposed Approach

In response to the requirements for population uniformity and
diversity in multiobjective optimization problems, this paper
presents a novel multiobjective optimization evolutionary al-
gorithm based on uniformity neural network (MOEA-UCML).
Figure 1 illustrates the working framework of MOEA-UCML.
Te algorithm uses uniform initialization and SOM strategy to
enhance population diversity and uniformity and then employs
IGD-driven transition to assess these qualities. If standards are
not satisfed, it amplifes diversity using population diversity
enhancement, and once balanced, it refnes solution quality
using neuro-clustered optimization.

3.1. Uniform Initialization Strategy. MOEA-UCML in-
corporates a uniform initialization strategy. Initially, we
created an initial population using a random generation
method. Tis step aims to cover the solution space as much
as possible to enhance the diversity of solutions.

Subsequently, we adopt a nondominated sorting strategy to
evaluate and rank the population. In traditional non-
dominated sorting algorithms, the specifc expression for the
spacing among solutions of the same rank is provided in the
following equation:

Pt+1 � Min Pt + Rt( , (2)

where Pt+1 denotes the generation population (t+ 1), Pt

represents the generation population t, Rt means the pop-
ulation of ofspring generated in generation t, and Min
indicates the individuals chosen for generation (t+ 1), pri-
oritized according to their classifcation.

Tis study introduces a novel initial population gener-
ation strategy based on uniform selection from each Pareto
front, as shown in Figure 2. Te new strategy departs from
merely selecting individuals with top ranking in the pop-
ulation, instead opting for a uniform selection of individuals
across each front, which is precisely detailed in the following
equation:

Pt+1 � Avg Pt + Rt( , (3)

where Avg refers to the selection of two uniformly dis-
tributed individuals from each Pareto front after the pop-
ulation classifcation for inclusion into the next generation
in the initial stage. Concurrently, the crowding distance
calculation method is used to ensure the uniformity of the
population, which is expressed in the following equation:

L[i]d � L[i]d +
L[i − 1]m − L[i − 1]m( 

f
max
m − f

min
m 

, (4)

where L[i]d denotes the crowding distance of any individual,
L[i + 1]m is the value of the j-th objective function of the i-th
individual, and fmax

m and fmin
m represent the maximum and

minimum values of the j-th objective function in the set,
respectively.

Finally, the resulting initial population served as the
input for subsequent self-organizing map (SOM) optimi-
zation strategies, expecting to enhance population unifor-
mity and diversity further. To elaborate on the specifc
implementation process of the uniform initialization
strategy proposed in this paper, we provide a detailed step-
by-step description of Algorithm 1.

In essence, the uniform initialization strategy not only
constructs the diversity and uniformity of the solution space
but also ensures the quality of the solutions. By this means,
we successfully realize the uniform distribution of solutions
within each nondominated layer, thereby guaranteeing the
global distribution and diversity of the solutions.

3.2. SOM Optimization Strategy. Following the uniform
initialization strategy of MOEA-UCML, the algorithm’s next
step focuses on ensuring population uniformity and diversity
throughout the search process. To address this,
MOEA-UCML integrates an optimization strategy based on
self-organizing map (SOM) while uniformly selecting in-
dividuals from the Pareto front. Specifcally, we identify the
closest neuron within the SOM for each input sample, termed
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the best matching unit (BMU). Te BMU pinpoints a prob-
able solution location and ofers vital guidance for subsequent
optimization, as illustrated in the following equation:

BMU(x) � argmin
i

x − mi

����
����, (5)

where x denotes the input sample andmini ‖x − mi‖ refers to
the neuron with the smallest Euclidean distance. Sub-
sequently, we employ the SOM’s unsupervised neural net-
work properties to adjust the neurons’ weight vectors. Tis
step enables us to optimize the location of solutions, further
enhancing the diversity of solutions. Te update rule is
represented in the following equation:

mi(t + 1) � mi(t) + θ(i,BMU, t) × α(t) × x − mi(t)( , (6)

where t represents the current iteration step and α(t) is the
learning rate, which gradually decreases with time.
θ(i,BMU, t) is the neighborhood function that determines
how the weight vector of neuron i should be updated based
on BMU. As the BMU weights are updated, the weights of
neighboring neurons are also updated. In particular, the
closer a neuron is to the BMU, themore signifcant its weight
adjustments will be. Tis step is designed to ensure the
uniformity of the solutions by guaranteeing that each so-
lution has enough space to explore within the solution space.
According to equation (6), the update process is governed by
a control known as the neighborhood function, described in
detail in the following equation:

θ(i,BMU, t) � exp −
ri − rBMU

����
����
2

2σ(t)
2

⎛⎝ ⎞⎠, (7)

where ri and rBMU represent the lattice positions of neuron i

and BMU in the SOM, while ‖.‖2 denotes the Euclidean
distance. Te parameter σ(t) is a positive value that varies
over time and determines the width of the neighborhood,
typically decreasing gradually with time. Tis mechanism
efectively merges global and fne-grained search, making the
optimization process more comprehensive and efcient. Fi-
nally, we continuously optimize and update the population
through nondominated sorting and a feedback mechanism to
improve search efciency. To explain the SOM optimization
strategy proposed in this study, we describe the specifc
implementation process in detail in Algorithm 2.

3.3. IGD-Driven Transition. In MOEA-UCML, the IGD-
driven transition is a linchpin that provides a precise tra-
jectory for the optimization journey. Te IGD denoted by
equation (8) functions as a metric to measure the efec-
tiveness of multiobjective optimization algorithms.

IGD PF
∗
, PF(  � 

x∈PF∗

d x, PF
∗

( 

|PF|
, (8)

where PF signifes a point set distributed uniformly on the
true Pareto front of the test function and P∗ encompasses the
optimal front set derived from the algorithm. d(x, PF∗)
denotes the nearest Euclidean distance between individuals
in PF and P∗, while |PF| quantifes the count of uniformly
distributed points in PF. Tis equation measures the mean
distance between algorithmically derived solutions and their
true counterparts, furnishing a composite evaluation of
population quality and diversity.

When the population falls short of the predefned IGD
benchmark, MOEA-UCML focuses on the population di-
versity enhancement phase, underscoring the importance of
population diversity. Te freshly generated ofspring un-
dergo a uniformization process through SOM, safeguarding
their even spread across the entire solution realm. Following
uniformization, the population undergoes a subsequent
assessment via the IGD evaluation framework, confrming
that our optimization trajectory is closely aligned with the
genuine Pareto front.

Upon achieving the stipulated IGD criteria, the algo-
rithm delves into the neuro-clustered optimization phase.
Tis phase harnesses neural network clustering techniques
to meticulously refne and optimize the population, ensuring
its prime distribution in the objective function space.

3.4. Mutation Strategy

3.4.1. Population Diversity Enhancement. During the pop-
ulation diversity enhancement phase of the MOEA-UCML
algorithm, simulated binary crossover and polynomial
mutation stand out as pivotal operations designed to bolster
population diversity and uniformity further. Te simulated
binary crossover emulates crossover operations in a binary
encoding system yet fnds its application in real-number
encoding. When generating ofspring, this operation takes

Input: N (population size), V (number of decision variables), M (number of targets), gen1 (number of frst stage iterations)
Output: P(gen1) (phase 1 population).
(1) P⟵Random (N, V)
(2) P⟵Non Domination Sort (P, V, M)
(3) [Init Unevenness, ∼]⟵Train and Measure SOM (P)/∗ Record initial distance ∗/
(4) for g⟵ 2 to gen1 − 1 do
(5) P9⟵Random (N, V)
(6) P⟵Non Domination Sort (P∪P9, V, M)
(7) P⟵Uniform extraction of individuals from each layer
(8) end for
(9) return P

ALGORITHM 1: Initialize variables.
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into account the diference between the two parents, en-
suring that the newly spawned ofspring enjoy a broader
distribution in the solution space. On the other hand,
polynomial mutation serves as a fne-tuning operation
governed by equations (9) and (10).

Child (i) � Child (i) +(2 × r(i))
1/μm+1( )− 1, (9)

Child (i) � Child (i) + 1 − (2 × (1 − r(i)))
(1/μm+1)

, (10)

where Child (i) represents the i-th element of the ofspring,
and the choice of which mutation formula to apply depends
on the value of r(i). μm acts as a parameter in the polynomial
to regulate the intensity of the mutation. Tis mutation
approach, employing a predefned polynomial distribution,
facilitates precise fne-tuning of the selected gene, ensuring
that the population executes a meticulous exploration in the
solution space. By integrating these two strategies, the
population diversity enhancement phase ensures that the
population maintains diversity and conducts a comprehen-
sive search throughout the solution space.

3.4.2. Neuro-Clustered Optimization. In the IGD-driven
transition phase of the algorithm, we evaluate the unifor-
mity and diversity of the population. Once the IGD value
meets the predetermined criteria, we transition to the neuro-
clustered optimization phase, aiming to refne the non-
uniform regions within the population further.

Initially, we employ a K-means-based approach to
pinpoint the most nonuniform areas in the population. We
can express this through a formula by randomly selecting K
data points as the initial cluster centers and subsequently
classifying each data point based on its distance to these
centers by the following equation:

C(i) � argmin
j

xi − mj

�����

�����, (11)

where xi denotes the data point,mj represents the center of the
j-th cluster, and C(i) signifes the cluster to which data point i
belongs. Te notation ‖.‖ indicates the Euclidean distance. We
then update each cluster’s center to equal the mean value of all
data points within that cluster, as expressed in the following
equation:

mj �
1

Cj





i∈Cj

xi, (12)

where C(j) is the j-th cluster, with |.| indicating the size of the
set, namely, the number of data points in the cluster. We

iteratively apply equations (11) and (12) until the cluster
centers stabilize.TeK-means algorithm allows us to pinpoint
the most nonuniform regions in the population, maintaining
the advantages of the population while enhancing the com-
prehensiveness of the population frontier, ofering decision
makers an expanded set of solution choices.

Having identifed these nonuniform clusters, we in-
corporate a neural network model to forecast the mutation
outcomes of the population’s individuals. During the neural
network’s parameter update process, we employ the
RMSProp optimizer, represented by the following equation:

θt+1 � θt −
η

���������
E g

2
 

t
+ ϵ

 gt, (13)

where θ denotes the neural network parameters, η is the
learning rate, gt signifes the gradient at step t, E[g2]t stands
for the decaying average of past gradient squares, and ϵ is
a tiny constant to prevent division by zero. We then apply
the trained neural network to the nonuniform clusters
previously identifed using K-means, fne-tuning these in-
dividuals predictively. To augment the adaptiveness of the
search, we also adopt an adaptive mutation rate strategy,
depicted by the following equation:

c � α − (α − β) ·
t

Nc

, (14)

where α sets the initial mutation rate, β determines the fnal
mutation rate, t is the current iteration count, and Nc is the
number of the most nonuniform clusters. Tis design means
that as the iteration progresses, we gradually reduce the
mutation rate, making the algorithm leanmore towards local
search. In the end, we reintegrate the mutated individuals
into the original population, replacing the least uniform
clusters with these newly generated individuals. We describe
the detailed steps in Algorithm 3.

Trough the neuro-clustered optimization strategy, we
merged the strengths of deep learning and genetic algo-
rithms, efectively addressed the population’s non-
uniformity, and simultaneously enhanced the quality of
population solutions. Tis ofers decision makers a more
comprehensive and high-quality array of choices.

3.5.TeCompleteMOEA-UCML. To illustrate the process of
implementation of the algorithm MOEA-UCML more in-
tuitively, the pseudocode of the algorithm is given in Al-
gorithm 4. Te algorithm is explained in detail as follows.

Input: P (population)
Output: P(Weights) (ofspring output), Unevenness (Euclidean distance).
(1) NET⟵ Initialize a new SOM network
(2) NET⟵ train (NET, P)/∗ Training the SOM network ∗/
(3) P⟵NET.IW {pdist (1)}
(4) Unevenness⟵ sum (pdist (P))/∗ Calculation of inhomogeneity ∗/
(5) return [Unevenness, P]

ALGORITHM 2: Train and measure SOM.
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3.5.1. Lines 1–3. Initially, parameters are set according to the
objective problem and population variables are initialized.
Simultaneously, the population is ranked based on the
nondominance principle.

3.5.2. Lines 4–11. From the initial generation phase to the
ftness phase, this stage constitutes the main loop of the al-
gorithm. First, tournament selection selects the most suitable
parents for reproduction based on each individual’s ftness.
Ten, during the genetic operation stage, these parents are
altered using crossover and mutation to produce ofspring.
Next, these ofspring are once again ranked according to the
nondominance principle, and chromosomes for replacement
are selected based on their priority at the boundary. Finally,
the IGD value of the current boundary is calculated, repre-
senting the population’s distance from the ideal solution. If
this value exceeds the preset threshold, this phase is pre-
maturely terminated and transitions to the next stage.

3.5.3. Lines 12–16. In the algorithm optimization phase, the
algorithm enters the second main loop, running from the
ftness phase to the uniformity fne-tuning phase. During
this stage, the individual reproduction method no longer
employs traditional genetic operations for reproduction but
adopts a neural network mutation. Tis method combines
the advantages of deep learning and genetic algorithms,
enabling the algorithm to fnd potential quality solutions
more precisely, thus better guiding the algorithm’s search
direction and allowing the algorithm to fnd superior so-
lutions more rapidly during the search process.

3.5.4. Line 17. Once the maximum number of generations is
reached, the algorithm returns the fnal population, repre-
senting the set of solutions found by the algorithm.

4. Experimental Results

Tis section evaluates the MOEA-UCML algorithm’s per-
formance through comprehensive experiments. We detail
the test functions, performance evaluation metrics, and

experimental parameter settings. Additionally, we compare
the efectiveness of the MOEA-UCML algorithm with the
state-of-the-art multiobjective evolutionary algorithms and
analyze the algorithm’s sensitivity to parameters.

4.1. Test Problem Functions. To comprehensively evaluate the
performance of the proposed algorithm, we selected 25 un-
constrained test functions commonly used for multiobjective
optimization from the ZDT (n� 30 or 10), DTLZ (n� 7 or 12),
WFG (n� 12), and UF (n� 30) problem sets. Tese test func-
tions encapsulate various complex characteristics such as con-
vexity, nonuniformity, discontinuity, unimodality,
multimodality, and local optima, allowing us to test the algo-
rithm’s efcacy across multiple dimensions. Specifcally, the
ZDTseries targets two objective dimensions. In comparison, the
DTLZ andWFG series focus on three objective dimensions, and
the UF series evaluates the algorithm’s performance on multiple
objective dimensions. By employing these widely accepted test
function series, we furnished an extensive benchmark for
assessing our proposed algorithm inmultiobjective optimization
problems. We set the population size for all these algorithms at
200, with a maximum function evaluation count of 10,000. Te
class value for the K-means algorithm is set to 10, indicating that
we divide the population frontier into ten distinct regions.
Additionally, we set the parameter “um” at 20, designed the
CNN network with three fully connected layers, fxed the
learning rate at 0.01, capped the training at 200 epochs, trained
with a batch size of 64 samples, and designated α and β at 0.05
and 0.01, respectively. We sourced the other parameter settings
for each algorithm from their respective reference literature. We
implemented all multiobjective optimization algorithms on the
PlatEMOplatform. To reduce the variability due to randomness,
we executed each test function 30 times. We then computed the
mean and standard deviation (std) of the IGD values from these
runs for subsequent comparison.

4.2. Performance Evaluation Metrics and Parameter Settings.
In this study, we employ the IGDmetric to comprehensively
evaluate the comparative algorithm’s capabilities, assessing
its efcacy in optimizing the objectives within a specifc

Input: P (population), V (number of decision variables), M (number of targets), gen3 (number of third stage iterations), k (cluster)
Output: P(gen3) (phase 3 population).
(1) P⟵Crossover work/∗ Training neural network ∗/
(2) NET⟵ train (P, P, Layers, Options)
(3) [C, Num]⟵K-means (P, k)/∗K-means fnds the most inhomogeneous cluster ∗/
(4) for g⟵ 1 to size (C) − 1 do
(5) C⟵ predict (NET, C);
(6) C9⟵C∗Mutation
(7) C⟵max (0, min (1, C9))
(8) Mutation⟵Calculate the Mutation by using equation (11)
(9) end for
(10) P⟵P (P (Num)!�C (Num))∪C/∗ Replace the variant part ∗/
(11) return P

ALGORITHM 3: Mutation NN.
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problem domain—the defnition of IGD in equation (8).Te
lower the IGD value, the higher the quality of the ap-
proximate solution obtained by the multiobjective optimi-
zation algorithm in this experiment. Additionally, we
incorporate the hypervolume (HV) metric to complement
our evaluation process. Te hypervolume metric captures
the volume of the objective space dominated by a Pareto
front approximation, representing a quantifable coverage
measure.Temathematical representation of HV is given by

HV(A, r) � volume ∪
a∈A

[a, r] , (15)

where A is an approximate set of Pareto fronts, r is a reference
point, usually chosen to be worse than all the target values inA,
and [a, r] denotes the hypercube determined by the solution a

and the reference point r. Te larger the value of HV is, the
better the algorithm performs. In other words, a larger HV
means that the approximate solution of the Pareto front oc-
cupies a larger target space and is closer to the true Pareto front.

In this experiment, the clustering of K-means of
MOEA-UCML is adopted, with k set at 10, and the threshold
to enter the later phase of the fne-tuning of neural network
prediction will be set diferently according to diferent
problems. Te algorithm comparison includes eight tradi-
tional multiobjective optimization algorithms: CCGDE3
[16], GDE3 [17], IBEA [35], HypE [36], MOEA/D [7],
MOEA/D-DE [15], NSGAII [11], and NSGAIII [37], as well
as three improved multiobjective optimization algorithms
based on advanced machine learning: MOEA/D-DQN and
its two variants MOEA/D-OP1 and MOEA/D-OP2 [30].
Additionally, it includes two multiobjective optimization

algorithms improved by advanced goal initialization:
CMOPSO [38] and MOEA/D-AAWN [39].

4.3. Performance Comparison of MOEA-UCML with Various
Multiobjective Optimization Algorithms

4.3.1. Performance Comparison with Eight Traditional
Multiobjective Optimization Algorithms. In the feld of
multiobjective optimization, to validate the performance of
our proposed MOEA-UCML algorithm, we initially com-
pared its performance with six classic multiobjective opti-
mization algorithms (specifcally, CCGDE3, GDE3, IBEA,
MOEA/D, MOEA/D-DE, and NSGAIII) using ZDT and
DTLZ test functions. As shown in Tables 1 and 2, we present
the performance results of all algorithms for each test
function, highlighting the optimal results in bold. Te fnal
row of the table represents the statistical comparison of the
performance between the MOEA-UCML algorithm and the
other algorithms using the two-sided Wilcoxon rank-sum
test. Te symbols “− ,” “+,” and “ ≈ ” denote cases where the
mean performance of the MOEA-UCML algorithm is less
than, more signifcant, or approximately equal to that of the
other algorithms, respectively.

FromTable 1, it can be inferred that among all the ZDTand
DTLZ test functions, the MOEA-UCML algorithm out-
performs CCGDE3, GDE3, IBEA, MOEA/D, MOEA/D-DE,
and NSGAIII on multiple test functions. Regarding the IGD
results, MOEA-UCML predominantly outperforms CCGDE3,
GDE3, IBEA, MOEA/D, MOEA/D-DE, and NSGAIII in 12
test problems. It is inferior to NSGAIII on ZDT3 and DTLZ2
and less efcient than MOEA/D-DE on ZDT6. In particular,

Input: N (population size), Q (targeted questions)
Output: P(gmax) (fnal population).
(1) (V, M)⟵Parameter Settings (Q)
(2) P⟵ Initialize Variables (N, V, M, gen1)
(3) P⟵Non Domination Sort (P, V, M)
(4) for g⟵ gen1 to gen2 do
(5) [∼, P]⟵Train and Measure SOM (P)
(6) Parent⟵Tournament Selection (P)/∗ Select suitable sires for breeding ∗/
(7) P9⟵Genetic Operator (Parent, V, M)/∗ Cross mutation to produce ofspring ∗/
(8) P⟵Non Domination Sort (P9, V, M)
(9) P⟵Replace Chromosome (P, V, M)/∗ Select individuals with frontier priorities ∗/
(10) IGD⟵Calculating the IGD value of the current frontier
(11) if IGD>Limited Values then
(12) break;

end if
end for

(13) for g⟵ gen2 to gmax do
(14) [∼, P]⟵Train And Measure SOM (P)
(15) Parent⟵Tournament Selection (P)
(16) P∗ ⟵Mutation NN (Parent, V, M)/∗ neuro-clustered optimization strategy ∗/
(17) P⟵Non Domination Sort (P∗ , V, M)
(18) P⟵Replace Chromosome (P, V, M)/∗ Select individuals with frontier priorities ∗/

end for
(19) return P

ALGORITHM 4: Framework of MOEA-UCML.
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onmore challenging test problems such asDTLZ5 andDTLZ6,
the MOEA-UCML algorithm markedly outperforms the other
algorithms, obtaining IGD results at the level of 10− 3, while the
other algorithms yield IGD results at the 10− 2 level. Tis ev-
idence showcases the superior global search capability of the
MOEA-UCML algorithm.

From Table 2, MOEA-UCML performs well on most of
the tested functions for ZDT and DTLZ. On ZDT1, ZDT4,
and DTLZ7, MOEA-UCML’s results are signifcantly better
than all other algorithms. However, on ZDT6,
MOEA-UCML slightly underperforms compared toMOEA/
D-D-DE, although the diference is insignifcant. Specif-
cally, on ZDT1, MOEA-UCML’s HV results are signifcantly
better than all other algorithms. On ZDT4, MOEA-UCML
results are substantially ahead of the other algorithms by
a wide margin. On DTLZ7, although MOEA-UCML does
not lead by much, it still has a clear advantage over most of
the algorithms. On the other hand, on some test functions,
MOEA-UCML could perform better. For example, on
ZDT6, the HV of MOEA-UCML is slightly lower than that
of MOEA/D-D-DE. However, MOEA-UCML performs
better than or equal to other algorithms in 12 out of 12 test
functions, demonstrating its efciency and robustness.

Figures 3 and 4 illustrate the distributions of the Pareto
front on the ZDT1 and DTLZ4 problems for various tested
algorithms. As depicted in Figure 3, traditional optimization
algorithms, except IBEA, demonstrate challenges in con-
verging towards the Pareto front (PF) of the test problems. On
the contrary, MOEA-UCML exhibits substantial superiority,
efectively generating high-quality candidate solutions, lead-
ing to a solution distribution more closely aligned with the
genuine Pareto front.Tus, it can efectively converge towards
the optimal solution for each objective function. As illustrated
in Figure 4, ourmethod similarly yields superior results on the
DTLZ4 problem, demonstrating signifcant superiority at
most iterative points. Tis result validates that the adopted
evolutionary strategy could efectively address various
problems and frequently delivers optimal performance.

Furthermore, we conducted a performance comparison
between our proposed MOEA-UCML and fve classic
multiobjective optimization algorithms (including
CCGDE3, GDE3, HypE, MOEAD, andMOEADDE), as well
as the baseline improvement algorithm, NSGAII, on the
WFG test functions. As shown in Table 3, we provide the
performance results of all algorithms on each test function,
with the best results highlighted in bold. As seen in Table 3,
among the nine WFG test functions, MOEA-UCML out-
performs CCGDE3, GDE3, HypE, MOEA/D, and MOEA/
D-DE on the frst, third, fourth, sixth, seventh, eighth, and
ninth test functions. It is only slightly inferior to NSGAII
and MOEA/D algorithms on the WFG2 and WFG5 prob-
lems. Similarly, according to Table 4, MOEA-UCML does
show superior performance in global search performance,
especially in most of the test functions of WFG, where it
outperforms or equals the other compared algorithms. Tis
experiment validates that the uniform initialization mech-
anism staged evolutionary strategy and the neural network
mutation strategy of MOEA-UCML enhance the perfor-
mance of multiobjective immune optimization algorithms.

In order to present a more quantitative comparison of
performance among various algorithms, we plotted the fnal
nondominated solution set obtained from solving theWFG8
problem using each algorithm. As depicted in Figure 5, the
approximate solutions derived from the MOEA-UCML
algorithm demonstrate the characteristics of closely and
evenly covering the actual Pareto front of the WFG8
problem. Comparatively, the solution sets obtained by the
other six algorithms show a certain degree of deviation from
the Pareto front of the WFG8 problem, exhibiting lower
convergence and uniformity, thus underperforming in
maintaining the diversity of solutions.

To delve deeper into the performance characteristics and
versatility of our proposed MOEA-UCML algorithm, we
implemented a comprehensive series of tests that encompass
ZDT1-4, 6, DTLZ1-7,WFG1-9, and UF3, 8-10 problems.We
plot the Pareto front solutions for each problem in Figure 6.
It is noteworthy that the MOEA-UCML algorithm exhibits
notable superiority in generating uniformly distributed
solution sets. Whether in a two-dimensional or three-
dimensional problem space, this algorithm efciently gen-
erates solution sets that exhibit uniform distribution along
the Pareto front. Tis characteristic is particularly crucial in
multiobjective optimization problems because it ensures
that the solution set covers all possible optimal solutions.
Furthermore, the uniformity of the set of solutions allows
decision makers to choose from a broader range of solution
options, providing greater fexibility. In conclusion, this
series of test results powerfully demonstrates the marked
superiority and high robustness of the MOEA-UCML al-
gorithm in dealing with various types of multiobjective
optimization problems, in terms of convergence, diversity,
or uniformity of the set of solutions.

4.3.2. Performance Comparison with Tree State-of-the-Art
Machine Learning Improved Multiobjective Optimization
Algorithms. To verify the performance of the MOEA-UCML
algorithm, experiments in this section will be carried out with
the ZDT, DTLZ, WFG, and UF test functions. Comparing
Tables 1, 3, and 5, it can be observed that the performance of
traditional multiobjective optimization algorithms improves
to varying degrees after the introduction of machine learning
algorithms. From the IGD results, MOEA-UCML out-
performs MOEA/D-DQN and its two variants, MOEA/
D-OP1 and MOEA/D-OP2, in the 18 corresponding test
problems. OP1 represents the simulation of binary crossover,
while OP2 denotes the crossover operator inMOEA/D-M2M.
MOEA-UCML only performs worse than MOEA/D-OP1 in
the ZDT4 and WFG1 problems, is less efcient than MOEA/
D-DQN in the WFG4-5 and UF8-9 problems, and slightly
inferior to MOEA/D-OP2 in the UF3 problem.

Figure 7 reveals the comparison results for the machine
learning-enhanced algorithm (MOEA/D-DQN) and our
MOEA-UCML algorithm on the ZDT1 problem. Upon
observation, although both algorithms perform similarly in
approaching the true Pareto front of the ZDT1 problem,
MOEA-UCML exhibits a more distinct advantage in the
uniform distribution of nondominated solutions. Tis result
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underscores the unique value of MOEA-UCML, i.e., its
capability to maintain excellent uniformity of the solution
set while searching for high-quality solutions. Terefore,
despite the exemplary performance of MOEA/D-DQN on
specifc performance metrics, the signifcant advantage of
MOEA-UCML in generating uniformly distributed

nondominated solutions renders it more practically valuable
when dealing with multiobjective optimization problems.

4.3.3. Performance Comparison with Two Improved Multi-
objective Optimization Algorithms with Advanced Objective
Initialization. To verify the population initialization
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Figure 4: Comparison of Pareto frontier distributions among algorithms under the DTLZ4 problem: CCGDE3 (a), GDE3 (b), IBEA (c),
MOEA/D (d), MOEA/D-DE (e), NSGAIII (f ), and MOEA-UCML (g).

CCGDE3 on ZDT1

CCGDE3
True Pareto

0.0

0.7

1.4

2.1

2.8

3.5

F 2 (X
)

0.4 0.60.0 0.8 1.00.2
F1 (X)

(a)

GDE3 on ZDT1

GDE3
True Pareto

0.0

0.7

1.4

2.1

2.8

3.5

F 2 (X
)

0.4 0.60.0 0.8 1.00.2
F1 (X)

(b)

IBEA on ZDT1

IBEA
True Pareto

0.0

0.2

0.4

0.6

0.8

1.0

F 2 (X
)

0.4 0.60.0 0.8 1.00.2
F1 (X)

(c)

MOEA/D–DE on ZDT1

MOEA/D–DE
True Pareto

0.0

0.4

0.8

1.2

1.6

2.0

F 2 (X
)

0.4 0.60.0 0.8 1.00.2
F1 (X)

(d)
NSGA–III on ZDT1

NSGA–III
True Pareto

0.0

0.2

0.4

0.6

0.8

1.0

F 2 (X
)

0.2 0.4 0.6 0.8 1.00.0
F1 (X)

(e)

MOEA/D on ZDT1

MOEA/D
True Pareto

0.00

0.24

0.48

0.72

0.96

1.20

F 2 (X
)

0.2 0.4 0.6 0.8 1.00.0
F1 (X)

(f )

MOEA–UCML on ZDT1

MOEA–UCML
True Pareto

0.0

0.2

0.4

0.6

0.8

1.0

F 2 (X
)

0.2 0.4 0.6 0.8 1.00.0
F1 (X)

(g)

Figure 3: Comparison of Pareto frontier distributions among algorithms under the ZDT1 problem: CCGDE3 (a), GDE3 (b), IBEA (c),
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(e) (f ) (g)

Figure 5: Comparison of Pareto frontier distributions among algorithms under the WFG8 problem: CCGDE3 (a), GDE3 (b), HypE (c),
MOEA/D (d), MOEA/D-DE (e), NSGAII (f ), and MOEA-UCML (g).

Figure 6: MOEA-UCML undominated solution Pareto frontier distributionmatrix on problem sets ZDT1-4, 6, DTLZ1-7,WFG1-9, and UF3, 8-10.
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performance of the MOEA-UCML algorithm, experiments in
this section will be carried out under the DTLZ,WFG, andUF
test functions. Te algorithm proposed in this paper was
compared in terms of performance with two advanced ob-
jective initialization-improved multiobjective optimization
algorithms, CMOPSO and MOEA/D-AAWN. By comparing
Tables 1, 2, and 6, it can be observed that the performance of
traditional multiobjective optimization algorithms improves
to varying degrees after introducing new population initial-
ization strategy algorithms. From the IGD results,
MOEA-UCML outperforms the other two improved algo-
rithms in 9 corresponding test problems. Here, CMOPSO
represents a multistep initialization mechanism based on

decision variable division, and MOEA/D-AAWN represents
an initialization improvement algorithm based on de-
composition that adaptively adjusts the weight vector and
neighborhood. MOEA-UCML only performs worse than
MOEA/D-AAWN in ZDT5 and WFG4-5 problems and is
slightly less efective than CMOPSO in the DTLZ6 problem.

We further examined the impact of objective initiali-
zation, particularly by comparing the performance of
MOEA/D-AAWN and our MOEA-UCML algorithm on
the ZDT1 and ZDT2 problems. As shown in Figure 8,
regardless of the test problem, the MOEA-UCML algo-
rithm exhibited a more pronounced advantage in
approaching the true Pareto front. Tis implies that our

Table 5: Te IGD comparison results of MOEA-UCML with three machine learning improved multiobjective optimization algorithms on
ZDT, DTLZ, WFG, and UF problem sets.

Problem MOEA/D-OP1 MOEA/D-OP2 MOEA/D-DQN MOEA-UCML
ZDT3 4.3307e − 2 (2.58e − 2)− 2.2010e − 1 (6.31e − 2)− 1.7122e − 2 (5.58e − 3)− 1.6742e − 2 (5.00e − 3)
ZDT4 1.2382e − 1 (6.48e − 2)+ 6.2584e − 1 (3.03e − 1)− 2 5453e − 1 (9.70e − 2)− 6.0438e − 2 (8.63e − 2)
DTLZ5 3.3019e − 2 (4.74e − 4)− 3.0277e − 2 (1.11e − 3)− 2.6538e − 2 (5.78e − 4)− 5.8972e − 3 (2.45e − 4)
DTLZ6 3.3856e − 2 (4.15e − 5)− 3.3576e − 2 (1.34e − 4)− 2.9008e − 2 (4.72e − 5)− 5.8490e − 3 (2.97e − 4)
DTLZ7 1.5409e − 1 (1.57e − 3)− 1.5373e − 1 (2.81e − 3)− 1.1006e − 1 (3.56e − 4)≈ 1.0100e − 1 (5.32e − 2)
WFG1 2.5873e − 1 (2.10e − 2)+ 6.8505e − 1 (1.46e − 1)− 7.1675e − 1 (8.33e − 2)− 4.9263e − 1 (7.96e − 2)
WFG2 2.3869e − 1 (2.12e − 2)− 2.9602e − 1 (2.49e − 2)− 2.0742e − 1 (1.96e − 2)− 2.2624e − 1 (1.00e − 2)
WFG3 1.5931e − 1 (4.76e − 3)− 1.6717e − 1 (1.43e − 2)− 1.2825e − 1 (4.77e − 3)− 1.1915e − 1 (1.60e − 2)
WFG4 2.6389e − 1 (6.64e − 3)+ 3.4070e − 1 (1.65e − 2)− 2.3703e − 1 (5.38e − 3)+ 2.7556e − 1 (9.68e − 3)
WFG5 2.5097e − 1 (3.38e − 3)+ 2.7192e − 1 (7.79e − 3)≈ 2.2353e − 1 (3.01e − 3)+ 2.7339e − 1 (9.38e − 3)
WFG6 2.9117e − 1 (1.93e − 2)− 3.9338e − 1 (1.15e − 2)− 4.2542e − 1 (4.02e − 2)− 2.6029e − 1 (1.91e − 2)
WFG7 2.8538e − 1 (1.65e − 2)− 3.7268e − 1 (2.80e − 2)− 3.6882e − 1 (1.13c-2)− 2.0147e − 1 (5.02e − 3)
WFG8 3.3973e − 1 (8.30e − 3)− 5.0260e − 1 (3.83e − 2)− 4.8352e − 1 (5.64e − 2)− 3.1162e − 1 (7.98e − 3)
WFG9 3.0634e − 1 (4.95e − 2)− 3.5093e − 1 (2.58e − 2)− 3.5458e − 1 (3.56e − 2)− 2.0381e − 1 (7.84e − 3)
UF3 3.4550e − 1 (4.64e − 2)− 1.5582e − 1 (1.01e − 1)+ 2.1607e − 2 (1.97e − 2)+ 3.0769e − 1 (4.36e − 2)
UF8 2.5450e − 1 (1.92e − 1)− 2.3313e − 1 (6.28e − 2)− 9.3945e − 2 (7.22e − 2)+ 2.0175e − 1 (2.85e − 2)
UF9 2.2444e − 1 (7.01e − 2)− 1.9439e − 1 (1.07e − 2)≈ 7.7286e − 2 (6.56e − 2)+ 2.0951e − 1 (7.06e − 2)
UF10 7.6045e − 1 (2.01e − 1)− 6.5741e − 1 (8.38e − 2)− 5.3962e − 1 (1.80e − 1)− 4.6333e − 1 (2.42e − 1)
− /+/≈ 14/4/0 15/1/2 12/5/1
Te bold values indicate the optimal performance results of all algorithms for each test function.
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Figure 7: Uniformity of the Pareto frontier distribution for MOEA/D-DQN versus MOEA-UCML on the ZDT1 problem.
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algorithm can efectively fnd high-quality solutions with
a smaller distance to the true Pareto front, demonstrating
its superior performance and robustness when handling
these multiobjective optimization problems. Furthermore,

this also emphasizes the signifcant impact of objective
initialization on solving multiobjective optimization
problems, particularly on solution quality and the algo-
rithm’s convergence performance.

Table 6: Te IGD comparison results of MOEA-UCML with two initialization improved multiobjective optimization algorithms on DTLZ
and WFG problem sets.

Problem CMOPSO MOEA/D-AAWN MOEA-UCML
DTLZ4 1.4430e − 1 (2.8e − 1)− 4.8771e − 1 (3.5e − 1)− 1.0003e − 1 (2.0e − 1)
DTLZ5 4.5173e − 3 (3.4e − 4)− 3.2439e − 3 (1.2e − 4)+ 5.8972e − 3 (2.4e − 4)
DTLZ6 4.3734e − 3 (6.1e − 5)+ 1.5703e − 1 (3.0e − 1)− 5.8490e − 3 (3.0e − 4)
WFG4 3.8183e − 1(3.9e − 3)− 2.1752e − 1 (1.4e − 2)+ 2.7556e − 1 (9.7e − 3)
WFG5 7.7588e − 1 (1.8e − 3)− 2.2549e − 1 (1.2e − 2)+ 2.7339e − 1 (9.4e − 3)
WFG6 8.6534e − 1 (1.2e − 2)− 2.8890e − 1 (2.1e − 2)− 2.6029e − 1 (1.9e − 2)
WFG7 2.9628e − 1 (2.2e − 3)− 2.0988e − 1 (5.4e − 2)≈ 2.0147e − 1 (5.0e − 3)
WFG8 4.0653e − 1 (8.1e − 3)− 3.1907e − 1 (4.9e − 2)≈ 3.1162e − 1 (8.0e − 3)
WFG9 7.3108e − 1 (3.9e − 2)− 2.6916e − 1 (5.1e − 2)− 2.0381e − 1 (7.8e − 3)
− /+/≈ 8/1/0 4/3/2
Te bold values indicate the optimal performance results of all algorithms for each test function.
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Figure 8: Comparison of Pareto frontier approximation between MOEA/D-AAWN and MOEA-UCML on ZDT1 and ZDT2 problems.
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4.3.4. Runtime Evaluation of MOEA-UCML Multiobjective
Optimization Algorithm. Finally, to assess the efciency of
the MOEA-UCML algorithm, we performed a detailed
analysis of its runtime and performed performance com-
parisons on the ZDT and DTLZ problem sets. We kept all
parameter settings consistent to ensure the fairness and
reliability of the experiments. As can be seen from the results
in Table 7, the MOEA-UCML algorithm demonstrated
superior performance on multiple test problems. Tis is
mainly due to the phase-switching mechanism we have

designed, which reduces the algorithm’s runtime to some
extent. Overall, compared to single-strategy algorithms,
MOEA-UCML exhibited a lower time cost on most test
problems, further validating the efectiveness of our pro-
posed phase-switching mechanism. Furthermore, as shown
in Figure 9, we set diferent threshold values for the IGD
real-time tracking metrics for diferent problems, such as
approximately 90% for the ZDTproblem set, around 60% for
the DTLZ problem set, and about 40% for the UF problem
set. Terefore, these experimental results strongly confrm

Table 7: Te running time comparison results between MOEA-UCML and three traditional multiobjective optimization algorithms on the
DTLZ problem set.

Problem HypE MOEAD MOEADDE MOEA-UCML
DTLZ1 5.7786e+ 1 (2.28e+ 1)− 2.5043e+ 0 (2.73e − 1)≈ 2.1339e+ 0 (1.72e − 1)≈ 2.2106e + 0 (8.67e + 0)
DTLZ2 3.4190e+ 2 (2.00e+ 1)− 2.5045e+ 0 (2.44e − 1)− 2.1360e+ 0 (1.52e − 1)− 1.7138e + 0 (1.01e + 0)
DTLZ3 1.7855e+ 1 (1.96e+ 0)− 2.5450e+ 0 (2.05e − 1)− 2.1945e+ 0 (1.59e − 1)− 1.6234e + 0 (1.16e + 0)
DTLZ4 2.7614e+ 2 (4.10e+ 1)− 2.5628e+ 0 (2.26e − 1)− 2.1925e+ 0 (1.43e − 1)− 1.6232e + 0 (5.71e − 1)
DTLZ5 2.2814e+ 2 (1.73e+ 1)− 2.5606e+ 0 (2.58e − 1)− 2.2153e+ 0 (1.20e − 1)− 1.5807e + 0 (7.11e − 1)
DTLZ6 4.2194e+ 2 (3.51e+ 1)− 2.7896e+ 0 (3.49e − 1)− 2.2638e+ 0 (1.59e − 1)− 1.5644e + 0 (9.17e − 1)
DTLZ7 9.6128e+ 1 (1.33e+ 1)− 2.5970e+ 0 (2.32e − 1)− 2.2420e+ 0 (1.95e − 1)− 1.5553e + 0 (8.01e − 1)
− /+/≈ 7/0/0 6/0/1 6/0/1
Te bold values indicate the optimal performance results of all algorithms for each test function.
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Figure 9: IGD real-time tracking indicator threshold setting and MOEA-UCML phase-switching efect.
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the signifcant efect of the phase-switching mechanism in
the MOEA-UCML algorithm, which will undoubtedly en-
hance the overall performance of Pareto-based multi-
objective evolutionary algorithms.

4.3.5. Further Discussion of MOEA-UCML. Based on the
aforementioned experimental results, our MOEA-UCML
algorithm outperforms eight traditional multiobjective op-
timization algorithms, three machine learning improved
algorithms, and two algorithms enhanced with initialization
in terms of performance. However, we conducted further
comparative experiments to provide a more thorough val-
idation of the efectiveness of neuro-clustered optimization
in MOEA-UCML. Specifcally, we delineated the Pareto
front of MOEA-UCML before and after fne-tuning on
ZDT1-4 problems, ofering a more intuitive illustration of
the impact of the neuro-clustered optimization phase. As
depicted in Figure 10, compared to before fne-tuning, the
solutions found by the MOEA-UCML algorithm after fne-
tuning are more uniformly distributed along the Pareto
front. Tis shows that the fne-tuning process can signif-
cantly enhance the uniformity of the solution distribution,
further confrming the efectiveness of our neural network
neuro-clustered optimization strategy.

5. Conclusion

In this study, we have proposed a novel multiobjective
optimization algorithm—MOEA-UCML, employing a mul-
tistage optimization approach that combines a uniform
initialization strategy, a self-organizing map optimization
strategy, an IGD-driven transition strategy, and a mutation
strategy. While MOEA-UCML exhibits high-quality solu-
tions and search efciency in multiobjective optimization
problems, it also has certain limitations. First, using a neural
network-guided mutation strategy in the algorithm, which
requires training the neural network in each generation,
could potentially increase computational complexity. Sec-
ond, the algorithm’s performance is heavily based on the
settings of parameters such as population size, the number of
layers in the neural network, and the number of clusters in
K-means clustering. Tese settings require appropriate ad-
justment in practical applications.

In summary, the MOEA-UCML algorithm still harbors
excellent potential in dealing with multiobjective optimization
problems. In future work, we plan to further optimize the
performance of this algorithm, such as exploring more efective
mutation strategies, improving the neural network training
process to reduce computational complexity, and seeking more
suitable parameter adjustment strategies. Moreover, we plan to
apply this algorithm to a broader range of felds, including
bioinformatics, computer science, and manufacturing, to ad-
dress complex multiobjective optimization problems in practice.
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