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Te proposed research utilizes a computational approach to attain a numerical solution for the singularly perturbed delay
diferential equation (SPDDE) problem arising in the neuronal variability model through artifcial neural networks (ANNs) with
diferent solvers. Te log-sigmoid function is used to construct the ftness function. Te implementation of ANN on SPDDE
problems is formulated for diferent solvers and trained with diferent weights. Te optimization solvers such as the genetic
algorithm (GA), sequential quadratic programming (SQP), and pattern search (PS) are hybridized with the active set technique
(AST) and the interior-point technique (IPT) and is used to check the accuracy and rapid convergence of the numerical results of
the SPDDE model. Te numerical outcomes demonstrate that the system is easy to handle and efcient to solve with boundary
conditions. Moreover, we used the mean residual error for one hundred runs for each solver to validate the accuracy of the
proposed scheme.

1. Introduction

Te perturbed theory is a huge collection of algebraic
methods that approximate the outcomes of problems that
have no analytical solution in the closed form. Tis method
reduces a hard problem to a comparatively simple problem
of infnite sequence that may be solved logically. Tese
problems are based on a small parameter. Te perturbed
theory is normally based on two forms [1, 2]. One is a regular
perturbed theory whose series is a power series within ε,
which has no vanished radius of convergent and defned as
a singularly perturbed theory whose sequence either does
not appear as a power series or if it appears, the power series
has a vanished radius of convergence [3, 4].

A special feature of all regular perturbed theories is the
accurate solution. However, a small nonzero |ε| efciently

proceeds the unperturbed neither zeroth-order solution
when ε⟶ 0. Sometimes, there is no solution to un-
perturbed problems in singularly perturbed theory. Te
solution whose function εmay stop existing when ε � 0, but
when a solution to the unperturbed problem does exist, its
numerical features vary from the real result for arbitrarily
little nonzero ε [5–7]. In these cases, the solution ε � 0 is
essentially distinct in quality from the corresponding so-
lutions attained in the boundary ε⟶ 0. We should cate-
gorize the problem as the regular perturbed theory if no
change exists in quality [8–10].

A singularly perturbed ordinary diferential equation
(ODE) whose highest derivative is multiplied with a small
parameter is termed as a perturbed parameter. Te solution
of SPDDEs was initiated in the year 1968 [11]. In this era,
diferent surveys were conducted by researchers [12–14].
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Kadalbajoo and Reddy carried out asymptotic as well as
numerical techniques for the solution of the singularly
perturbed theory [15]. Te solution of SPDDEs difers
rapidly in the region which is known as layers that may be
obvious in the solution or its gradient and frequently seem at
the boundary region. Several problems in science as well as
in engineering, elasticity, control theory, biosciences, and
fuid mechanics are created by SPDDEs, such as those
present in red cell models [16–20].

In the literature, the delay diferential equations
(DDEs) were considered since the 1940s, inspired by
control problems; for instance, balancing the location of
a ship with pushing water from a tank at one verge of the
vessel to the tank on other verges, see also [21, 22]. In
1949, Myshkis described DDEs [23]. In early 1963, Cooke
and Bellman described DDEs, which appeared outside SU
[24], which represent the basic theory more than the
dynamical system’s standpoint about semigroups as well
as semifows, further parallel towards the ODE theory as
long as possible.

Te numerical solutions at the earlier times are used to
determine the value of terms in SPDDEs. Te delay in the
process emerges because of the necessity of positive time
to detect the guidance and respond to it [8, 25–28]. Re-
cently, some researchers presented physical examples of
delay diferential equations, like the periodic oscillation of
respiration frequency within constant conditions [29–33].
Tis delay is produced by cardiorespiratory inefciency in
the biological circuit commanding the CO2 level in the
blood [34, 35]. Furthermore, some applications of DDEs
are in biological sciences. Te DDE can be categorized
into the retarded delay diferential equation and the
neutral diferential equation. DDEs applications arise in
the feld of the control theory, explanation in human pupil
refex [36, 37], as well as on numerical modeling in bi-
ological sciences [38], HIV infection [39], and so on.

In early 1968, Kadalbajoo and Reddy approximated the
solution of SPDDEs, and several surveys and reviews of
various researchers have been presented. Te study on
diferent asymptotic and numerical methods for explaining
singular perturbation queries is discussed [15].

Using a parametric cubic spline, the nonlinear singularly
perturbed DDEs are changed into linear singularly perturbed
DDEs by the quasilinearization method [40]. If the smaller
order of the singular perturbation parameter in the delay is
not sufcient, the approach of increasing the delay term in
Taylor’s series may lead to a bad approximation.We construct
a special type of mesh in such a way that the term containing
delay lies on the nodal points after discretization. Te fnite
diference technique on Shishkin mesh is utilized to de-
termine SPDDEs of convection difusion kind with the in-
tegral border condition [41, 42]. Tis technique
approximately belongs to frst order convergent. Te nu-
merical solution for second-order SPDDEs is provided by the
uniform fnite diferencemethod.Te solution to the problem

is utilized by a hybrid diference method that lies on
a Shishkin-type mesh.Te interior and boundary layer occurs
in the exact solution because of the delay term [43, 44].

Pramod Chakravarthy et al. utilized the fnite diference
technique with ftted operators by Numerov’s method to
approximate the solution of SPDDE [45].Te parameterized
SPDDE system using a uniformly convergent numerical
scheme is discussed in [46]. To approximate the numerical
solution of SPDDE, Chakravarthy with his team utilized an
exponentially ftted fnite diference method to handle the
large delay [47].

Shishkin mesh utilized a hybrid initial value technique to
approximate the numerical solution of SPDDE for boundary
value problems with a noncontinuous convection factor and
a source term [48]. To approximate the numerical solution
and its absolute error for the boundary value problem for the
linear and nonlinear singular perturbed DDE, we utilize the
fxed point method [49].

Te singularly perturbed DDEs use the terminal
boundary value method to obtain the solution such as
exhibiting layer behaviour [50]. By presenting a terminal
point, the unique problem is distributed into internal and
external region problems. To solve both the internal and
external region problems, the second-order fnite diference
method has been used. Te technique is iterative to the
terminal point [51, 52].

Te SPDDE used reproducing kernel technique (RKM)
and cannot obtain better approximate solutions. Now, the
singularly perturbed DDE used a piecewise reproducing
kernel technique to approximate the numerical solution
[35]. Te linear singular perturbed diferential equation
with delay in the convection term is changed into a line-
arized delay term by utilizing two-term Taylor series ex-
pansion. Te SPDDE uses an asymptotic numerical hybrid
technique to uniformly approximate the solution [53, 54].
Usually, the singularly perturbed nonlinear DDEs of the
boundary value problems play an important role in clar-
ifying diferent uses such as the theory of nonpremixed
combustion [55] and chemical reactions [56]. Kadalbajoo
and Sharma built a fnite-diference technique to approx-
imate the numerical solution of SP nonlinear DDEs
[57, 58].

A fnite diference technique and a B-spline collocation
technique have been recommended for small delay queries,
respectively [59, 60]. An initial value technique and a uni-
formly valid fnite diference technique for convection dif-
fusion problems with smooth data have been recommended,
respectively [61], while the authors have recommended
a singularly perturbed problem with nonsmooth data to be
used as an initial value method. Boundary value problems
containing DD calculations arose in reading the mathe-
matical display of several practical occurrences, such as
a microscale heat transfer, reaction-difusion equations,
stability, and control including control of chaotic systems
[62, 63].
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Due to their enormous importance in the control of
ships, biological sciences, light absorption using stellar
objects, chemistry, discrete mathematics, the medical in-
dustry, particle physics, object models, fnance, engineering
disciplines, community composition, medicine, electro-
magnetics, contagious diseases, telecommunications
equipment, reaction mechanisms, and control models, delay
diferential mathematical systems have gained enormous
signifcance for scientists/researchers [64]. Finding the so-
lutions to singular systems, which have enormous signif-
cance and are thought to be difcult to replicate because of
the solitary point at the origin, is never easy. Lane Emden,
which has enormous relevance and a long history, is among
the important singular types of the models. Many appli-
cations of SPDDEs can be found in astronomy, quantum
mechanics, and gas cloud-based systems [11, 65].

Tis work presents a novel singular model that is rigid
andmore intricate due to the delay and perturbed factors. To
solve the model, a stochastic numerical computational
strategy is developed. Te solvers for stochastic processing
can be used to solve systems with numerical approximation,
delayed, and fractional order. Some of the key features and
highlights of the proposed study are listed as follows:

(1) A novel intelligent formulation is implemented to
analyze the second-order SPDDE through ANN by
using diferent solvers such as the GA, SQP, and PS,
and hybridized with the AST and IPT.

(2) Te accuracy, stability, and efciency of the proposed
approach are validated by presenting the detailed
statistical analysis and mean residual error analysis.

(3) A comparative study is presented based on residual
errors by comparing the results obtained from the
GA, GA-IPT, and SQP for diferent problems in the
form of tables and graphs.

(4) Te hybrid optimum solvers have obtained the so-
lution of SPDDE in less time and reduced the
computational complexity and ensured the accuracy
and rapid conversion of the obtained numerical
solution.

(5) Some notable benefts of the technique include
consistency, reliability, improved workfow, sim-
plicity of comprehension, and encompassing perti-
nency, in addition to the accurate projections of the
GA, SQP, and IPT framework.

Te organization of the manuscript is designed as fol-
lows: Section 2 discusses the overall mathematical modeling,
and it explains the modeling of neural networks, ftness
function, learning techniques, and psuedocode for GA-IPT.
Section 3 presents the results and discusses explaining the
statistical analysis briefy. Section 4 explains the conclusions,
remarks, and future recommendations.

2. Mathematical Designs of the Model

Te SPDDE with its BVP is given as

ε
d
2
u

dy
2 + m(y)

du

dy
+ n(y)u(y − δ)

� l(y), 0<y< 2,

(1)

with the boundary conditions

u(y) � φ(y), y ∈ [− δ, 0] and u(2) � B, (2)

where 0< ε≪ 1, δ is the delay parameter and particular
suitably fat functions on [0, 2],φ(y) is a smooth function on
[− δ, 0], and B is a given constant which is free of ε; the BVP
(1) along with (2) shows a robust boundary level y � 0 [41].

If m(y)< 0, m(y), n(y), and l(y) are particular suitably
fat works on [0, 2],φ(y) is fat work on [− δ, 0] and B is
a constant which is free of ε, consequently the BVP (1) with
(2) shows a robust border level at y � 2 [61].

2.1. Mathematical Modeling. Here, we have designed the
neural networks in the form of linear second-order SPDDEs,
along with their boundary conditions.

2.1.1. Neural Networks Modeling. Te mathematical model
of SPDDEs is presented by “feed-forward” ANNs through
the following continual mapping founded in the form of
a single “input, hidden, and output” layer by solution 􏽢u(y)

and its corresponding derivatives are given as follows:

􏽢u(y) � 􏽘
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αjf βjy + cj􏼐 􏼑,

d􏽢u

dy
� 􏽘

p

j�1
αjf
′ βjy + cj􏼐 􏼑,

d
2
􏽢u

dy
2 � 􏽘

p

j�1
αjf
″ βjy + cj􏼐 􏼑,

· · ·

d
k
􏽢u

dy
k

� 􏽘

p

j�1
αjf

k βjy + cj􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where p is the specifed number of neurons, f is the acti-
vation function, and α, β, and c represent real-valued
component bounded weights and defned as follows:
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w � α1, α2, · · · , αp, β1, β2, · · · , βp, c1, c2, · · · , cp􏼐 􏼑,
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(4)

Te networking in equation (3) utilized the log-sigmoid
function f(x) � 1/1 + e− x; furthermore, its certain derivatives
for the activation function of the network displayed in (3) are
written in equation (4). Figure 1 expresses the complete
structure of the neural networksmodel for SPDDEs in the form
of a structural diagram. It shows the complete features, layers,
weights, derivatives, and functions involved in the construction
of the input, hidden, and output layers, respectively.

2.1.2. Fitness Function Expression. Te suited combination
for the equations through a set of equation (4) is utilized to
design the SPDDE for equations (1) and (2). A ftness
function is an expression for (1) with boundary conditions to
defne an error which depends on the sum of two mean
square error functions, given as

􏽢E � 􏽢E1 + 􏽢E2, (5)

􏽢E1 �
1
N

􏽘

N

i�1
ε

d2􏽢ui

dy2 + mi

d􏽢ui

dy
+ ni 􏽢ui(y − δ) − li􏼢 􏼣

2

, (6)

􏽢E2 �
1
2

(􏽢u(y) − φ(y))
2

+(􏽢u(2) − B)
2

􏽨 􏽩, (7)

where h denotes the step size for the whole domain.

WhereN �
1
h

, mi � m yi( 􏼁, ni � n yi( 􏼁, li � l yi( 􏼁,

􏽢ui � 􏽢u yi( 􏼁, yi � ih.

(8)

2.2. Learning Techniques. Here, a detailed review of opti-
mization solvers GA, SQP, IPT, and PS for ANN is
expressed.

Te IPT and SQPs are among a group of local search
techniques that have been successfully applied to both
unconstrained and constrained optimization problems.

Te proposed optimization problem is transformed into
more manageable subproblems in the process of SQP al-
gorithms, and methods mostly based on Kar-
ush–Kuhn–Tucker conditions are used for iterative
revisions. By taking advantage of the viable interior region
of the optimization problem, the IPT iteratively updates the
weights. In numerous stif and nonstif optimization
problems of practical interest, the SQP and IPT have been
frequently employed [66].

Te GA is inspired by Darwin’s well-known theory of
evolution. It was established properly in the early 1970s with
great work by JohnHolland known as the pioneer of GA solver.
Initially, it was designed for problem solving and analysis. Te
GA is working with a set of weights in the population sample.
Solutions of single best ft are taken in the next step and utilized
to create a new population that is inspired by the whole process,
and a new population will be ftter as compared to the previous
selection. In 1992, for the frst time, John Koza (JK) developed
a program for diferent tasks through the GA. He named his
technique genetic programming. GAs are optimization tech-
niques and stochastic search, encouraged by natural
development.

“Pattern search” (also called direct search) is a sort of
numeric optimization technique that does not need
a gradient. “Pattern search” was invented by Hooke and
Jeeves. Most of the literature about this topic is referred to
as “Hooke and Jeeves” along with the theory published in
their article. Te title PS has been used as a collective term
for all methods which search concerning the current point
in a measured direction for best function value. When the
search gets to the best point, that point is modifed as a new
base and this point is a restart point for searching. In case of
an unsuccessful search, either the search route is changed
or the search border is cut below by diminishing the step
size. PS techniques tend to have very easy tactics and hence
are easy to utilize as the initial optimization method.
Moreover, the PS techniques are also fexile and reliable in
their use.
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Te “interior-point technique” (also known as “barrier
techniques”) is a group of algorithms to solve nonlinear as
well as linear convexity optimization models. “John von
Neumann” [67] recommended an IPT for linear pro-
gramming that was neither an efcient nor a “polynomial-
time technique” in practice. It revolved around being slower
than the commonly utilized simplex technique [68]. “Nar-
endra Karmarkar” established a system for linear pro-
gramming named Karmarkar’s computation, in 1984, that
runs likely in polynomial time which is also efcient for
practice. It allowed solutions for linear programming
methods that are behind the talents of the simplex technique.

Rather, the simplex technique attains the best result by
passing through the interior of the feasible area. Eventually,
modern IPTs have been instilled virtually in all felds for
continuous optimization and have forced excellent im-
provements into the earlier procedures. In [69–72], the
authors have presented the applications of higher-order
diferential equations in fnancial and business pre-
dictions/forecasts based on the nonlinear and linear types of
models. Figure 2 represents the complete structure of the
hybrid solver for the singularly perturbed delay model.

3. Results and Discussion

In this section, the proposed technique is implemented on
three diferent problems for singularly perturbed delay dif-
ferential equations and the results and discussions are pre-
sented. Te numerical results of the SPDDE equation are

obtained, analyzed, and presented by using “SQP,” “GA,” “PS,”
and hybrid techniques “GA-AST,” “PS-AST,” “GA-IPT,” and
“PS-IPT.” Te outcome of these three SPDDEs optimized the
results by local and global techniques in neural network designs
which are given. Algorithm 1 elaborates a thorough pseudo-
code for GA-IPT to fnd weights based on ANN for solving the
SPDDE, which plays an essential role in this study.

3.1.Problem1. Consider the following BVP for an SPDDE as

ε
d
2
u

dy
2 + 0.25 u(y − δ) − u(y) � 1,

u (0) � 1 and u (1) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

with boundary conditions at ε � 2− 4 and δ � 0.03.

􏽢E �
1
10

􏽘

10

i�1
ε

d2􏽢ui

dy2 + 0.25 􏽢ui (y − δ) − 􏽢ui (y) − 1􏼢 􏼣

2

,

+
1
2

(􏽢u (0) − 1)
2

+(􏽢u (1) − 0)
2

􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

We need to obtain the solution to the problem by uti-
lizing the proposed methodology, as it depends upon the
ftness function 􏽢E along with step size h � 0.1. Here, we
determine the ftness function 􏽢E taking N � 10.

INPUT LAYER

OUTPUT LAYER

αj

βj y

y∈[0,2]
βj

γj

H
ID

D
EN

 L
AY

ER

Figure 1: Structural diagram of the neural network model for SPDDEs.

International Journal of Intelligent Systems 5



Figure 2: Flowchart of hybrid solver for the singularly perturbed delay model.

GA-IPT technique Start.
STEP: Initialization
Initially, the population is selected arbitrarily through the entries on the real line (number) toward express weights along with the

equivalent elements identical toward the unknown weights of ANN paradigms.
Initialize routine for GAs as:
Population: 300, bounds: (− 10, 10).

STEP: (Fitness calculation)
To estimate the ftness value of each member of the population in equation (5) utilizing the values for the network specifed set on

equations (3) and (4).
STEP: Ranking
In order of minimum value for ftness functions to the models, rank each individual concerning the populations. Members who

performed well often had lower ftness values and vice versa.
STEP: Terminate criteria
Termination of the algorithm:

(ii) Obtained the objective level
(ii) Required generations achieved
(iii) Obtained tolerance and generations
Function tolerance: 1e− 13, ftness limit: 1e− 13

Other settings: By default. If the terminate criterion fts, then the hybridization level is.
Reproductive:
Create the following population by each generation.
Selection: Calls stochastic uniform selection as a function.
Crossover: Call for constraint dependent as function.
Mutation: Call for constraint dependent as function.

Others: By default.
Hybridization:
Te interior point technique is incorporated for fne tuning of parameters by taking the best chromosome of GAs as a starting

point. Setting up the parameters for IPT:
Finite diference: Forward diferences.

X-tolerance: 1e− 13

Function-tolerance: 1e− 16; constraint tolerance: By default.
STEP: Recurrence
Repeat the whole hybrid procedure for hidden layers.

GA-IPT procedure end.

ALGORITHM 1: Pseudocode for GA-IPT to fnd weights based on ANN for solving the SPDDE.
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􏽢uPS− IPT(y) �
(3.14689)

1 + e
− (4.32612y+1.73076)

+
(0.22124)

1 + e
− (1.83084y+1.53809)

+ · · · +
(0.27836)

1 + e
− (1.80760y+0.79412)

,

(11)

􏽢u(y) �
α1

1 + e
− β1y+c1( )

+
α2

1 + e
− β2y+c2( )

+ · · ·

+
α10

1 + e
− β10y+c10( )

,

􏽢uPS(y) �
(0.91647)

1 + e
− (8.19245y+1.40890)

+
(6.18157)

1 + e
− ((− 5.18712)y+7.46590)

+ · · · +
(− 8.56837)

1 + e
− (8.98990y+2.59702)

,

(12)

􏽢uGA(y) �
(0.77375)

1 + e
− (0.55587y+(− 1.60025))

+
(3.25069)

1 + e
− (2.03191y+1.06558)

+ · · · +
(− 2.23298)

1 + e
− (0.69839y+1.07222)

,

(13)

􏽢uGA− IPT(y) �
(− 1.33463)

1 + e
− (0.64838y+1.87804)

+
(1.48967)

1 + e
− ((− 1.9882)y+(− 1.1972))

+ · · · +
(1.35239)

1 + e
− (1.89166y+0.84600)

.

(14)

To obtain the solution for equation (9) with boundary
conditions, we have utilized the GA, PS, and hybrid tech-
nique of GA-IPT and PS-IPT by MATLAB built-in func-
tions, given in Table 1. Group of prepared weights with
individual ftness for PS, GA, PS-IPT, and GA-IPT algo-
rithms are displayed in (Figures3 and 4) as ftness functions
expressed in equation (10). Tables 2 and 3 present the values
of “number of weights for PS, GA, PS-IPTand GA-IPT” and
residual errors of the proposed technique. Te suggested
solution of (given in equation (4)) the proposed model is
designed by utilizing optimal weights and equations.
(10)–(13) shows the optimal solutions obtained from PS-
IPT, PS, GA, and GA-IPT optimization solvers.

Te proposed technique of sorted, scattered numbers of
runs and residual error of four individual solvers for
problem 1 is shown in Figure 5, and the y-axes show that y

lies in the selected interval from 0 to 1, and the residual
error’s graphical representation shows that the behaviour of
the PS technique lies from 10− 5 to 10− 2 and the hybrid PS
technique with IPT lies from 10− 9 to 10− 7, GA technique lies
from 10− 5 to 10− 3, and hybrid GA technique with IPT lies

from 10− 9 to 10− 7.Te 3-D display of best weights α, β, cwith
the GA, GA-IPT, PS, and PS-IPT for problem 1 is displayed
in Figure 6, and the learning curves of the proposed tech-
niques PS, PS-IPT, and GA, GA-IPT for problem 1 are
shown in Figures 3 and 4.

ε
d2u
dy

2 + 128
du

dy
+ 0.25 u (y − 1) � 0.25 (y − 1),

0< y< 1.5,

u (y) � y, − 1≤y< 0 and u (1.5) � 2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

3.2. Problem 2. We consider the following BVP for
a SPDDE:

With boundary conditions at ε � 10− 2, we need to obtain
the solution to the problem by utilizing the proposed
methodology, which depends upon ftness function 􏽢E along
with the step size h � 0.1. Here, we have determined the
ftness function 􏽢E, taking N � 10.

􏽢E �
1
10

􏽘

10

i�1

ε
d2􏽢ui

dy2 + 128
d􏽢ui

dy
+ 0.25 􏽢ui (y − 1)

− 0.25 (y − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

+
1
2

(􏽢u (y) − y)
2

+(􏽢u (1.5) − 2)
2

􏽨 􏽩.

(16)

􏽢uGA− IPT(y) �
(− 0.59867)

1 + e
− (9.00000y+8.62809)

+
(8.11615)

1 + e
− (4.64693y+7.91614)

+ · · · +
(8.22812)

1 + e
− (0.06273y+2.86697)

,

(17)

􏽢uSQP(y) �
(0.02071)

1 + e
− ((− 0.37235)y+1.13109)

+
(1.47340)

1 + e
− (2.52201y+1.57181)

+ · · · +
(− 1.28929)

1 + e
− (2.55527y+1.54266)

.

(18)

To fnd the results for equation (15) with the given
conditions, we applied the GA and SQP for refnement, and
we have hybridized it with IPT, i.e., GA-IPT by utilizing
MATLAB with diferent parameter settings, shown in Ta-
ble 1. Obtained weights with individual ftness for SQP, GA,
and GA-IPT algorithms are shown in Figure 7 as ftness
functions given in equation (16). Tables 4 and 5 present
values of “number of weights for GA, GA-IPT, and SQP”
and residual errors of the proposed technique.Te suggested
solution 􏽢u(y) is given in equation (4); the proposed model is
designed by utilizing optimal weights, and equations
(17)–(19) shows the optimal solutions obtained from the GA,
GA-IPT, and SQP optimization solvers.
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Table 1: Setting of parameters for optimization solvers.

Techniques Parameters Settings

IPT

Solver “Fmincon”
Algorithm “Interior-point”
Start point Randn (1, 30)
Derivative Approximated by solver

Max iteration By default
Max- function evaluations 200000

X-tolerance 1e− 15

Function tolerance 1e− 18

Constraint tolerance 1e− 15

Others By default

PS

Solver Pattern search (PS)
Start point Randn (1, 30)

Max iterations 3000
X-tolerance 1e− 13

Max-function evaluation 200000
Function tolerance 10− 16

Constraint tolerance By default
Others By default

GA

Solver Genetic algorithm (GA)
Variables 30

Generations 3000
Selection “Stochastic uniform”

Initial scores 20
Mutation/Crossover Constraint
Population size 300
Fitness limit 1e− 13

Function tolerance 1e− 13

Constraint tolerance By default
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Figure 3: Learning curve of the proposed techniques PS and PS-IPT for problem 1.
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Figure 4: Learning curve of the proposed techniques GA and GA-IPT for problem 1.

Table 2: Optimized weights towards ANN through the designed technique in problem 1.

Indices
Optimized parameters with ANN models

j PS GA PS-IPT GA-IPT

αj

1 0.9164750 0.7737568 3.1468994 − 1.3346375
2 6.1815714 3.2506946 0.2212471 1.4896793
3 0.8292910 − 0.7627727 1.2065874 5.1029969
4 0.9478915 1.9019516 1.3411143 − 0.1489729
5 0.8707260 8.9998875 − 1.0288080 − 1.5649892
6 − 0.6630079 8.9995217 − 2.6301087 1.8198148
7 1.7726430 0.5511131 5.0873706 2.7695111
8 − 0.4553805 1.0497176 2.6232159 2.4811050
9 − 1.3061185 1.9138552 0.6367644 − 0.8498850
10 − 8.5683795 − 2.2329875 0.2783610 1.3523990

βj

1 8.1924536 0.5558713 4.3261220 0.6483823
2 − 5.1871205 2.0319120 1.8308430 − 1.9882203
3 6.9167275 1.5949496 3.5293137 − 2.2880579
4 2.4095697 1.4065516 − 1.3911130 0.7626022
5 8.9866846 − 1.7199822 − 1.8664458 1.2618407
6 1.7570514 2.8712440 − 1.3487284 − 2.2251951
7 − 8.9702150 5.3995972 2.5253342 − 0.8397408
8 2.0824703 1.3348065 − 2.0723136 − 3.5820637
9 6.7255338 1.7258145 1.7239297 0.0462442
10 8.9899067 0.6983951 1.8076067 1.8916643

cj

1 1.4089070 − 1.6002584 1.7307678 1.8780401
2 7.4659014 1.0655847 1.5380952 − 1.1972149
3 2.1152584 − 1.1868336 0.8564890 4.0942542
4 − 0.0512475 1.2500164 1.9968474 2.7371949
5 − 0.2437504 3.4325258 1.6953031 − 1.1186656
6 − 0.3976007 2.5739728 − 0.4572963 − 1.2461224
7 − 0.7923369 1.7820793 − 4.3782226 1.6118485
8 − 1.1717247 1.3343562 − 0.3893486 − 1.8269782
9 0.3539055 1.5395085 2.1204743 1.1849277
10 2.5970263 1.0722228 0.7941233 0.8460052
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􏽢uGA(y) �
(− 0.30664)

1 + e
− ((− 7.73043)y+(− 2.96601))

+
(− 1.20102)

1 + e
− ((− 2.35878)y+(− 2.67451))

+ · · · +
(− 8.07646)

1 + e
− (5.16724y+7.08939)

.

(19)

Te proposed technique of sorted, scattered numbers of
runs and residual error of four individual solvers for
problem 2 are shown in Figure 8, and the y-axes display that
y lies in the selected interval from 0 to 1, and the residual
error of obtained graphical representation shows that the

behaviour of the SQP technique lies from 10− 5 to 10− 4, GA
technique lies from 10− 4 to 10− 2, and hybrid GA technique
with IPT lies from 10− 5 to 10− 4. Te 3-D display of best
weights α, β, c with GA, GA-IPT, and SQP for problem 2 is
displayed in Figure 9, and the learning curve of the proposed
techniques GA, GA-IPT, and SQP for problem 2 is shown in
Figure 7.

ε
d2u
dy

2 − 3
du

dy
+ u (y − 1) � 0, 0< y < 2,

u(y) � 1, − 1≤y< 0 and u (2) � 2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

Table 3: Residual error for the proposed techniques in problem 1.

Y
Residual errors

PS GA PS-IPT GA-IPT
0.0 1.67245E − 05 9.31838E − 06 3.30328E − 09 4.13518E − 09
0.1 1.53841E − 03 5.43679E − 04 5.47624E − 08 4.19201E − 08
0.2 2.43828E − 03 1.38167E − 03 3.26438E − 07 3.08938E − 07
0.3 4.11607E − 03 5.03819E − 03 4.36329E − 07 6.44600E − 07
0.4 3.96567E − 03 1.16996E − 02 4.91945E − 08 4.66148E − 07
0.5 4.30404E − 03 1.65080E − 02 2.87183E − 07 1.20356E − 06
0.6 1.85032E − 03 1.87952E − 02 1.74559E − 07 1.58017E − 06
0.7 2.02445E − 03 1.66318E − 02 1.85185E − 07 1.05983E − 06
0.8 5.79775E − 03 1.03803E − 02 6.10314E − 07 1.22827E − 06
0.9 6.46407E − 03 2.14090E − 03 2.28990E − 07 4.75857E − 07
1 4.65838E − 03 1.39188E − 04 1.47434E − 08 3.02143E − 08

20
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Figure 5: Sorted and scattered numbers of runs and the residual error for problem 1.
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3.3. Problem 3. We consider the following BVP for an
SPDDE: With boundary conditions at ε � 10− 2, we must
obtain the solution to the problem by utilizing the proposed
methodology, as it depends upon ftness function 􏽢E along
with the step size h � 0.1. Here, we have determined the
ftness function N � 10.

􏽢E �
1
10

􏽘

10

i�1
ε
d2􏽢ui

dy2 − 3
d􏽢ui

dy
+ 􏽢ui(y − 1)􏼢 􏼣

2

+
1
2

(􏽢u(y) − 1)
2

+(􏽢u (2) − 2)
2

􏽨 􏽩.

(21)

To obtain the solution for equation (20) with boundary
conditions, we have utilized the GA, PS, and hybrid tech-
nique of GA-IPT, PS-IPT by using the MATLAB built-in
functions with the parameters set, given in Table 1 as IPT,
PS, and GA, respectively. Te residual error is presented in
Figure 10 for problem 3.Te group of prepared weights with
individual ftness for PS, GA, PS-IPT, and GA-IPT algo-
rithms are shown in Figure 11 as ftness functions are given
in equation (21). Tables 6 and 7 present the values as
“number of weights for PS, GA, PS-IPT, and GA-IPT” and
residual errors of the proposed technique. Te suggested
solution 􏽢u(y) is given in equation (4), the proposed model is
designed by utilizing optimal weights, and equations
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Figure 6: 3-D display of best weights of the GA, GA-IPT, PS, and PS-IPT for problem 1.
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Figure 7: Learning curve of the proposed techniques GA, GA-IPT, and SQP for problem 2.

Table 4: Optimized weights toward ANN through the designed technique in problem 2.

Indexed
Optimized parameters with ANN models

j GA GA-IPT SQP

αj

1 − 0.3066433 − 0.5986779 0.0207156
2 − 1.2010241 8.1161527 1.4734028
3 8.9842532 8.9999993 − 0.3392609
4 0.0773500 − 0.9425981 − 0.0010755
5 − 1.7397039 8.8649342 2.0380605
6 8.9968926 − 5.6430424 − 9.0000000
7 1.9807586 8.9754851 − 1.9437645
8 8.7069722 − 0.4344950 0.5442588
9 2.2906260 − 7.4839824 − 8.6412766
10 − 8.0764674 8.2281267 − 1.2892910

βj

1 − 7.7304308 8.9999997 − 0.3723538
2 − 2.3587874 4.6469365 2.5220127
3 0.0344424 − 0.0200903 − 0.1267292
4 − 4.8840836 − 1.6122136 − 1.3105608
5 8.8652874 0.0056376 0.0161680
6 0.1108028 6.9869438 0.5443783
7 − 0.0156290 5.3994669 2.7784698
8 − 0.0972322 7.9333855 2.8628747
9 0.8715110 7.4987751 1.7588169
10 5.1672438 0.0627377 2.5552734
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(22)–(25) show the optimal solutions obtained from PS, GA,
and PS-IPT and GA-IPT optimization solvers.

􏽢uPS(y) �
(− 1.06670)

1 + e
− (5.26583y+1.00006)

+
(0.91810)

1 + e
− ((− 8.34331)y+(− 1.66416))

+ · · · +
(8.99449)

1 + e
− ((− 0.16243)y+1.96485)

,

(22)

􏽢uGA(y) �
(6.96770)

1 + e
− (1.99107y+3.51608)

+
(− 0.19620)

1 + e
− (8.43611y+8.93885)

+ · · · +
(7.86031)

1 + e
− (5.62569y+8.63041)

,

(23)

􏽢uPS− IPT(y) �
(6.87138)

1 + e
− ((− 1.28699)y+4.84758)

+
(− 8.99257)

1 + e
− ((− 0.84986)y+(− 2.86486))

+ · · · +
(− 1.42723)

1 + e
− ((− 0.11311)y+(− 0.70787))

,

(24)

􏽢uGA− IPT(y) �
(− 0.12362)

1 + e
− ((− 0.23698)y+(− 0.92593))

+
(0.15182)

1 + e
− ((− 0.97499)y+(− 0.32822))

+ · · · +
(0.03446)

1 + e
− ((− 0.16695)y+0.03775)

.

(25)

Te proposed technique of the residual error of four
individual solvers for problem 3 is shown in Figure 9 and the
y-axes show that y lies in selected interval from 0 to 1 and the
obtained graphical representation shows that the behaviour of
the PS technique lies from 10− 3 to 10− 2, and hybrid PS
technique with the IPT lies from 10− 5 to 10− 4, GA technique
lies from 10− 4 to 10− 2, and hybrid GA technique with the IPT
lies from 10− 8 to 10− 7. Te sorted and scattered numbers of
runs for problem 3 are presented in Figure 9, and the y-axes
displays that y lies in the selected interval from 0 to 100. Te
3-D display of best weights α, β, and c with GA, GA-IPT, PS,
and PS-IPT for problem 3 is displayed in Figure 10, and best
weights together with parameters of GA and GA-IPT are
presented in Figure 11. Furthermore, the learning curve
which presents the scheme systematic performance for hybrid
solver is shown in Figures 12 and 13. Te interval confdence
levels are expressed for the problems in Figures 14–16, re-
spectively. Tables 8–10 present a comparison of HSUwith best
(MCB) simultaneous tests for three problems. It shows the
comparison for diferent hybridized solvers for various

Table 4: Continued.

Indexed
Optimized parameters with ANN models

j GA GA-IPT SQP

cj

1 − 2.9660161 8.6280949 1.1310972
2 − 2.6745176 7.9161440 1.5718114
3 2.4669648 − 1.7590079 9.0000000
4 − 2.3066822 − 2.6844709 1.5400303
5 8.9609374 − 1.3095311 0.1383488
6 2.6876202 8.2425325 7.6122620
7 0.0506930 8.1734344 6.4755557
8 − 2.8775411 7.0033038 2.6109926
9 8.7434707 8.9745170 2.6863053
10 7.0893938 2.8669696 1.5426654

Table 5: Residual error for the proposed techniques in problem 2.

Y
Residual errors

GA GA-IPT SQP
0.0 1.10753E − 04 9.85444E − 06 1.30948E − 05
0.1 3.51240E − 04 8.68236E − 05 2.10384E − 04
0.2 1.26247E − 03 3.27473E − 05 4.36154E − 05
0.3 6.06292E − 04 4.92249E − 05 1.13348E − 04
0.4 1.30458E − 03 8.89636E − 06 5.44375E − 05
0.5 1.49585E − 03 2.70841E − 05 2.99286E − 05
0.6 1.73233E − 03 4.02804E − 05 3.69801E − 05
0.7 1.28022E − 03 5.45395E − 05 5.48185E − 05
0.8 9.57652E − 04 1.66669E − 05 3.51978E − 05
0.9 1.18028E − 03 2.29189E − 05 2.00808E − 05
1 1.58956E − 03 2.72872E − 05 2.07580E − 05
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Figure 8: Sorted and scattered numbers of runs and the residual error for problem 2.
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Figure 9: 3-D display of best weights of the GA, GA-IPT, and SQP for problem 2.
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Figure 11: 3-D display of best weights of the GA, GA-IPT, PS, and PS-IPT for problem 3.

Table 6: Optimized weights toward ANN through the designed technique in problem 3.

Indices
Optimized parameters with ANN models

j PS GA PS-IPT GA-IPT

αj

1 − 1.0667014 6.9677022 6.8713823 − 0.1236203
2 0.9181032 − 0.1962030 − 8.9925789 0.1518212
3 1.4440710 0.8416656 − 0.1578704 0.9692047
4 − 0.0290058 3.5331603 − 8.6768061 1.1188702
5 0.1824522 − 0.1795745 0.1650196 − 1.5574211
6 − 1.3931810 − 0.2637185 0.6222875 1.7603041
7 − 0.0845395 5.8502151 − 8.9952144 − 1.4745055
8 1.0258214 1.6509182 2.2028382 0.2769833
9 6.0202228 − 2.3654917 8.8213978 0.8973661
10 8.9944986 7.8603129 − 1.4272394 0.0344642
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Table 6: Continued.

Indices
Optimized parameters with ANN models

j PS GA PS-IPT GA-IPT

βj

1 5.2658309 1.9910732 − 1.2869910 − 0.2369752
2 − 8.3433137 8.4361159 − 0.8498656 − 0.9749967
3 0.2010970 2.8184493 1.8065413 0.0685090
4 3.3951376 − 0.8876038 5.2573940 0.0200204
5 8.4006288 0.2282272 1.2128730 0.1556419
6 − 0.2286421 2.8250016 0.1366919 − 0.3170663
7 2.3361909 − 0.9493155 4.7240429 1.4761096
8 − 2.6333540 0.3947841 0.2802119 − 0.5567921
9 6.2294457 7.4105844 0.4426208 1.3710782
10 − 0.1624363 5.6256926 − 0.1131185 − 0.1669521

cj

1 1.0000608 3.5160859 4.8475825 − 0.9259315
2 − 1.6641645 8.9388543 − 2.8648637 − 0.3282290
3 − 0.5900346 1.8950385 0.4585321 − 0.4450376
4 − 0.6921267 3.1092057 7.1949112 − 0.1912964
5 0.4070907 0.8495736 0.0419243 0.5343044
6 − 1.6702007 − 6.4222482 − 1.0026387 1.6625985
7 0.0653843 8.9306464 6.7181488 2.8256164
8 − 1.2128472 − 0.5848507 − 0.6783619 0.3752158
9 8.1286900 8.7420454 1.7816856 2.0496261
10 1.9648559 8.6304174 − 0.7078734 0.0377559

Table 7: Residual error for the proposed techniques in problem 3.

Y
Residual errors

PS GA PS-IPT GA-IPT
0.0 1.04193E − 02 1.68507E − 03 2.81351E − 05 2.43471E − 08
0.1 2.14534E − 03 1.07289E − 04 4.38149E − 05 1.38542E − 07
0.2 7.89241E − 03 1.92880E − 04 3.10187E − 08 1.21096E − 08
0.3 9.83712E − 03 2.67722E − 04 4.37483E − 06 6.69807E − 08
0.4 5.28494E − 03 5.01788E − 04 2.96411E − 07 1.54421E − 08
0.5 3.58451E − 03 2.02807E − 04 3.39506E − 06 2.18717E − 08
0.6 3.69571E − 03 2.01873E − 04 7.89721E − 06 3.41485E − 08
0.7 4.82142E − 03 5.65441E − 04 3.56027E − 06 1.38857E − 08
0.8 1.15101E − 02 7.43195E − 04 2.69433E − 07 1.41226E − 08
0.9 2.14956E − 02 4.71775E − 04 1.08002E − 05 2.31872E − 08
1 7.22192E − 03 2.38969E − 04 3.10677E − 05 1.47303E − 08
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Figure 16: Interval plot at four techniques of the suggested methods for SPDDE in problem 3.

Table 8: HSU multiple comparisons with the best (MCB) simultaneous tests for problem 1.

Diferences of
levels

Diferences of
means

SEs of the
diference 95% CI T-value Adjusted P

value
PS-GA − 0.00419 0.00163 (− 0.00766, 0.00000) − 2.56 0.019
GA-PS 0.00419 0.00163 (0.00001, 0.00766) 2.56 0.019
PS-IPT-GA − 0.00757 0.00163 (− 0.01104, 0.00000) − 4.63 0.001
GA-IPT-GA − 0.00757 0.00163 (− 0.01104, 0.00000) − 4.63 0.001
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scenarios ofP value andT-values, ensuring the CI on or above
95%. Moreover, the diferences of means and SE are tabulated
for all the cases of hybridized solvers.

4. Conclusions and Recommendations

In this research work, the numerical solution of second-order
SPDDE is presented by an innovative “artifcial neural net-
work” (ANN). Tis study involves the use of a log-sigmoid
function incorporated with optimization solvers such as the
GA, PS, and SQP and with hybridized solvers such as GA-IPT,
GA-AST, PS-IPT, and PS-AST. It is concluded that the pro-
posed optimum technique has estimated the numerical results
efciently and accurately, and the results are also very fast
convergent. A comparative study is presented based on residual
errors that are compared with the GA, GA-IPT, and SQP for
problems 1, 2, and 3 in the formof tables and graphs. To further
enhance and ensure the stability and accuracy of the presented
results, HSU multiple comparisons with the best (MCB) si-
multaneous tests for problems 1, 2, and 3 are presented in
tabular forms, strengthening the statistical analysis.

It is observed that the presented research work has better
optimum accuracy than other numerical techniques at
present. Te hybrid optimum solvers have approximated the
numerical solution of the proposed problem in lesser time,
ensuring the accuracy and reliability of the obtained results.
Trough the statistical analysis, it is concluded that GA-IPT
hybridization has achieved better results as compared to PS,
GA, SQP, and PS-IPT.

In the future, one may explore the higher-order, sin-
gular, and nonlinear kind of partial diferential equations
[73–78] by using ANNs.
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current study are available on request from the corre-
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