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Te computation of a group Steiner tree (GST) in various types of graph networks, such as social network and transportation
network, is a fundamental graph problem in graphs, with important applications. In these graphs, time is a common and necessary
dimension, for example, time information in social network can be the time when a user sends a message to another user. Graphs
with time information can be called temporal graphs. However, few studies have been conducted on GST in terms of temporal
graphs. Tis study analyzes the computation of GSTfor temporal graphs, i.e., the computation of temporal GST (TGST), which is
shown to be an NP-hard problem.We propose an efcient solution based on a dynamic programming algorithm for our problem.
Tis study adopts new optimization techniques, including graph simplifcation, state pruning, and A∗ search, are adopted to
dramatically reduce the algorithm search space. Moreover, we consider three extensions for our problem, namely the TGSTwith
unspecifed tree root, the progressive search of TGST, and the top-N search of TGST. Results of the experimental study performed
on real temporal networks verify the efciency and efectiveness of our algorithms.

1. Introduction

Temporal networks or graphs with time information have
attracted considerable research attention [1–13]. Some
important categories of temporal graphs include commu-
nication networks, social networks, transportation networks,
and neural networks.Te computation of group Steiner trees
(GSTs) is a fundamental graph problem with important
applications, such as the VLSI design in industrial appli-
cations, the keyword search in relational databases, and the
fnding of a team of experts in social networks [14–20].
However, only few studies have been conducted on GST in
terms of a temporal graph.

Tis study analyzes the computation of GST for temporal
graphs, i.e., the computation of temporal GST (TGST). Cal-
culating GST for temporal graphs is quite useful, for example,
querying the relationship between authors in DBLP
throughout various time intervals, evaluating the propagation

of viruses or messages in social networks, and querying routes
to a group of POIs in a public transit network.

Based on the abovementioned application, we studied
the computation of GSTs in temporal graphs, namely TGST.
Specifcally, given a weighted and labeled temporal graph G,
where each vertex is associated with a set of labels, our
approach searches for the minimum-weighted connected
tree from G that covers all the specifed given labels.

In reality, the conventional GST in a static (nontemporal)
graph is a classical problem. However, the existing GST solu-
tions cannot be suitable for our problems because the temporal
information is not considered. Terefore, the dynamic pro-
gramming algorithm is often used in the existing solutions.
Ding et al. [18] presented a parameterized dynamic pro-
gramming algorithm has been presented which takes O(3k ·

n + 2k · (n · log n + m)) time, where k is the number of spec-
ifed labels, andm and n are the number of edges and vertices of
the graph, respectively. Owing to the exponential time
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complexity, the parameterized algorithm is impractical even for
a very small value of k (e.g., k= 8) in large graphs.Terefore, an
improved dynamic algorithm was devised in [20].

Similar to the existing methods, we present an efcient
solution based on a dynamic programming algorithm for our
problem. Specifcally, we defne a state as a connected tree in
the given temporal graph. Our approach difers from those
proposed in [18, 20] in that our state contains the directed
edges associated with time information. Moreover, we propose
three state-transition operations, namely, edge-growth, tree-
merger, and path-growth. Similar to the approaches in [18, 20],
the edge-growth combines a state with an edge into a new state,
and tree-merger combines two states into a new state. In
particular, the path-growth corresponds to a series of edge-
growth and tree-merger operations, which can reduce the
number of states to be generated. Consider the huge size of
a temporal graph. We propose a new method called graph
simplifcation, by which we can obtain a smaller-size temporal
graph. In addition, we propose an enhanced method based on
the A∗ search strategy, which can dramatically reduce the
number of states in the search space.

To the best of our knowledge, this is the frst study to focus
on the computation of TGST. Specifcally, our main contri-
butions are summarized as follows. (1) A dynamic pro-
gramming (DP) algorithm for TGSTis proposed, which adopts
the proposed graph simplifcation and state pruning tech-
niques. Moreover, we use the A∗ search strategy to further
speed upDP and design an enhanced algorithm called DP+. (2)
Tis study also presents the following problem extension. First,
we consider the TGSTwith an unspecifed tree root, as the root
node of TGST may be unspecifed. We propose a modifed
version of the DP algorithm for solving the extension problem.
Second, we consider the progressive search of TGST. In
particular, in practice, a user may prefer a suboptimal solution
in less time instead of waiting for the algorithm to fnd the
optimal solution.Terefore, we analyzed the progressive search
that produces progressively refned feasible solutions during
algorithm execution. Tird, the user may want to obtain
multiple optimal solutions. Terefore, the top-N GSTs were
considered to fnd the optimal N solutions ranked using a cost
function. (3) We conducted a set of experiments based on fve
real temporal networks. Te experimental results further verify
the efciency of our algorithm. Compared with the baseline
algorithm, our proposed algorithm is faster by several orders of
magnitude. In addition, we present a case study to show the
efectiveness of our algorithm.

Tis paper is organized as follows. Section 2 contains our
problem defnition. Section 3 introduces the dynamic
programming algorithm and the proposed optimization
techniques. Section 4 is the extension for our problem. Our
empirical study is reported in Section 5, and the related work
is discussed in Section 6. We conclude in Section 7.

2. Problem Definition

Tis section presents our problem of TGST and presents
some defnitions and notations used in this study.

2.1. Temporal Graph. Let G= (V, E) be a temporal graph,
where V (E) is the set of vertex (edge) of G. In particular,
there may be multiple directed edges between two vertices in
G. Each edge e ∈E is defned to be a quintuple which in-
cludes a starting vertex u, an end vertex v, a starting time tu,
an arrival time tv, and a weight value w, denoted as
e= (u, v, tu, tv, w), where tu, tv, and w are nonnegative real
numbers, and tu ≤ tv. Te starting vertex, end vertex, starting
time, arrival time, and weight value of e are also denoted by
s(e), a(e), ts(e), ta(e), and w(e), namely s(e) = u, a(e)= v,
ts(e)= tu, ta(e)= tv, and w(e)=w. For simplicity, we
sometimes write e as e= (u, v).

For any vertex u ∈V, let Ei(u) and Eo(u) denote the sets
of in-edges and the set of out-edges of u, respectively. Ten,
Ei(u)= e | a(e)= u, e ∈E{ }, and Eo(u)= e | s(e)= u, e ∈E{ }.
Te in-degree and out-degree of u are equal to |Ei(u)| and
|Eo(u)|, respectively.

Example 1. Figure 1(a) illustrates a temporal graph con-
taining eight vertices numbered 0–7 and 13 edges, e1, e2, e3,
. . ., e13. Each edge is labeled with a serial number, [tu, tv] and
[w]. In this example, we set the edge weight w as the time
duration, namely tv − tu. In practice, w can be set as any
value. In this fgure, the edge e1 = (0, 1, 1, 5, 4) indicates a bus
route from 0 to 1 with the departure time tu = 1, the arrival
time tv = 5, and the cost w= 4. Furthermore, the set of in-
edges and out-edges of the vertex 1 is defned as Ei(1)= e1,􏼈

e7} and Eo(1)= e4, e5, e6􏼈 􏼉, respectively.
Path P= 〈e1, e2, . . ., ek〉 in G is a sequence of edges such

that a(ei)= s(ei+1) and ta(ei)≤ ts(ei+1), where 1≤ i< k. We
say that P is a path from the vertex s(e1) to the vertex a(ek).
Te starting edge and end edge of P are e1 and ek, re-
spectively. We denote ts(e1) as the starting time and ta(ek)

as the arrival time of P, calculated as S(P) and A(P), re-
spectively. Te weight or cost of P is formulated asW(P) =
􏽐e∈Pw(e).

For example, in Figure 1(a), the sequence of 〈e1, e4〉 is
not a path as ta(e1)= 5> ts(e4)= 3. Te sequence 〈e1, e5〉 is
a path, denoted by P1. Ten, W(P1)=w(e1) + w(e5)= 6,
S(P1)= ts(e1)= 1, and A(P1)= ta(e5)= 8.

We call requirement ta(ei)≤ ts(ei+1) as the path time
constraint. For example, in transportation networks, each
directed edge implies a bus route, and the departure time
of ei+1 initiates after the arrival time of ei. Moreover, the
edge durations may be denoted as zero for some temporal
graphs such as e-mail communication and Facebook wall
posting.

We can say that a path P is satisfed with the time interval
[tα, tβ] if S(P)≥ tα and A(P)≤ tβ. We say v is reachable
from u in [tα, tβ] if there is a path from u to v that is satisfed
by [tα, tβ].

We say that a connected tree T in G is satisfed with
[tα, tβ] if all paths from the root to each leaf vertex are
reachable in [tα, tβ]. Similarly, the weight or cost of T is
defned as the sum of the weight of each edge included in T,
namely, W(T)=􏽐e∈Tw(e).
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2.2. Our Problem

Defnition 2. (TGST). Given a temporal graph G= (V, E),
each vertex v ∈V is associated with a set of labels Lv. Let
L= ∪ v∈VLv be the set of all labels. Given a root r ∈V, a set of
query labels L⊆L, and a time constraint [tα, tβ], our ap-
proach involves the fnding of a minimum weight tree, T,
from G that is rooted at r, satisfed by [tα, tβ], and contains
all labels in L. For simplicity, we assume that Lr =∅, as we
can always exclude Lr from L.

Consider Figure 1(a) as an example, where vertex 0 is
defned as root r, and L1 = a, e{ }, L3 = a{ }, L4 =L6 = b{ },
L5 = c{ }, and L2 = L7 = d{ }. Suppose that time constraint
[tα, tβ] is set as [0,∞], and the set of query labels is
L= a, b, c, d{ }. Ten, we obtain an optimal solution, T, as
shown in Figure 1(b), the weight of which is denoted as
W(T)=w(e2) + w(e7) + w(e8) + w(e13)= 4.

Let P(r, v) be the set of all paths from r to v that are
satisfed with [tα, tβ]. If P ∈P(r, v) has the earliest arrival time
among all paths in P(r, v), we defne arrival timeA(P) as the
earliest arrival time for v, denoted by 􏽥A(v). In particular, if
there is no path from r to v, we set 􏽥A(v)=∞. For example, in
Figure 1(a), let r be the vertex 0, 􏽥A(7)= 9, and 􏽥A(6)=∞.

Te existing GST problem in a weighted and labeled
graph, in which the vertices with the same labels are in the
same group, is the generation of the Steiner tree problem
[21].Te existing GSTproblem is known to be NP-hard [14].
As additional time information is contained in a timetable
graph, the existing GST problem can be viewed as a special
case of our problem. Tus, we defne the following theorem.

Theorem 3. Our problem is NP-hard.

2.3. Motivation for TGST. Our work is motivated by
a number of applications. A TGST can identify user re-
lationships at diferent time intervals in social networks. A
TGST is also useful for the study of epidemiology, the paths
of infectious diseases (or computer virus), when the network
is about individual contacts (or a computer network). An-
other application is the transportation problem cited in [22].
A TGST minimizes the total cost to transport some given
POIS. Some motivation applications are as follows.

Motivation 1. Consider a temporal network record
when two nodes have interacted such as virus infection
or e-mail forwarding. A TGST can be adopted for
reconstructing the fow of epidemic propagating in
temporal networks. Tat is, given a temporal network
in which a virus has been propagating over time, we can
identify the starting points of the epidemic and tell
when every node got infected. In particular, each node
can be associated with the types of viruses. In order to
better understand the real viruses spread over time, we
consider the spread of related types of viruses. When
one virus spreads to a node such as the coronavirus, it is
possible that this virus will not appear in the next node,
but the related virus could appear such as the heli-
cobacter pylori. If the edge’s weight is set as the afected
time of viruses, a TGSTcan tell the propagation paths of
the specifed types of viruses with minimum afected
time. A case study for this observation is given in
Section 5.

Motivation 2. We consider an application of the DBLP
graph, where each vertex corresponds to an author or
a paper and each edge denotes a certain relationship
(e.g., coauthor/cited by/written by) among the authors
and the papers. An edge is more important if it has
a smaller weight. Our solution can be used to fnd out
the closest connections from the DBLP graph that
covers the given authors within a given period. For
example, from 2016 to 2018, Tom and Peter coauthored
three papers that were cited by one paper written by
Jack in 2019. Te found connections can be highly
useful and important for network analysis.

Motivation 3. A public transportation network can be
modeled as a timetable graph [23], where each node
represents a station, and each directed edge is associated
with a timetable that records the departure (resp. arrival)
time of each vehicle from a station to another. Moreover,
each node is associated with some POI category keywords
or labels, and each edge has a travel cost weight such as the
distance and time duration. A TGST minimizes the total
cost to transport some given resource from a given location
to all the stations associated with the given set of POIs.
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Figure 1: Running example. (a) Temporal graph G. (b) An optimal solution.
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3. Our Solution

In summary, our solution adopts a DP paradigm similar to
that proposed in [18, 20], in that we utilize the similar state
representation and state-transition equation. In fact, the
approach used in [20] is an improved version of that in [18]
for an undirected static graph, in which some optimization
techniques are proposed to reduce the search space.

To design our solution, we considered the following
naive method based on an adaption version of [20]. First, we
obtained a state queue, in which a set of initial states are
stored for each vertex and query label. In addition, an upper
bound weight of a feasible solution is stored. Second, the
state with the minimum weight value in the queue is ex-
panded using the edge-growth and tree-merger operations
to generate a new state. Tird, check whether the new state is
an optimal solution. If yes, then that state is returned as an
answer. Otherwise, if the state weight is less than the upper
bound, it is used to update the state queue and upper bound.
Ten, the next state in the queue is checked, and the state
expansion is continued in the second step.

However, note that some important properties in [20] do
not hold for our problem. For example, in the A∗ search, the
lower bound for each state is based on the fact that the root
of a state can reach to any vertex covering the labels in an
undirected graph.

Tus, we must design new optimization techniques for
the adaption version. First, as discussed in Section 3.1, we
attempt to simplify the given temporal graphs and present
a new method called graph simplifcation, which can extract
several edges and vertices from the given temporal graph. In
general, the graph simplifcation takes O(|E|) time. In ad-
dition, we present an upper bound for our problem based on
the simplifed temporal graph. Second, we try to reduce the
states to be generated using the edge-growth and tree-
merger operations. Tus, we present a new state-
expansion operation, namely, the path-growth operation,
as discussed in Section 3.2. Te path-growth operation
expands a state by a path instead of an edge. Note that the
edge-growth and tree-merger operations are not necessary
for expanding the state in terms of the edges contained in the
path. Tird, we try to reduce the states that have been
generated in the search space. Terefore, in Section 3.2, we
present a state pruning operation to remove the bad states
from the search space. Moreover, based on the enhanced A∗

search strategy, we propose an efective lower bound for each
state to prune the generated states.

Note that a previous related study focused on how to
reduce the generated states in the search space ([20]).
However, studies have yet to devise a method to reduce the
graph size and number of states to be generated.

3.1. Graph Simplifcation. First, we introduce some impor-
tant properties that are the basis of graph simplifcation.

Lemma 4. Given a temporal graph G= (V, E) and a set of
query labels L, for any vertex v ∈V, if Lv ∩ L=∅ and
Eo(v)=∅, v can be removed from G.

Te correctness of Lemma 4 can be easily verifed based
on our problem defnition. Lemma 4 shows that from G,
vertices with out-degrees equal to zero and not containing
labels in L can be easily removed. For example, as shown in
Figure 1(a), if L= c{ }, vertices 4, 6, and 7 can be removed.We
can continue to remove vertex 3 in the remaining graph as it
does not contain the labels in L and its out-degree is zero.
Te removal process is then halted as there are no such
vertices remaining.

For any vertex v ∈V, we can obtain the earliest arrival
time for v (i.e., 􏽥A(v)) by using the time-minimum spanning
tree algorithm with linear time [3]. Ten, we achieve the
following Lemma 5.

Lemma 5. Given a temporal graph G= (V, E) and a root
r ∈V, for any edge e ∈E, if ts(e)< 􏽥A(s(e)), e can be removed
from G.

Proof. For any edge e= (u, v, tu, tv, w) ∈E, we have ts(e) = tu

and s(e) = u. Ten, 􏽥A(s(e))= 􏽥A(u) corresponds to the
earliest arrival time among all paths from the root r to u. As
tu < 􏽥A(u), the path time constraint does not hold.Terefore,
edge e cannot be included in any path from r to v, and it can
thus be removed.

By using Lemma 5, we can continue removing edges
from G. For example, in Figure 1(a), let vertex 0 be the root.
As ts(e4)= 3< 􏽥A(1)= 5, edge e4 can be removed.

Specifcally, the key steps of graph simplifcation are as
follows.

Step 1: Simplify the temporal graph according to time
constraint [tα, tβ]. For each edge e ∈E, if tα ≤ ts(e)≤
ta(s)≤ tβ does not hold, remove the edge e from G

Step 2: Simplify the temporal graph according to the
earliest arrival time

(1) Use the time-minimum spanning tree algorithm [3]
to obtain the earliest arrival time 􏽥A(v) for each
vertex v ∈V

(2) For each edge e ∈E, if ts(e)< 􏽥A(s(e)), remove the
edge e from G

Step 3: Simplify the temporal graph according to the set
of query labels.

(1) TraverseG and fnd all vertices, with zero as the out-
degree and which do not contain labels in L. Store
these vertices in queue Q.

(2) For each vertex v ∈Q, remove v and remove all
edges in Ei(v) fromG.Ten, for each edge e ∈Ei(v),
decrease the out-degree of the vertex s(e). If the
out-degree of s(e) � 0 and s(e) does not contain any
label in L, add s(e) into Q.

(3) Q is repeatedly checked until Q=∅.

After the key steps are run, there may exist isolated
vertices that do not connect with other vertices; these must
also be removed. Ten, we obtain a simplifed temporal
graph denoted by Gs(Vs, Es). Te main time cost for both
the frst and third steps is equal to the cost for traversing the
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temporal graph, i.e., O(|E|). Next, we examine if Lv ∩L �∅
in the third step using the bitwise AND operation between
the vectors for Lv and L at constant time. In the second step,
the time-minimum spanning tree algorithm takes O(|E|)

time. Ten, we have the following theorem. □

Theorem 6. Given a temporal graph G(V, E), Gs(Vs, Es)

can be returned in O(|E|) time.

Next, we present an upper bound based onGs(Vs, Es) for
our problem.

Lemma 7. Given a simplifed temporal graph Gs, let P1, P2,
. . ., and Pm be the minimum weight paths from the root r to
each vertex covering the labels in L. If UB=􏽐

k
j=1w(ej), where

e1, e2, . . ., ek are all distinct edges contained in P1, P2, . . ., Pm,
UB is an upper bound for our optimal solution.

Proof. Te optimal solution is a minimum weight tree
comprising paths from root vertex r to each vertex covering
the labels in L. Clearly, the optimal solution does not
comprise duplicate edges. As P1, P2, . . ., Pm are all such
paths with minimumweights and e1, e2, . . ., ek are all distinct
edges contained in these paths, the weight of the optimal
solution is not larger than UB. □

Example 8. Consider Figure 1(a) as an example, where
L= a, b, c, d{ }, vertex 0 is the root and [tα, tβ]= [0,∞]. We
obtain the simplifed graph, Gs, comprising all edges
except e4 and e10, as these were removed according to
Lemma 5, and all vertices except vertex 6 as it is isolated.
Ten, we obtain the minimum weight paths from root 0 to
the vertices covering the labels in L, namely P1 = 〈e3〉,
P2 = 〈e2, e8, e13〉, P3 = 〈e2, e8〉, and P4 = 〈e2〉. Ten, UB=
w(e2) + w(e7) + w(e8) + w(e13)= 5, where e2, e3, e8, e13 are
all distinct edges contained in these paths.

In general, the minimumweight paths can be obtained as
follows. (1) Te simplifed temporal graph, Gs, is trans-
formed into the directed weighted graph, Gs by using the
graph transformation method in [3]. (2) Ten, any path in
Gs has one corresponding path in Gs, and both these paths
have the same weight. By executing the Dijkstra algorithm
[24] on Gs, we can obtain the minimum weight paths in Gs,
that is, from root r to each vertex, covering the labels in L.
Te process utilizes O(|E| + |V| · log|V|) time.

3.2. State Pruning. In our algorithm, a state denoted by
(v, X, t) corresponds to a connected tree in G that is rooted
at v and covers all labels in X, where t is the earliest starting
time among the out-edges of v contained in the tree. Ten,
let T(v, X, t) denote the tree with the minimum weight
among all such trees. For example, state (0, a, b, c, d{ }, ts(e2))

corresponds to the tree in Figure 1(b). As the tree has the
minimum weight, it corresponds to T(0, a, b, c, d{ }, ts(e2)).

Ten, the state-transition equation is formulated as
follows:

T(v, X, t)=min Tg(v, X, t)􏼐 , Tm(v, X, t)􏽮 􏽯, (1)

Tg s(e), X, ts(e)( 􏼁= min
e∈Ei(u)∧ta(e)⩽t

e⊕T(u, X, t){ }, (2)

Tm(v, X, t) = min
X1∩X2=∅

T v, X1, t1( 􏼁⊕T v, X2, t2( 􏼁􏼈 􏼉,

whereX=X1 ∪X2,

t=min t1, t2􏼈 􏼉.

(3)

As shown in equation (1), T(v, X, t) is constructed from
either Tg(v, X, t) or Tm(v, X, t) with the minimum weight,
which is constructed using the edge-growth operation in
equation or the tree-merger operation in equation (3).
Specifcally, for any state (u, X, t), the edge-growth opera-
tionmust be used to examine each in-edge e of u individually
and then construct a new tree Tg(s(e), X, ts(e)) by com-
bining edge e and tree T(u, X, t), where ta(e)≤ t. Note that
label set X is unchanged in the edge-growth operation.
However, for any two states (v, X1, t1) and (v, X2, t2) with
the same root v, if X1 ∩X2 =∅, the tree-merger operation
merges both trees T(v, X1, t1) and T(v, X2, t2) into a new
tree, Tm(v, X, t), where X=X1 ∪X2 and t=min t1, t2􏼈 􏼉. Te
set of labels of the expanded state then becomes larger in the
tree-merger operation.

3.2.1. Pruning by Using the Path-Growth Operation (P1).
In general, the path-growth operation merges a state with
a path instead of an edge. As a path often contains multiple
edges, the path-growth operation corresponds to a series of
edge-growth and tree-merger operations. Ten, the number
of states to be generated by the path-growth operation can be
reduced.

Defnition 9 (State path). For any state (v, X, t), let
P(v, t)= P | P ∈P(r, v)∧A(P)≤ t{ }. If Pv,t ∈P(v, t) has the
minimum weight among all paths in P(v, t), Pv,t can be
called the state path of (v, X, t).

For any state (v, X, t), there are two cases. Case 1:
v{ }=Pv,t ∩T(v, X, t). Case 2: v{ } ⊂ Pv,t ∩T(v, X, t). First, we
consider Case 1. Let ψ(Pv,t) denote the set of labels con-
tained in the state path Pv,t. Te path-growth operation is
formulated as follows.

Defnition 10 (Path-growth). For any state (v, X, t), if
Pv,t ∩T(v, X, t)= v{ }, the path-growth operation on (v, X, t)

merges Pv,t and T(v, X, t) into a new tree, and it is defned as
Pv,t ⊕T(v, X, t)= (r, X′,S(Pv,t)), where X′ =X∪ψ(Pv,t).

Lemma 11. For any state (v, X, t), if X∪ψ(Pv,t)= L, the
path-growth operation on (v, X, t) is a feasible solution that
has the minimum weight among all feasible solutions
containing T(v, X, t).

Proof. According to Defnition 10, Pv,t ⊕T(v, X, t)= (r, X′,
S(Pv,t)), where X′ =X∪ψ(Pv,t). As X∪ψ(Pv,t)=L, (r, X′,
S(Pv,t))= (r, L,S(Pv,t)) is a tree rooted at r and contains all
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labels in L.Tus, (r, X′,S(Pv,t)) is a feasible solution, denoted
by T1. Next, we show that T1 has the minimumweight among
all feasible solutions containing T(v, X, t). Suppose that T2 is
another feasible solution. Ten, there exists a path P′ ∈P(v, t)

(P′ ≠Pv,t), which can bemerge withT(v, X, t) intoT2. AsPv,t

has the minimum weight among all paths in P(v, t), we have
W(Pv,t)≤W(P′). Tus, W(T1)=W(P(v)) + W(T(v,

X, t))≤W(T2)=W(P′) + W(T (v, X, t)).
Next, considering Case 2, we propose the

following lemma. □

Lemma 12. For any state (v, X, t), if X∪ψ(Pv,t)= L and
v{ } ⊂ Pv,t ∩T(v, X, t), W(Pv,t) + W(T(v, X, t)) is an upper
bound of the weight of the optimal solution.

Proof. Without loss of generality, suppose that there exist
two common vertices u and v included in both Pv,t and
T(v, X, t), as shown in Figure 2(a). As shown, Pv,t corre-
sponds to the path from root r to v, denoted by the dashed
line. T(v, X, t) corresponds to the tree rooted at v and
contains vertices v, u, y, and the other vertices. In addition,
the triangle is used to represent the other vertices. Suppose
that ψ(Pv,t)∪X=L. For simplicity, the labels associated with
each vertex are not given in Figure 2.

Let G′ denote the cycle graph in Figure 2(a), which
corresponds to the merger of Pv,t and T(v, X, t). By re-
moving the edge from v to u in G′, we obtained tree T′
rooted at r, as shown in Figure 2(b). Evidently, T′ and G′
contain the same set of vertices. Ten, T′ contains all labels
in L. Tus, T′ is a feasible solution. As T′ has less number of
edges, W(T′)≤W(G′)=W(Pv,t)+W(T(v, X, t)). □

3.2.2. Pruning by the Bad States (P2). Given any two gen-
erated states, they may have the same root but diferent
weights and time values. Te state with a smaller time value
and a larger weight value is called a bad state that can be
pruned.

Lemma 13. For any two states (v, X, t1) and (v, X, t2), if
t1 ≥ t2 and W(T(v, X, t1))≤W(T(v, X, t2)), T(v, X, t2) can
be pruned.

Proof. Consider the edge-growth operation. First, we ex-
amine T(v, X, t2) by using equation (2). For each edge
e ∈Ei(v), if ta(e)≤ t2, we merge both e and T(v, X, t2) into
a new tree T1 as follows: T1 = e⊕T(v, X, t2).

Next, we examine T(v, X, t1) using equation (2) As
ta(e)≤ t2 ≤ t1, we merge both e and T(v, X, t1) into a new
tree T2, as follows: T2 = e⊕T(v, X, t1).

Ten, W(T1)=w(e)+W(T(v, X, t2)) and W(T2)=
w(e) + W(T(v, X, t1)). In addition, as W(T(v, X, t1))≤
W(T(v, X, t2)), we have W(T2)≤W(T1). Tus, T1 has
a larger weight value. Tis implies that T(v, X, t2) does not
need to be further expanded. In contrast, if ta(e)> t2,
T(v, X, t2) does not need to be expanded further.

Similarly, for the tree-merger and path-growth opera-
tions, T(v, X, t2) does not need to be expanded further.
Tus, T(v, X, t2) can be pruned. □

3.3. DPAlgorithm. Algorithm 1 describes the DP algorithm.
Te simplifed graph Gs(Vs, Es) and upper bound UB are
obtained as shown in lines 1–6. Queue Q is used to store the
expanded states, which are sorted according to their weights
in the ascending order. In the beginning, for each vertex v in
Vs and each label l in Lv ∩L, we construct an initial state
so = (v, l{ },∞). Te earliest starting time and cost value for so

are set to be∞ and zero, respectively. Tis is because in so

comprises only a single vertex v and no edge. Ten, we push
so into Q. Queue D is used to store the states that pop
from Q.

Lines 7–25 show that if Q is nonempty, theDP algorithm
repeats the pop/push operation to grow/merge the states
individually to obtain the optimal solution. Specifcally, the
algorithm pops (line 8) the top state T(v, X, t) that has the
minimum weight among all states in Q. If T(v, X, t) covers
all labels in L and v is the root vertex r, the algorithm returns
it as an optimal solution (line 9). Otherwise, T(v, X, t) is
pushed into D (line 10).

Next, the algorithm performs the path-growth opera-
tion (lines 11–14). If T(v, X, t) and Pv,t contain all labels in
L and they only have one common vertex v, then the ex-
panded state sp is generated. As sp is a feasible solution
according to Lemma 11, it is used to update Q and UB.
Otherwise, if T(v, X, t) and Pv,t contain multiple common
vertices, UB is updated according to Lemma 12 (lines 15
and 16).

Ten, the algorithm attempts to perform the edge-
growth operation for T(v, X, t) (lines 17–20). For each
in-edge e of v, if the arrival time of e is not larger than t, the
path time constraint is satisfed. Ten, sg is used to update Q

and UB.
Finally, the algorithm performs the tree-merger opera-

tion for T(v, X, t) and the states in D (lines 22–25). If there
exists a state T(v, X′, t′) in D with the same root vertex v and
X′ ⊆L\X, the expanded state sm is generated, which is used
to update Q and UB.

We update Q and UB by using the update procedure
with the expanded state (v, X, t) and its weight cost. In
particular, if we merge (v, X, t) and its state path Pv,t into
a new tree with a weight value is equal to cost + W(Pv,t). If
the weight value of the tree is larger than the current upper
bound, the solution is not an optimal solution. Tus, the
expanded state can be pruned and need not be pushed into Q

for further expansion (line 27).
Next, if v is the root vertex r and X contains all labels in

L, the expanded state may be a feasible solution. Ten, UB
is set as the smaller value betweeb UB and the weight value
cost (line 29). Ten, we push the expanded state and its
cost value into Q (line 30). According to Lemma 13, in line
32, if there exists a state T(v, X, t′) in D that is better than
the expanded state, (v, X, t), the expanded state can be
pruned. Similarly, if there exists a better state (v, X, t′) in
Q, the expanded state can also be pruned. Else, if there
exists a worse state (v, X, t′) in Q, the worse state must be
removed from Q. After that, the expanded state and its
cost value are pushed into Q for further expansion
(line 33).

Te framework diagram of DP is shown in Figure 3.
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3.3.1. Algorithm Example 1. Consider Figure 1(a) as an
example, where L= a, b, c, d{ } and [tα, tβ]= [0,∞]. From
Example 8, we can obtain the simplifed temporal graph Gs

and UB= 5. Next, Q is initialized with six states, namely
((1, a{ },∞), 0), ((2, d{ },∞), 0), ((3, a{ },∞), 0), ((4, b{ },∞),

0), ((5, c{ },∞), 0), and ((7, d{ },∞), 0) as shown in
Figure 4(a).

As Q is nonempty, top state s1 =T(1, a{ },∞) is popped
from Q. As vertex 1 is not the root, s1 and its cost are pushed
into D. State path of s1 is P1,∞ = 〈e2, e8, e7〉. As ψ(P1,∞)∪
a{ }≠ L, the algorithm performs the edge-growth operation.
As e1 ∈Ei(1), s2 = e1 ⊕ s1 = (0, a{ }, 1) is generated. Ten, s2 is
pushed into Q. Similarly, s3 = e7 ⊕ s1 = (5, a{ }, 4) is pushed
into Q. When examining all initial states, Q contains six new
states, as shown in Figure 4(b). Note that D contains the six
initial states in Q as shown in Figure 4(a).

Next, state s4 =T(5, a{ }, 4) pops from Q, the state path of
which is P5,4 = 〈e2, e8〉. Similar to the abovementioned dis-
cussion, s5 = e8 ⊕ s4 = (2, a{ }, 3) and s6 = e9 ⊕ s4 = (2, a{ }, 2)

are generated. Ten, s5 is pushed into Q. According to Lemma
13, s6 is pruned by s5 in Q (line 33). Ten, s8 = s4 ⊕ s7 = (5,

a, c{ }, 4) is pushed into Q, where s7 =T(5, c{ },∞) in D. Ten,
the states in Q are shown in Figure 4(c).

After some state expansions, the states in Q are shown in
Figure 4(d). For simplicity, we only considered the top three
states in Q. Ten, s9 =T(5, a, b{ }, 4) pops from Q, the state

path of which is denoted as P5,4 = 〈e2, e8〉. Ten, s10 =P5,4
⊕ s9 = (0, a, b, c, d{ }, 1) that is pushed into Q. After some state
expansions, the algorithm pops s10 from Q and returns it as
an optimal solution.

In the following text, we illustrate that the path-growth
corresponds to the combination of the edge-growth and
tree-merger. Consider state s9. According to the tree-merger
operation, we obtain state s11 = s9 ⊕ s7 = (5, a, b, c{ }, 4), where
s7 =T(5, c{ },∞) is in D. Next, according to the edge-growth
operation, we obtain state s12 = e8 ⊕ s11 = (2, a, b, c{ }, 3).
Ten, by using the tree-merger operation, we obtain state
s14 = s12 ⊕ s13 = (2, a, b, c, d{ }, 3), where s13 =T(2, d{ },∞) is
in D. Ten, by using the edge-growth operation, state
s15 = e2 ⊕ s14 = (0, a, b, c, d{ }, 1). Clearly, s15 is the same as s10,
generated using the path-growth operation on s9.Tat is, the
path-growth operation corresponds to two edge-growth
operations and two tree-merger operations.

3.3.2. Algorithm Complexity. Consider the algorithm time
complexity in the worst case.Temain cost includes the queue
operation cost as well as the costs of the edge-growth and tree-
merger operations. In addition, consider query label set L,
where k= |L|. Ten, there exist 2k subsets for L. For a state
rooted at v ∈V, there exist at most |Eo(v)| diferent starting
times. Furthermore, there exist at most |Eo(v)| · 2k states
rooted in v ∈V, and queue Q contains at most 􏽐v∈V|Eo(v)| ·

2k =m · 2k states, where m= |E|. Ten, according to the
Fibonacci Heap, the total cost for the queue operations is
calculated asO(m · 2k · log(m · 2k))=O(m · 2k · (k + logm)).
In the update, we must scan all states in Q and D to check
whether a state is a bad state. In lines 17–20 (i.e., edge-growth),
the total number of possible u ∈V is bounded by O(|Ei(v)|),
where e= (u, v). Te total number of comparisons in line 18 is
bounded by O(2k · 􏽐v∈Vα · β)=O (2k · n · α · β), where
α=maxv∈V|Ei(v)|, β=maxv∈V|Eo(v)| and n= |V|, re-
spectively. In lines 22–25 (i.e., tree-merger), we must scan all
states in Q and D, and the total cost is similar to that of the
update procedure. Tus, the time complexity is formulated as
O(m · 2k · (k + logm) + 22k+1 · m2 + 2k · n · α · β).
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Figure 2: Lemma illustration. (a) Merged graph. (b) A feasible solution.
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Figure 3: Te framework diagram of DP.
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Input: G= (V, E), root r, time interval [tα, tβ], and the query label set L.
Output: Te optimal solution.

(1) obtain Gs = (Vs, Es) by using the graph simplifcation on G(V, E);
(2) set the upper bound UB based on Gs = (Vs, Es);
(3) Q⟵∅; D⟵∅;
(4) for each v ∈Vs and each label l ∈ Lv do
(5) so⟵ (v, l{ },∞);
(6) Q.push ((so, 0));
(7) while Q≠∅ do
(8) (T(v, X, t), cost)⟵Q.pop();
(9) if v= r and X= L then return T(v, X, t);
(10) D⟵D∪ {(T(v, X, t), cost)};
(11) if X∪ψ(Pv,t)= L and v{ }=Pv,t ∩T(v, X, t) then
(12) sp⟵Pv,t ⊕T(v, X, t);
(13) update(Q, D,UB,sp, cost + W(Pv,t));
(14) continue;
(15) if X∪ψ(Pv,t)= L and v{ } ⊂ Pv,t ∩T(v, X, t) then
(16) UB⟵ min UB, cost + W(Pv,t)􏽮 􏽯;
(17) for each e ∈Ei(v) do
(18) if ta(e)≤ t then
(19) sg⟵ e⊕T(v, X, t);
(20) update(Q, D,UB,sg, cost+w(e));
(21) X⟵ L\X;
(22) for each X′ ⊆X do
(23) if (T(v, X′, t′), cost′) ∈D then
(24) sm⟵T(v, X, t)⊕T(v, X′, t′);
(25) update(Q, D,UB,sm, cost + cost′);
(26) Procedure update(Q, D,UB,(v, X, t), cost)
(27) if cost + W(Pv,t)>UB then return;
(28) if v= r and X=L then
(29) UB⟵ min UB, cost){ };
(30) Q.push (((v, X, t), cost));
(31) return;
(32) if (v, X, t) is a bad state then return;
(33) Q.push (((v, X, t), cost));

ALGORITHM 1: DP.
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Figure 4: Example for DP algorithm.
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3.4. Further Enhancement. To design the A∗-search algo-
rithm DP+ for our problem, we must establish an efective
lower bound for each state (v, X, t) in the search space
[25, 26]. According to the A∗ search theory [25, 26], the
lower bound denotes the bound from the current state
(v, X, t) to its goal state (r, L, t′), where t′ ≤ t. If (v, X, t) is
removed from (r, L, t′), let H denote the remaining tree,
such that H= (r, L, t′) − (v, X, t). Evidently, H is rooted at r

and covers all labels in X=L\X. Ten, we must design
a lower bound for the weight of tree H. In the following, we
propose two efective lower bounds by using the state path
and relaxing the set of covered labels.

For any state (v, X, t), we defne the path-based lower
bound as ξ1(v, X, t)≜W(Pv,t), where Pv,t is the state path of
(v, X, t). Te following lemma shows that ξ1(v, X, t) is in-
deed a valid lower bound.

Lemma 14. For any state (v, X, t), ξ1(v, X, t)≤W(H).

Proof. As the goal state (r, L, t′) denotes the union of
(v, X, t) and tree H, namely, H= (r, L, t′) − (v, X, t), H

contains the paths from r to v. As state path Pv,t of (v, X, t) is
a path from r to v, W(Pv,t)≤W(H).

For any state (v, X, t), tree H covers all the labels in X.
Ten, we develop the label-based lower bound ξ2(v, X, t) by
relaxing the constraint. Specifcally, we consider state
(r, x{ }, t′), which corresponds to the tree rooted at r and
covering only one label x ∈X, where t′ ≤ t. Ten, we defne
the label-based lower bound to be the weight of the maxi-
mum weight tree over all T(r, x{ }, t′) for x ∈X. Tat is,
ξ2(v, X, t)≜maxx∈X W(T(r, x{ }, t′))􏼈 􏼉. Te following
lemma shows that ξ2(v, X, t) is also a valid lower bound. □

Lemma 15. For any state (v, X, t), ξ2(v, X, t)≤W(H).

Proof. For any state (v, X, t), T(r, x{ }, t′) corresponds to the
tree with the minimum weight among all trees rooted at r

and covering label x. Consider path P with the minimum
weight among all paths from r to vertex v covering label x. In
addition, suppose that the starting time of P is t′, such that
S(P)= t′. Ten, P is contained in T(r, x{ }, t′).

Next, we prove that T(r, x{ }, t′) corresponds to the path
P. Without loss of generality, assume that there exists such
an edge e that is contained in T(r, x{ }, t′) but not in P. Ten,
W(T(r, x{ }, t′))≥W(P) + w(e)>W(P). P is also a tree
that is rooted at r and covers the label x. Moreover,
W(P)<W(T(r, x{ }, t′)), this contradicts the defnition of
T(r, x{ }, t′). Tus, the assumption does not hold.

As T(r, x{ }, t′) corresponds to the path P from r to v

covering the label x ∈X, the tree H contains all paths from r

to the vertices that cover the labels in X. Ten,
W(P)≤W(H).

According to Lemmas 14 and 15, we have the
following lemma. □

Lemma 16. For any state (v, X, t), ξ(v, X, t)=max ξ1(v, X,􏼈

t), ξ2(v, X, t)}≤W(H).

3.5. DP+ Algorithm. Te DP+ algorithm description is in
Algorithm 1, which is similar to that of the DP algorithm.
Te framework diagram of DP+ and DP is similar.

Te main diferences between the DP and DP+ algo-
rithms are as follows. First, the DP+ algorithm adopts the
sum of the weight and the lower bound as the priority,
whereas the DP algorithm only uses the weight as the pri-
ority. Each state is associated with an additional priority
value, lb. Note that the states in Q are sorted according to
their priority values in the ascending order.

Second, in the update procedure, the DP+ algorithm
must call the priority function (line 12) to compute the lower
bound and the priority of the expanded state and then
determine whether the state can be pruned or not (line 14).
Note that for a state, the priority value is often not less than
the cost value. Tus, the pruning becomes tighter compared
with the DP algorithm.

Note that in line 13, for each expanded state, the al-
gorithm must take the maximum over priorities lb and 􏽥lb of
its parent state to ensure consistency of the lower bound.
Ten, the correctness of the algorithm can be guaranteed,
which is analyzed as follows.

3.5.1. Algorithm Analysis. According to the A∗ search
theory, the developed lower bounds must satisfy the con-
sistent property for the state-expansion operations. As the
path-growth operation implies the combination of edge-
growth and tree-merger operations, we only need to con-
sider the consistent property for each operation.

For a state (v, X, t), we frst prove that the path-based
lower bound ξ1(v, X, t) is consistent, as shown in the fol-
lowing Lemma 17. In particular, for the state s=T(v, X, t),
we can obtain a successor state sg = (s(e), X, ts(e)) by the
edge-growth operation, where e ∈Ei(v) and ta(e)≤ t. Sim-
ilarly, by using the tree-merger operation to merge
s=T(v, X, t) with s′ =T(v, X, t′), we can obtain a successor
state sm = (v, X∪X′, min t, t′􏼈 􏼉).

Lemma 17. For any state (v, X, t), we have (1) ξ1(sg) +

w(e)≥ ξ1(s) and (2) ξ1(sm) + W(s′)≥ ξ1(s).

Proof. Let Pv,t, Pg, and Pm denote the state paths of states s,
sg, and sm, respectively.

(1) Since sg = (s(e), X, ts(e)), Pg corresponds to the path
from root r to vertex s(e). By combining Pg and edge
e, we can obtain path P from r to v, and the arrival
time of P is ta(e)≤ t. Tus, P ∈P(v, t) and
W(P) =W(Pg) + w(e). As Pv,t has the minimum
weight value among all paths in P(v, t),
W(P)≥W(Pv,t). In addition, as ξ1(s)=W(Pv,t) and
ξ1(sg)=W(Pg), ξ1(sg) + w(e)≥ ξ1(s). Terefore,
this case holds.

(2) As sm = (v, X∪X′, min t, t′􏼈 􏼉) and s=T(v, X, t), we
have W(Pm)≥W(Pv,t) according to Defnition 9.
Further, as ξ1(sm)=W(Pm) and ξ1(s)=W(Pv,t), we
have ξ1(sm)≥ ξ1(s). Tus, ξ1(sm) + W(s′)≥ ξ1(s).
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However, the label-based lower bound is not consistent.
Terefore, the following process is used to ensure consis-
tency of the lower bound, as done in [27].

Specifcally, for the successor state sg of s=T(v, X, t) that
is obtained by expanding an edge e ∈Ei(v), we set the new
label-based lower bound ξ2′(sg)=max ξ2(sg),􏽮 ξ2′(s) − w(e)}.

Similarly, for the successor state sm that is obtained by
merging with s=T(v, X, t) and s′ =T(v, X′, t′), we set the
new label-based lower bound ξ2′(sm)=max ξ2(sm),􏼈

ξ2′(s) − W(s′)}. Next, we prove that the new label-based
lower bound is consistent. □

Lemma 18. For any state (v, X, t), we have (1) ξ2′(sg) +

w(e)≥ ξ2′(s) and (2) ξ2′(sm) + W(s′)≥ ξ2′(s).

Proof. (1) If ξ2′(sg)= ξ2(sg), we can obtain
ξ2′(sg)≥ ξ2′(s) − w(e). Ten, ξ2′(sg) + w(e)≥ ξ2′(s). If ξ2′(sg)

= ξ2′(s) − w(e), ξ2′(sg) + w(e)= ξ2′(s). Tus, ξ2′(sg) + w(e)

≥ ξ2′(s). (2) Similar to (1), we have ξ2′(sm) + W(s′)≥ ξ2′(s).
Te consistent property also implies that the new label-

based lower bound is a valid lower bound [28]. Based on the
abovementioned lemmas, the consistent property can be
preserved by taking the maximum operation over the de-
vised consistent lower bounds (i.e., line 12 in Algorithm 1).
Tus, the DP+ algorithm can fnd the optimal solution
according to the consistency-guarantee property of the A∗

search. □

3.5.2. Algorithm Example 2. Consider Figure 1(a). Similar to
Algorithm example 1, in this example, queue Q was ini-
tialized with six states, as shown in Figure 5(a). Te dif-
ference is that here, we must compute the priority values for
the initial states. For example, for the state (1, a{ },∞),

lb1 = ξ1(1, a{ },∞)=W(P1,∞)= 3 and lb2 = ξ2(1, b{ },∞)

=W(P2)= 3, where P2 = 〈e2, e8, e13〉. Ten,
lbo =max lb1, lb2􏼈 􏼉= 3.

Similarly, we have the expanded states s2 = e1 ⊕ s1 = (0,

a{ }, 1), s5 = e8 ⊕ s4 = (2, a{ }, 3), and s6 = e9 ⊕ s4 = (2, a{ }, 2),
where s1 =T(1, a{ },∞) and s4 =T(5, a{ }, 4). As the priority
values of these states are larger than that of upper bound UB,
the states are pruned in the DP+ algorithm, as shown in
Figures 5(b) and 5(c). Note that s2 and s5 are not pruned in
the DP algorithm. In addition, state (7, d{ },∞) does not
need to be expanded, as shown in Figure 5. Tis is because
their priority values are the largest among the states in Q.

4. Extension

4.1. Unspecifed Tree Root. Our extension problem can be
formulated as follows. Given a temporal graph G= (V, E),
a set of query label L⊆L, and a time constraint [tα, tβ]. Te
objective of our extension problem is to fnd a minimum
weight tree T from G that is satisfed with [tα, tβ] and
contains all labels in L.

By the modifcation of the DP algorithm, we present the
algorithm called DP-UR for our extension problem. Te
modifcation is given as follows.

(i) As the tree root is unspecifed, we cannot obtain
the earliest arrival time for each vertex. Tus, Step
2 must be removed from the graph simplifcation.
In addition, the path-growth operation cannot be
used. Tis is because for any state (v, X, t), we
must obtain the path from a given tree root to
vertex v. Tus, in the DP-UR algorithm, we ex-
pand the states by using the edge-growth and tree-
merger operations.

Input: G= (V, E), root r, time interval [tα, tβ], and the query label set L.
Output: Te optimal solution.
(1) obtain Gs = (Vs, Es), UB, Q and D by the way similar to DP (i.e., lines 1–3);
(2) for each v ∈Vs and each l ∈ Lv do
(3) so⟵ (v, l{ },∞);
(4) lbo⟵ priority(so, 0, L);
(5) Q.push(so, 0, lbo);
(6) while Q≠∅ do
(7) (T(v, X, t), cost, lb)⟵Q.pop();
(8) if v= r and X=L then return T(v, X, t);
(9) D⟵D∪ {(T(v, X, t), cost, lb)};
(10) execute the state-expansion and update steps similar to DP (i.e., lines 11–25);
(11) Procedure update (Q, D, L,UB,(v, X, t), cost, 􏽥lb)

(12) lb⟵ priority((v, X, t), cost, L);
(13) lb⟵ max lb, 􏽥lb􏽮 􏽯;
(14) if lb>UB then return;
(15) execute the update steps similar to DP (i.e., lines 29–34);
(16) Function priority ((v, X, t), cost, L)

(17) X⟵ LX;
(18) lb1⟵ ξ1(v, X, t);
(19) lb2⟵ ξ2(v, X, t);
(20) return cost + max lb1, lb2􏼈 􏼉;

ALGORITHM 2: DP+.
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(ii) Our extension problem does not require that the
optimal solution contains a specifc root. Tus, we
randomly selected a vertex v in V as the tree root to
set the upper bound. Let UB be the sum of the
weights of the distinct edges contained in the
minimum weight paths from v to each vertex
covering the labels in L. As the optimal solution has
the minimum weight among all trees covering all
labels in L, UB is not smaller than the weight of the
optimal solution. Tus, we can set UB as the upper
bound that can be obtained in a similar manner as
the DP algorithm.

(iii) Unlike the DP algorithm, if there exists a minimum
weight tree that is satisfed with the time constraint
and contains all labels in L, DP-UR halts operation
and returns this tree as the optimal solution.

Terefore, we can say that the framework of DP-UR is
similar to that of DP except for the aforementioned
modifcation.

4.2. Progressive Search Algorithm. Te progressive search
algorithm works in rounds, reporting a suboptimal and
feasible solution with smaller error guarantees in each
round, until the last round outputs the optimal solution. In
particular, we propose a new approach to construct a feasible
solution for each state in each round and then produce
progressively refned feasible solutions during algorithm
execution.

Consider the DP+ algorithm. For each state (v, X, t) that
is popped from Q, we can construct a feasible solution,
T(r, L,􏽥t), as follows. (1) T(r, 􏽥X,􏽥t) is obtained by performing
the tree-merger operation on T(v, X, t) and its state path
Pv,t, where 􏽥X=X∪ψ(Pv,t). (2) According to the label-based
lower bound, we easily obtain such a state T(r, x{ }, t′) that
covers only one label x ∈􏽦X′(= L\ 􏽥X). We repeatedly com-
bine with T(r, x{ }, t′) until each label in 􏽦X′ is included and
then obtain a feasible solution T(r, L,􏽥t). Tus, for any state

(v, X, t), we can always report a feasible solution T(r, L,􏽥t)

and its approximation ratio, namely W(T(r, L,􏽥t))/
W(T(v, X, t)).

In particular, we can obtain the progressive search al-
gorithm by inserting the following description between lines
9 and 10 of the DP+ algorithm.

T(r, 􏽥X,􏽥t)⟵Pv,t ⊕T(v, X, t);
􏽦X′⟵ L\ 􏽥X;
s⟵T(r, 􏽥X,􏽥t);
for all x ∈􏽦X′ do

s′⟵ s⊕T(r, x{ }, t′);
s⟵ s′;

UB⟵ min UB,W(s){ };
AR⟵W(s)/W(T(v, X, t));
report the approximation ratio AR;

4.3. Top-N Search Algorithm. Te top-N search algorithm
aims to fnd the optimal GST ranked according to the
weight of each tree, that is, the weight sum of the edges in
each tree. In particular, we can obtain the top-N search
algorithm by simply replacing line 8 of the DP+ algorithm
with

if v= r and X= L then output T(v, X, t);
i⟵ i + 1;
terminate if i=N;

Here, i is initialized as 0. Te algorithm reports ap-
proximate answers for the top-N search, where N> 1;
however, the frst answer, T1, is guaranteed to be optimal.
Moreover, owing to the fact that the smallest cost tree is
always placed at the top of the priority queue Q, we can fnd
T1, T2, . . ., TN in the increasing order of cost, i.e.,
W(T1)≤W(T2)≤ . . . ≤W(TN). Terefore, sorting is not
required. In practice, the value of UB may be smaller than
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Figure 5: Example for DP+ algorithm.
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that of W(Ti), and Ti may be pruned. For simplicity, we
removed the upper bound UB from the search algorithm.

5. Experiment

Tis section presents the performance evaluation of our
proposed algorithms, including the algorithm running time
and memory consumption. In addition, we show the ef-
fectiveness of the algorithms according to a case study. We
executed all experiments on a machine with a 3.6-GHz Intel
Core i7-9700K CPU and 32GB RAM running Ubuntu 18.04
LTS Linux OS. All algorithms were implemented in C++.
We compared our proposed algorithms with the baseline
algorithm that is based on the algorithm in [18].

5.1. Experimental Settings

5.1.1. Datasets. We use fve real-world datasets, namely
Austin, Houston, Los Angeles (LA) (https://code.google.
com/p/googletransitdatafeed/wiki/PublicFeeds), IMDB
(https://www.imdb.com/interfaces/), and DBLP (https://
www.cs.cmu.edu/~enron/) datasets. Austin, Houston, and
LA datasets record the timetable of the public transportation
networks of a major city on a weekday, which are also widely
used in the path querying in temporal networks [2]. Each
vertex corresponds to the station, and each edge from
a vertex to another represents a bus travel from one station
to another. Te starting time and arrival time of the edge are
the starting time and the arrival time of the route. We use the
OpenStreetMap (https://www.openstreetmap.org/) to ex-
tract the POIs within 500meters of each station. Te type of
each POI is used as the label associated with the station. For
the IMDB temporal graph, each vertex corresponds to
a person such as the principal cast or director, a title, and the
edges denote the diferent relationships among them. Teir
names are used as the labels. Te starting time and arrival
time of the edges are set as the release year of a title or TV
Series end year. We assign weights to the edges based on the
weight cascade model which is similar to [3]. Te details for
the corresponding temporal graphs for algorithm perfor-
mance are given in Table 1.

5.1.2. Compared Approaches. To evaluate the efectiveness, we
compare the baseline algorithm BL with our two algorithms,
DP andDP+, whereDP is Algorithm 1 in Section 3.3, andDP+

is Algorithm 2 in Section 3.5.Tere are four important pruning
techniques in our algorithms. To evaluate the efectiveness of
the pruning techniques, we compare UB, P1, P2, and A∗. UB
means the case that we remove the state pruning P1 and P2
from the DP algorithm, P1 means the case that we remove P2
from the DP algorithm (i.e., UB + P1), P2 corresponds to the
case UB + P1 + P2, and A∗ corresponds to the case
UB + P1 + P2 + A∗. We also use algorithm BL-UR and algo-
rithm DP-UR to evaluate the efectiveness of the extension
problem which does not contain a specifed tree root.

(1) Baseline Algorithm. is the state-of-the-art algorithm for
our problem, which is set as follows.

Te basic idea of the baseline algorithm call BL is to
transfer the given timetable graph into a directed weighted
(static) graph and then execute the existing algorithm for the
GSTsearch on the static graph to fnd the optimal tree rooted
at the specifed vertex r. Specifcally, BL functions as follows.
First, timetable graph G= (V, E) is transformed into a di-
rected static graph G(V ,E) by using the graph trans-
formation method proposed in [3], which requires only
O(|E|) amount of time. In the graph transformation, the
number of virtual vertices and virtual edges to be created for
each nonroot vertex v ∈V is based on the number of distinct
arrival times of each in-edge for v. In particular, root r

corresponds to one virtual vertex. Next, to solve our
problem, we considered the algorithm proposed in [18],
which is the best-known exact algorithm for keyword search
in a relational database [17]. We processed it onG to fnd the
tree rooted at the virtual vertex of r, which has the minimum
weight and covers all labels in L. After transforming, the
number of vertex and edges in a directed static graph
G(V ,E) changes, |V |=m + n, |E|= 2m. Note that the algo-
rithm in [18] possesses exponential time complexity. When
the graph or query label set is relatively large, the baseline
algorithm becomes impractical. Although the algorithm in
[20] is more efcient, it is targeted at undirected graphs and
thus cannot be applied to our problem, which comprises
a directed graph. Te algorithm complexity of baseline is
O(3k · n + 2k · ((m + n) · log(n + 3m))) time, where k is the
number of specifed labels, and m and n are the number of
edges and vertices of the temporal graph, respectively.

5.1.3. Comparative Experiment Setting. We vary two pa-
rameters in our experiments, namely kn and lf , where kn is
the number of labels in the given query label L (i.e., kn= |L|)
and lf is the average number of vertices covering each label
in the query (i.e., the label frequency). Te value of kn is
selected from 4, 5, 6, 7, and 8 with a default value of 4, and
the value of lf is selected from 100, 200, 400, 600, and 800
with a default value of 400. Unless otherwise specifed, when
varying a parameter, the values of the other parameters are
set to their default values. Te time interval setting of all
experiments corresponds to [0,∞]. In each test, we generate
30 queries and each query contains kn labels, which are
randomly selected from the given set of labels, and the
average results over all of them are reported. We set the
query time-out value as 5 hours, i.e., 18,000 (18K) seconds.
When a query time-out occurs, the query algorithm will be
halted. For the root vertex in each temporal graph, we re-
quire that it can reach all other vertices of the selected

Table 1: Dataset descriptions (K� 103).

Dataset Austin Houston Los Angeles IMDB
|V| 2.7K 9.1K 14.0K 14476.2K
|E| 535.5K 1796.2K 1986.8K 29526.3K
Average degree 119.6 197.4 142.0 2.0

Connected components
|V| 2.5K 5.2K 6.0K 144.8K
|E| 506.1K 1066.1K 1143.5K 397.1K
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connected components. We simply scan the vertices until
one such vertex is found. Te details for the connected
components are given in Table 1. In particular, the Enron
dataset is used for the case study since the size of its con-
nected components is relatively small.

5.2. Experimental Results and Analyses

5.2.1. Efect of kn on Running Time. As shown in Figure 6,
the running time is increased with the increase of kn. Tis is
because the increase of kn will result in the increase of al-
gorithm search space.Te running time of our algorithmDP
(DP+) is obviously smaller than that of BL. In particular, as
shown in Figure 6(a), for kn= 8, the baseline algorithm BL
algorithm requires 3,707 seconds, but our proposed algo-
rithms DP and DP+ only take 0.42 and 0.24 seconds, re-
spectively. Our algorithm DP+ is more than 15,446 times
faster than BL. Tis is because the proposed graph simpli-
fcation can result in a smaller graph for our algorithm.
Meanwhile, more states can be pruned by the proposed
optimization techniques. Besides, the lower bounds based on
A∗ strategy can further reduce the number of states to be
generated, and the running time of DP+ is obviously smaller
than DP. As shown in Figure 6(b), if kn= 5, the baseline
algorithm BL takes more than 3,636 seconds, and both DP
and DP+ take 0.43 and 0.3 seconds, respectively. When
kn= 6, 7, 8, the baseline algorithm BL is time-out and cannot
be fnished in the specifed 5 hours, i.e., 18K seconds.
However, for the case of kn= 8, theDP andDP+ only require
2.8 and 1.43 seconds, respectively. As shown in Figure 6(c), if
kn= 6, 7, 8, the baseline algorithm BL is time-out. Both DP
and DP+ take less than 10 seconds. As shown in Figure 6(d),
if kn= 5, 6, 7, 8, the baseline algorithm BL is time-out. For
kn= 8, DP and DP+ take about 771.8 seconds and
134.2 seconds, respectively.

As we discussed above, kn has an important impact on
the algorithm time complexity of BL, DP, and DP+. As
shown in Figure 6, the time of the algorithm increases
rapidly as kn increases. For BL, it transformed the temporal
graph into a directed static graph frst. Te number of vertex
and edge in the directed static graph is much larger than that
in the temporal graph. Terefore, the time increase of BL is
signifcantly faster than that of DP and DP+. However, BL
does not contain any graph simplifcation and state pruning
techniques. So, BL is much slower thanDP and DP+. ForDP,
it adopts the proposed graph simplifcation and state
pruning techniques. Terefore, DP is much faster than BL.
For DP+, it uses A∗ search strategy to further up DP. So,
DP+ can fnd the optimal solution faster.

5.2.2. Efect of lf on Running Time. As shown in Figure 7, the
running time is decreased with the increase of lf . With the
increase of lf , there are more vertices containing the query
labels. Ten, it is faster for the algorithm to achieve the
optimal solution. In general, the running time of DP (DP+)
is obviously smaller than BL. Tis is because we can obtain
a simplifed graph by the graph simplifcation and at the
same time the proposed optimization techniques can reduce

the number of states in the algorithm. In particular, for
lf = 100, in Figure 7(d), DP+ takes 0.66 seconds, and BL
needs more than 3,116 seconds. DP+ is 4,721 times more
faster than BL. As shown in other fgures, DP and DP+ can
obtain the optimal solution in 1 second in most cases. Since
the A∗ search strategy can further reduce the number of
states, the running time of DP+ is smaller than that of DP.

In order to get the optimal solution, each state needs to
do the edge-growth operation and tree-merger operation.
As lf grows, so does the number of initialized states. Ten,
more states can be merged. However, it is faster for the
algorithm to achieve the optimal solution, as shown in
Figure 7. For BL, with the increase of lf , the time of BL
increases. Figure 7 illustrates how the time of BL increases
as f increases. For DP and DP+, they adopt the proposed
graph simplifcation and state pruning techniques.
Terefore, DP and DP+ are faster than BL. For DP+, it has
more pruning techniques than DP. Terefore, DP+ is faster
than DP and BL.

5.2.3. Efect of Pruning Techniques on Running Time.
Tere are four main pruning techniques in the DP and DP+
algorithms, namely the upper bound UB, the state pruning
methods P1 and P2, and the A∗ search. In Figure 8, UB
means the case that we remove the state pruning P1 and P2
from the DP algorithm, P1 means the case that we remove P2
from the DP algorithm (i.e., UB + P1), P2 corresponds to the
case UB + P1 + P2, and A∗ corresponds to the case
UB + P1 + P2 + A∗. Te running time can be dramatically
reduced since lots of states can be pruned by the proposed
techniques. As shown in Figure 8(d), the running time is
relatively smaller on IMDB compared with other datasets.
Tis is because the upper bound is more efcient since the
vertices containing the query labels are nearer to the root
vertex. Besides, the height of the optimal solution found in
IMDB is smaller than in other datasets.

5.2.4. Efect of Graph Simplifcation. As shown in Figure 9,
the gap between the given temporal graphs and their sim-
plifed graphs is obvious. Tis is because lots of edges and
vertices can be removed by the graph flter. For Austin, after
graph simplifcation, the vertices are reduced by 4.2% and
the edges are reduced by 55.5%. For Houston and Los
Angeles, the vertices are reduced by 7.8% and 60%, and the
edges are reduced by 73.1% and 27.6%, respectively. Since
the connected components of Austin and Houston are more
denser, more edges and fewer vertices can be removed,
compared with LA and IMDB.

5.2.5. Efect of kn and lf on Memory Consumption. We
conducted the experiments on the connected components of
Austin, and the results are shown in Figure 10. In general,
the memory consumption is increased with the increase of
kn. Tis is because there are more states that need to be
stored as the kn becomes larger. Te maximization con-
sumption is about 48.3MB (47.7MB) for DP (DP+) as
kn= 8. Te memory consumption for BL is often larger than
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1,500MB. In general, our algorithm memory is at least
30 times smaller than BL. On the other hand, the memory
consumption is decreased with the increase of lf . Tis is
because, with the increase of lf , there are fewer states that
need to be stored in the algorithms. Since the number of
states in our algorithm is smaller, the memory consumption
of DP (DP+) is at least 14 times smaller than BL.

As we discussed above, kn has an important impact on
the algorithmmemory consumption of BL, DP, and DP+. As
shown in Figure 10, the memory consumption of the al-
gorithm increases rapidly as kn increases. For BL, it has the
highest number of states for fnding the optimal solution.
Terefore, the memory consumption of BL is signifcantly
larger than that ofDP and DP+. ForDP and DP+, they adopt
the proposed graph simplifcation and state pruning tech-
niques. Terefore, DP and DP+ need less memory con-
sumption than BL. For DP+, it uses A∗ search strategy to
reduce the number of states. So, DP+ needs less memory
consumption than DP+.

As lf grows, so does the number of initialized states.
Ten, two states merge into a new state will be earlier.
However, it is faster for the algorithm to achieve the optimal
solution. Terefore, DP and DP+ need less memory con-
sumption. For DP+, it has more pruning techniques than
DP. Terefore, DP+ needs less memory consumption.

(1) Running Time for Unspecifed Root. Since the problem
extension does not contain a specifed tree root, in the
baseline algorithm BL-UR, we adopt the graph trans-
formation method in [4] to transfer the temporal graph into
the directed weighted graph. Te results on the Austin
datasets are shown in Figure 11. In general, the running time
of DP-UR is smaller than that of BL-UR. Tis is because the
graph simplifcation can reduce the sizes of the temporal
graph and the proposed pruning techniques can reduce the
number of states in the algorithm. Similar to the reasons
mentioned above, the algorithm running time is increased
with the increase of kn and is decreased with the increase
of lf .

(2) Memory Consumption for Unspecifed Root. Te results
on the Austin datasets are shown in Figure 12. In general, the
memory consumption of DP-UR is smaller than that of BL-
UR since there are fewer states in DP-UR. Similar to the
reasons mentioned above, the algorithm memory is in-
creased with the increase of kn and is decreased with the
increase of lf .

(3) Efect of N on Running Time. We test top-N search
algorithm to fnd the optimal N solutions of all datasets. We
varyN from 1, 10, . . . to 50 while fxing k andf at the default
values of DP+ and report our results in Figure 13. From
Figure 13, as N increases, the running time of DP+ increases.

(4) Progressive Performance Testing. In this experiment, we
test howwell the reported feasible solutions are progressively
improved during algorithm execution. We randomly select
a query with k= 4,f= 400,N= 1 on Austin and report the
approximation ratio AR in Figure 14. For each algorithm, we

can see that the approximation ratio AR decreases with
increasing running time. As can be seen, the UB algorithm
results in a 4-approximation solution within 14.8 seconds
and obtains the optimal solution taking around 23.6 seconds.
Te A∗ algorithm results in a 3–approximation solution
within 0.14 seconds and obtains the optimal solution taking
around 0.17 seconds. Tese results demonstrate that the A∗

algorithm exhibits excellent progressive performance in
practice, which further confrms our theoretical fndings.

5.2.6. Case Study. Te case study is on the DBLP datasets.
Each vertex corresponds to an author, or a paper, and the
edges denote the diferent relationships among them such as
the coauthor relationship.Teir names are used as the labels.
Te starting time and arrival time of the edges are set as the
paper’s publication time. We assign weights to the edges
based on the weight cascade model which is similar to [3]. In
detail, the search labels correspond to the author names,
namely Jennifer Widom, Jiawei Han, Jian Pei, and Philip
S. Yu. Te time interval setting is (1990, 2021). Te con-
nected tree is given in Figure 15, which shows the re-
lationship between the specifed authors and their papers
during the specifed time. By the found connected tree, we
can know the most infuenced paper “Clustering Association
Rules” written by Jennifer Widom in 1997 is related to the
other authors. Tis study is cited by the paper “Mining
Frequent Patterns without Candidate Generation” by Jiawei
Han and Jian Pei in 2000 and the paper “Mining Large
Itemsets for Association Rules” by Philip S. Yu in 1998. Both
of them are also the most infuenced papers of the related
authors written in the given time.

6. Related Work

Te GST problem has been found useful in diferent ap-
plications and has attracted much research interest in recent
years. Te studies most closely related to our problem in-
clude the computation of a minimum spanning tree (MST)
in a temporal graph [3, 9, 29], progressive GST searching in
a static graph [20, 30–32], keyword searching in relational
databases [18, 33], and reconstruction of an epidemic over
time [34–41].

In this study, we considered searching for a GST in
a temporal graph; this concept difers from that of the MST
search [3, 9, 29]. In addition, our solution is a type of exact
algorithm, unlike the approximation algorithm [3], and it
difers from the exact solution discussed in [9], which is
based on the integer programming algorithm. In [18], the
problem of keyword search in a relational database was
formulated as a GST problem in a directed graph. In [29],
a time-varying neural network for solving the time-varying
minimum spanning tree problem with constraints is pro-
posed, which is diferent. In addition, in [17], the authors
showed that the algorithm in [18] is the best-known exact
algorithm for the keyword-search problem. However, the
algorithm is impractical for a relatively large graph or label
set. To overcome this shortcoming, some optimization
techniques were proposed in the progressive algorithm [20]
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to improve the search of GST in a static graph. However,
these optimization techniques are targeted at an undirected
graph and are therefore not suitable for our problem. In [30],

the GST problem with node and edge weights was consid-
ered and an approximate algorithm is proposed using a DP
approach. In [33], a query relaxation algorithm was
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proposed that solves the small or even empty result sets
when performing query operations in temporal graph da-
tabases. However, the efcient managing of the time in-
formation is key for our solution, which has not been studied
in previous algorithms [18, 20, 30, 33, 42, 43]. Moreover,
these studies have not considered the case of a GST with
a specifed tree root.

Te path querying with various settings in temporal
networks was studied in [2, 4, 8, 11, 12, 44–47]. Unlike these
studies, our problem focuses on the search for GST in
temporal graphs. As discussed earlier, our problem can also
be used in the path route applications. In addition, our
problem seeks to fnd the connected minimum-weighted
tree in temporal graphs, which is unlike the subgraphmining
in temporal networks [7, 10, 13, 48–50]. In general, our
algorithm considers the search based on labels/keywords in
a large graph, a method that is similar to the keyword search
in large graphs [51] and the keyword-aware route search
[52]. However, the graphs in [51, 52] do not contain tem-
poral information.

Te rumors or infection spread application in social
network was studied in [5, 6, 53–55].Te authors of [5, 6] are
based on the Steiner tree in a temporal graph. Te problem
in [5] was to determine multiple Steiner trees in which the
roots are not unspecifed and each vertex is activated. In [6],
the authors focused on searching for a single Steiner tree in
which some vertices may be not activated. Our proposed
problem can also be used in the application of rumors or
infection spreading. However, we considered the labels
associated with the vertices and focused on the GST search
with a specifed tree root in a temporal graph. Moreover, the
solution in [5, 6] is a type of approximation algorithm, which
difers from our exact solution. Te authors in [53–55] did
not consider the efect of time in social networks on the
problem of rumor propagation, which difers from ours.

Te efcient web APIs recommendation was studied in
[34–41]. Tese works model the web APIs recommendation
problem as a group Steiner tree search problem.Te authors in
[34] build an APIs correlation graph and explore a data-driven
APIs recommendation approach named WAR to assist de-
velopers in fnding compatible APIs. Qi et al. [35] improved the
model proposed in [34] by introducing a weightingmechanism
that improves recommendation accuracy. Te authors in [36]
incorporate a multiagent technique with MGST to produce
potentially compatible APIs compositions. Te authors in [37]
frst model the compatibility-aware web API composition al-
location problem into a minimal group Steiner tree search
problem and then use the determinantal point processes
technique to diversify the recommended several web API
compositions. Te authors in [38] devise an efcient web APIs
recommendation approach with privacy preservation by in-
corporating the LSH technique with the MGST searching al-
gorithm. Te authors in [39] propose a keywords-driven web
API group recommendation technology for sustainable soft-
ware creation, which can output multiple desirable groups of
web API lists instead of only one. Te authors in [40] propose
a collaborative fltering API recommendation model. Te core
idea of it is to achieve collaborative fltering by mining binary-
API topics as an embedding layer between mashups and APIs.

Te authors in [41] frst construct a web APIs correlation graph
and then propose a correlation graph-based approach for
personalized and compatible web APIs recommendation in
mobile APP development. However, these studies have not
considered the time information in the temporal graph which
is important for our problem.

Although several related studies have been conducted in
this aspect, such as the incremental computation of dynamic
graphs [56], processing of growing temporal graphs [57],
temporal data management [58], trace spatial-temporal
graph evolution [59], maximal D-truss search in dynamic
directed graphs [60], and querying connected components
in temporal graphs [61, 62], these studies did not consider
the TGST search problem.

7. Conclusion

In this paper, we propose an efcient dynamic programming
algorithm calledDP for the computation of GST in temporal
graphs, i.e., TGST. We adopted some new optimization
techniques, including graph simplifcation and state prun-
ing, to reduce the algorithm search space by a signifcant
amount. Moreover, we designed the A∗-search algorithm
called DP+ that can further speed up the algorithm search.
We also propose an algorithm for our extension problem,
namely the TGST with unspecifed root, the progressive
search of TGST, and the top-N search of TGST. We con-
ducted a series of experiments on real temporal networks,
and the results verifed the efciency and efectiveness of our
algorithms. In the future, we plan to consider further op-
timization techniques for our problemwith diferent settings
such as a distributed application environment. As we can
see, the A∗ strategy has a very obvious efect on the DP+
algorithm, and in future work, we can continue to search for
other A∗ strategy. In the future, this work can be further
combined with practical problems to propose specifc
algorithm-pruning strategies for specifc practical situations.
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