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Aiming at the difculty of automatic blade detection and the discontinuous defects on the full image, an aeroengine blade surface
defect detection system based on improved faster RCNN is designed. Firstly, a dataset of blade surface defects is constructed. To
solve the problem that the original faster RCNN is hard to detect tiny defects, RoI align is adopted to replace RoI pooling in the
improved faster RCNN and the feature pyramid networks (FPN) combined with ResNet-50 are introduced for feature extraction.
To address the issue of discontinuous defects on the full image, the nonmaximum suppression (NMS) algorithm is improved to
ensure the continuity of defects. A four-degree-of-freedom (4-DOF) motion platform and an industrial camera are used to collect
images of blade surfaces. Te detection results generated by the improved faster RCNN are compared with the results of the
unimproved method. Te experimental results prove that the defect detection system based on the improved faster RCNN can
realize automatic defect detection on the blade surface with high accuracy. It also solves the issues of tiny defect detection and
discontinuous defects on the full result image of the blade.

1. Introduction

Blade is an important part of aeroengine, which plays
a crucial role in the normal operation of aeroengine. Surface
defects of blades, such as cracks, folds, pockmarks, scratches,
polishing marks, local chromatic aberrations, and coating
shedding may occur during the process of aeroengine blades
manufacturing. Tese defects of aeroengine blades pose
a potential threat to the normal operation of aeroengine. It is
of great practical signifcance to study the detection of blades
in the manufacturing process, and the improvement of
detection technology is conducive to guiding the
manufacturing process planning and improving the
manufacturing accuracy [1–4], which helps to ensure the
safe operation of aeroengine and prolong blades service life.

At present, the detection method applied in industrial
actuality is to search and discriminate the defects on the
blade surface through artifcial visual under white light. Te

inspection personnel judge whether the blades meet factory
requirements according to the size and types of surface
defects of the blades. Tis traditional detection method is
time-consuming and labor-intensive. Moreover, the method
is inefcient, and the detection results depend on the ex-
perience level of the inspection personnel.

In addition to artifcial visual inspection, traditional
defect detection methods mainly include magnetic particle
detection, penetration detection, eddy current detection,
ultrasonic detection, X-ray detection, and so on [5]. Rizk
et al. [6] used hyperspectral imaging technology to detect the
defects of wind turbine blades. Mevissen and Meo[7] de-
veloped an ultrasonic stimulated thermographic test system
in order to detect cracks in turbine blades efectively. In-
frared thermography testing can be used to detect impact
damages, fractures, and cracks [8]. Ciampa et al. [9] sum-
marized the application of the infrared thermography testing
for aerospace components damage.
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Tese methods generally have some limitations for blade
surface detection in the manufacturing process. For ex-
ample, the magnetic particle detection method requires
blades to be removed from the production line, which has
low efciency. Te X-ray detection method has certain harm
to human body.

With the rapid development of machine vision, com-
puter, and artifcial intelligence technology in recent years,
many scholars carried out relevant research studies on the
surface defect detection method by using machine vision
and deep learning. Yang et al. [10] proposed a real-time tiny
part defect detection system for manufacturing using an
end-to-end CNN algorithm. Te defect detection is realized
by the SSD algorithm. Li et al. [11] studied the issue of low
detection accuracy caused by high background noise of
aeroengine blades. Te YOLOv3-Lite method was proposed
for blade surface crack detection, which was 50% faster than
YOLOv3 with the same detection accuracy. Li et al. [12]
proposed an improved YOLOv4 algorithm for surface defect
detection of aeroengine components, which improved the
detection accuracy of surface defects of aeroengine com-
ponents. Li et al. [13] proposed a coarse-to-fne detection
framework for high-resolution aeroengine blade surface
images. Firstly, the image was roughly detected. Secondly,
fne detection was carried out in the possible defect area,
which improved the detection efciency and realized the
detection of tiny defects in the high-resolution blade images.
Shang et al. [14] proposed a blade damage detection method
based on deep learning by using pore-probing camera. A
shallow texture information network was designed. Shen
et al. [15] applied fully convolutional networks to the rapid
inspection of aeroengine by using borescope. Te result of
the model detection is consistent with the damage area
marked by technicians.

Most of the detection methods mentioned above are
used for engine blades or components that have been used
for a long time. Te shape, size, categories, and generating
mechanism of surface defects of blades after long operation
are diferent from those in themanufacturing process. So far,
there are few studies on blade surface defect detection
methods in the manufacturing process, and automated
detection cannot be achieved. Terefore, it is of great sig-
nifcance to study an automatic and efcient detection
method for improving blade surface quality in the practical
blade manufacturing process.

Te method proposed in this paper constructs an au-
tomatic detection system for surface defects of aeroengine
blades. Trough the improved deep learning network, the
automatic, efcient, and accurate detection of aeroengine
blade defects is realized. Te rest of the paper is organized as
follows: Section 2 explains the construction of the blade
detection system and the improvement of the faster RCNN
structure. Section 3 shows the experiments using the

improved faster RCNN and discusses the experimental re-
sults. In Section 4, the work of this paper is summarized.

2. Design of Blade Surface Defect
Detection System

According to the existing issues and the overall re-
quirements, the workfow of aeroengine blade detection is
designed, as shown in Figure 1. To solve the problem of
automatic detection of the blade surface in the
manufacturing process, a 4-DOF motion platform is
designed. It includes X, Y, and Z axis motion tracks, motion
control motors, workpiece rotation table, motion controller,
industrial computer, 20-megapixel industrial grayscale
camera, lens, annular light source, and other major com-
ponents. Te real-time image data are transmitted to the
computer through the Gigabit Ethernet (GigE) protocol.Te
computer communicates with the motion controller
through a serial port. Te motion controller communicates
with X, Y, and Z axis track control motors and workpiece
rotation table control motors through controller area net-
work (CAN) bus.

Te 4-DOF detection platform mentioned is used for
automatic image acquisition of blade surface, as shown in
Figure 2. Te detailed working process of the 4-DOF de-
tection platform is as follows: frstly, the internal parameters
of the camera are obtained by the camera calibration
method, and the distance between each pixel in the image
collected by the industrial camera corresponds to the length
of the real blade surface. Secondly, the blade size is set in
computer upper control software, and the computer sends
instructions to the motion controller. According to the
command, the motion controller controls the track motors
to drive the industrial camera, which collects the image of
the blade surface area in the meantime. Eventually, four 20-
megapixel region images of the blade surface are combined
into an 80-megapixel high-resolution full image through
image mosaic after the acquisition. Te database module
consists of two parts. Te frst part is the original image after
image mosaic, image preprocessing, defect marking, and
fnally stored as annotated data for deep learning network
training. Te second part is the detection results output by
the defect detection module. Tis part analyzes the detection
results, and fnally stores the detection and analysis result
data. Tese two parts constitute the database module.

Te images of the dataset are collected from the defective
blades surface of aeroengines. Since the surface defects such
as cracks, folds, polishing marks, local chromatic aberra-
tions, and coating shedding rarely occur in manufacturing
process, scratches, pockmarks, and bruises, which often
occur are selected as defect data in this paper, as shown in
Figure 3. A total of 5066 images are annotated in PascalVOC
format and saved in XML format fles. Te defect data
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obtained by the detection network consist of the defect label,
length, category, and location coordinate information,
which are stored in specifed TXT format fles.

3. Improved Faster RCNN Detection Network

3.1. Deep Neural Detection Network. Te defect detection
network based on deep learning (DL) can be structurally
divided into: two-stage network represented by faster RCNN
[16] and one-stage network represented by singleshot
multibox detector (SSD) [17] or you only look once (YOLO)
[18] network [19]. Te main diference between the one-
stage network and the two-stage network is the former
directly detects the target and predicts the class and location
of the defect. Te two-stage network generates region

proposals frst and then the target detection is further carried
out based on the feature map.

Compared with the single-stage network, the two-stage
network has the advantage of getting more accurate de-
tection at a certain speed loss. Considering that high ac-
curacy is required for blade surface defect detection, in this
study, the representative faster RCNN network of the two-
stage detection network is adopted as the deep neural de-
tection network and improved on this basis.

3.2. Structure of Faster RCNN. Faster RCNN consists of four
parts: feature extraction network, region proposal network
(RPN), RoI pooling, and classifer. Te basic structure of
faster RCNN is shown in Figure 4.
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Figure 1: Te blade defect detection workfow.
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Figure 2: Te 3D model of the 4-DOF detection platform.
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Te feature extraction network is composed of a group of
convolutional layers, ReLU layers and pooling layers. It is
applied to generate feature maps for subsequent RPN and
RoI pooling. In faster RCNN, convolutional neural networks
(CNN), such as VGG16 [20] or ResNet [21], are generally
used for feature extraction.

RPN is employed to generate RoI, and the classifcation
of foreground and background classes is obtained through
the predefned anchors of Softmax classifcation. At the same
time, the bounding box regression ofset of candidate boxes
is calculated to adjust accurate boxes. Te input of RoI
pooling involves the feature map extracted by CNN and the
proposals, which are the correct candidate boxes generated
by RPN.

Since the diferent sizes of the proposals generated by
RPN are diferent, RoI pooling conducts the proposals
mapping to the scale of the feature map.Ten, each proposal

will be max-pooled so that the proposals are fed into the
subsequent full connection (FC) layer with a fxed size.

Te classifer adopts the FC layer and Softmax to cal-
culate that each proposal belongs to a specifc category and
generate the prediction probability of the category. Mean-
while, bounding box regression is intended to obtain the
position ofset of each proposal to carry out the regression of
the target bounding box.

Surface defects of aeroengine blade are small relative to
the whole blade in the manufacturing process. Tere are two
noteworthy issues in detecting blade surface defects using
the original faster RCNN.

(1) Te frst issue is the weak ability to detect tiny de-
fects. Due to the high resolution of the image after
automatic acquisition, the defect areas of the actual
blade surface are relatively low in the image area, and
the size of the defects is tiny. Also, the resolution of
feature maps decreases continuously during the
process of convolving and pooling. Te loss of de-
tailed feature information in the input image leads to
poor detection of tiny defects.

(2) High-resolution images that are fed directly into the
network will result in a lack of memory and high
computational complexity. As the resolution of the
full image of the blade surface is as high as 80
megapixels, extremely high memory and computa-
tional complexity are required to directly input the
full image into the network and detect defects. To
address this issue, the usual method is to resize the
high-resolution images and feed the resized images,
which are suitable for training and testing, into the
detection process. Another commonly used method
is to crop the high-resolution images into small
pieces whose sizes are suitable for training and
testing. If a high-resolution image is resized to a low-
resolution image for feeding into the network, the
signifcant semantic information of the tiny defects
in the original image will be lost in the process of
resizing. If the high-resolution image is cropped into
smaller ones and fed into the network for detecting

(a) (b) (c)

Figure 3: Te types of blade surface defects. (a) Bruise, (b) scratch, and (c) pockmark.
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Figure 4: Te basic structure of faster RCNN.
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defects, as shown in Figures 5(a) and 5(b), the
cropped images are spliced into a full image after
detection, and the large defect, which across several
cropped images will be discontinuous on the full
result image, as shown in the red box, which is
a dashed line in Figure 5(d).

To solve the two issues mentioned above, this paper
proposes an improved Faster RCNN, as shown in Figure 6.
Firstly, the full image of the blade surface is cropped into
images with a fxed resolution below 1000×1000. At the
same time, the same full image is resized to a fxed resolution
below 1000×1000. Although the information about tiny
defects will be lost in the resizing process of high-resolution
images, the network has the complete ability to detect large
defects. Secondly, the cropped and resized images are suc-
cessively fed into the ResNet-50 network combined with the
feature pyramid network (FPN) structure for feature ex-
traction and fusion at diferent scales. Te proposals were
obtained by the RPN. Tirdly, the obtained feature maps in
diferent sizes are fed into the RoI Align layer to generate the
fxed feature map. Fourthly, the fxed feature map is sent to
the FC layer and Softmax for classifcation and bounding
box regression. Te results of classifcation prediction and
bounding box prediction are processed by an improved
NMS algorithm. Eventually, the cropped images are se-
quentially spliced back to a full image. Te processed
bounding boxes are drawn in the full image, and the de-
tection data are generated. Te improved faster RCNN
ensures the ability to detect tiny defects while solving the
discontinuous issue of larger defects in the full result image.

3.3. Feature Pyramid Network. To solve the issue that the
basic faster RCNN structure has a weak ability to detect tiny
defects, FPN is introduced to construct the bottom-up
network with feature maps extracted by the ResNet50
network. Te feature maps generated by the feature ex-
traction network include maps 2 to 5. Maps 2 to 5 consist of
a top-down network, as shown in Figure 7. Map 6 generated
by map 5 is directly fed into the downstream tasks. In
addition, the 1× 1 convolution is used to reduce the di-
mension of map 3, and 2 times upsampling is performed on
map 8. Te feature maps after upsampling and dimension
reduction are added. Te feature maps, after addition, were
fed into the RPN to obtain proposals.Ten, the same process
is performed on maps 6, 7, and 8. FPN, combined with the
feature extraction network, realizes the extraction and fusion
of multiscale features. It avoids the information loss caused
by the fltering of tiny defect features during the process of
convolving and pooling.Te ability of tiny defect detection is
improved, and the robustness and generalization ability of
the detection network are also improved.

3.4. RoI Align. RoI pooling is performed on the region
proposal of the feature map generated by FPN and RPN. As
shown in Figure 8(a), the feature region is mapped to the
pooling layer by quantization, which is from dark areas to
blue areas. After that, quantization is applied to feature map

pooling. Two quantizations result in the issue of mis-
alignment [22] between defect feature information and the
original feature, which reduces the defect detection accuracy
of the network.

To solve the issues of information loss and accuracy
reduction caused by two quantization, this paper adopts RoI
align instead of RoI pooling. As shown in Figure 8(b), RoI
align directly maps proposals onto the pooling layer. Bilinear
interpolation is used instead of quantization, which ensures
the accurate extraction of feature information.

3.5. Improved Nonmaximum Suppression Algorithm. Te
NMS algorithm [23] relies on a lot of candidate boxes ob-
tained by the classifer and the classifcation probability
values of the candidate boxes. Firstly, in accordance with the
classifcation probability obtained by the classifer, all can-
didate boxes are sorted in descending order of classifcation
probability. Secondly, the category and candidate box cor-
responding to the maximum probability are selected, and all
other candidate boxes are traversed. If the intersection over
union (IoU) is larger than a certain threshold, the candidate
box is deleted. Te candidate with the maximum probability
is selected from the unprocessed candidate boxes. Eventu-
ally, the candidate boxes of the repeated detection can be
removed during repeating the above procedure.

To address the discontinuous issue of large defects
covering several cropped images, the NMS algorithm is
improved in this paper. Te specifc algorithm workfow is
shown in Figure 9.

(1) Te predicted probability of the group of data is
judged to be greater than the set threshold. If the
value is greater than the threshold, the next step is
taken. Te data are removed if the value is smaller
than the threshold, and then return to the previous
step. All candidate boxes and their predicted cate-
gories are sorted in descending order by area size.

(2) Firstly, if the candidate box is generated from the
resized image, the unprocessed candidate box with
the maximum area of the resized image is selected in
the same classifcation category. Secondly, the IoU
between the candidate box and all other unprocessed
candidate boxes of resized or cropped images is
calculated. Tirdly, when the IoU is greater than the
set threshold, the other overlapping candidate boxes
of resized or cropped images are removed. Fourthly,
the unprocessed candidate box with the maximum
area of the resized image is selected, and the above
steps are performed until all candidate boxes of the
resized images are processed. Eventually, the
bounding boxes, which are processed candidate
boxes of the resized image, are mapped to the
original full image according to the resizing ratio.

(3) Firstly, if the candidate box is generated from the
cropped images, the unprocessed candidate box with
the maximum area of the cropped image is selected.
Secondly, the IoU between the candidate box and all
other candidate boxes in the cropped image is
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calculated. Tirdly, when the IoU is greater than the
set threshold, the overlapping candidate boxes of the
other cropped images are removed. Fourthly, the
unprocessed candidate box with the maximum area
of the cropped image is selected, and the above steps
are performed until all candidate boxes of the
cropped images are processed. Eventually, the
bounding boxes, which are processed candidate
boxes of the cropped images, are also mapped to the
original full image according to the cropped order.

(4) Te detection bounding boxes, categories, and
probability are drawn on the full image. Te im-
proved NMS algorithm is able to ensure the con-
tinuous detection of large-size defects due to the
addition of the processing of the candidate boxes of
the overall resized image of the blade. Te improved
algorithm plays a signifcant role in the correctness
and comprehensiveness of blade surface defect
detection.

4. Experiment and Result Analysis

4.1. Model Evaluation Index. Te improved faster RCNN
network adopts the cross entropy loss function [24] as the
classifcation loss function Lcls.

Lcls � −log pip
∗
i + 1 − pi(  1 − p

∗
i(  , (1)

where i is the index of anchors. pi denotes the probability
that anchor i is predicted to be a certain type of blade surface
defect. p∗i denotes the probability that anchor i is the label of
the ground truth. p∗i � 1, when anchor i predicts the true
defects higher than the IoU threshold, otherwise p∗i � 0.

Smooth L1 loss is used as the position regression loss
function.

Lsmooth(x) �
0.5∗x

2
, |x|< 1,

|x| − 0.5, otherwise.

⎧⎨

⎩ (2)

Te overall loss function of the network is shown in the
following formula:

L pi, ti(  �
1

Ncls


i

Lcls pi, p
∗
i(  + λ

1
Nreg


i

p
∗
i Lreg ti, t

∗
i( ,

(3)

where ti represents the vector of the bounding box. t∗i is
equal to the vector of the ground truth. Ncls refers to the size
of minibatch. Nreg corresponds to the quantity of anchor
positions.

Mean average precision (mAP) is used as the model
evaluation metric. mAP means to average the area under the
precision-recall curve of each category. Te value of mAP is
within the interval [0, 1], and the larger the value is, the
better the model is. Te calculation formulas are

Precision �
TP

TP + FP
, (4)

Recall �
TP

TP + FN
. (5)

In formulas (4) and (5), true positives (TP) is the result of
positive samples detected by the model. False positives (FP)
is the result of positive but negative samples. False negatives
(FN) is the result of negative samples detected by the model
but actually positive samples.

4.2. Experimental Environment and Parameters. Te main
environmental parameters in this paper are shown in Ta-
ble 1.Te hardware part of the experimental platform adopts
the designed 4-DOF detection platform, as shown in Fig-
ure 10. Te track running speed of each motion axis of the
detection platform is 10mm/s.Te camera is a 20-megapixel
industrial camera.Te CPU of the computer is I7-10700, and
the GPU is RTX3090. Te size of the aeroengine blade used
in the experiment is 82.6× 36.4×1.6mm. In the software
part, PyTorch 1.8.0 framework is adopted, and the GPU is

feature map
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Original proposal

Quantized proposal

(a)

feature map

bin

Original proposal

n

(b)

Figure 8: Schematic diagram of RoI pooling and RoI align. (a) RoI pooling and (b) RoI align.
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used for accelerated calculation. Meanwhile, the batchsize is
4 and the initial learning rate is 0.001. Weight decay is
0.0005. Each experiment trained 30 epochs.

As shown in Table 2, the dataset containing 5066 images
of blade surface defects is constructed through self-
collection. A total of 8914 scratches, 981 bruises, and 2980
pockmarks are obtained through the statistics of the three
defect types in the dataset. Te ratio of training set, vali-
dation set, and test set is 8 :1 :1.

4.3. Comparative Experimental Results of Training. Te
above experimental parameters are used to train the original
faster RCNN, the faster RCNN with RoI Align, and the
improved faster RCNN in this paper. Te loss curve, as
shown in Figure 11, is obtained. Te loss curve of the faster
RCNN converges to about 0.52 when the iteration reaches
20000. Te loss curve of the faster RCNN with RoI align
converges to about 0.48 when iteration reaches 20000. Te
loss curve of the improved faster RCNN in this paper
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converges to about 0.20 after iteration reaches 18000. Te
comparison shows that the improved model has better efect
in terms of training.

Figure 12 refects the variation trend of precision-recall
curves of diferent models. By comparing Figures 12(a)–
12(c), it can be observed that the improved faster RCNN
model in this paper has signifcantly higher detection ac-
curacy and recall rate compared with the faster RCNN and
the faster RCNN with RoI align. Based on Table 3, it can be
seen that the proposed model has greater detection ability
for defects of diferent sizes due to the addition of RoI align
and FPN. Specifcally, the mAP of the proposed model is
16.5 and 10 higher than the other two, respectively.

4.4. Comparative Experimental Results of Deployment. In the
deployment part, camera parameters are obtained by using
the camera calibration method. Te actual distance be-
tween each pixel in the image captured by the camera is
11.873 μm. Te trained model is deployed in the computer
of the equipment, and the blade of the specifc model is
fxed on the workpiece rotating table by a fxture. Ten,
blade surface images are collected by the developed upper
interactive software automatically. Specifcally, the motion
platform drives the camera through a connecting mecha-
nism to capture four images with a resolution of
3672 × 5496 at 20-megapixels in the lower left, lower right,
upper right, and upper left regions of the blade. Trough
image mosaic, the four captured images are spliced into an
80-megapixel full image with a resolution of 7344 ×10992.
Te full image after splicing is used as the input for the
defect detection module.

Defects in this image are detected by the original faster
RCNN, the faster RCNN with RoI align, and the improved
method in this paper. Te blade surface detection results of
the three methods are shown in Figure 13. It can be seen

Table 1: Main parameters environment.

Items Value
Hardware platform 4-DOF motion platform
Track operating speed 10mm/s
Industrial camera Daheng MER-2000-5GM/C-P
Camera resolution 3672× 5496
Light source Annular adjustable LED light source
Blade dimension 82.6× 36.4×1.6mm
CPU Intel core(R) i7-10700
GPU NVIDIA RTX3090
OS Windows 10
PyTorch 1.8.0
CUDA 11.1
Batchsize 4
Initial learning rate 0.001
Weight decay 0.0005
Epoch 30

Monitor

Computer

Light shield

X axis track

Y axis track

Z axis track

Rotation table

Blade
Camera

Light source

Light source 
controllerControl panel

X

Y

Z

Figure 10: Te hardware structure diagram of the whole and interior of the blade surface defect detection system.

Table 2: Statistical tables of count for each class.

Class Count
Scratch 8914
Bruise 981
Pockmark 2980
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Figure 12: Continued.

10 International Journal of Intelligent Systems



from area 1 that both the original faster RCNN and faster
RCNN with RoI align cannot detect the dark strip scratch
defect completely on the left. Meanwhile, the continuous
on the right side is detected as two independent defects.Te
proposed method is able to completely detect the dark strip
scratch defect on the left side and ensure the continuity of
the scratch on the right side. Comparing the detection
results of the three methods in area 2, the original method
and the method of adding RoI align cannot completely
detect the two tiny pockmarks. However, the method
proposed in this paper detected two tiny defects of
pockmarks in this area, which shows that the improved
method in this paper achieves better detection ability for
tiny defects. In area 3, the defects of scratch obtained by the
original faster RCNN and faster RCNN with RoI align are
error detection. Tere are actually no defects in this area,
and the proposedmethod does not detect any defects in this
area.Te proposed method has better robustness compared
with the original faster RCNN and the faster RCNN with
RoI align while ensuring the ability to detect tiny defects
and the continuity of defects in images. Te categories and
locations of defects are able to be correctly predicted on the
blade surface with high noise by the proposed method in
this paper.

As shown in Table 4, there is a comparison of the elapsed
time and occupied video random access memory (VRAM)
resources of the original faster RCNN, the method added by
RoI align, and the improved method in this paper. Although
the improved faster RCNN method proposed in this paper
takes more VRAM resources than the former two methods,
the integrity and accuracy of blade surface defect detection
can be ensured while the elapsed time is increased by about
3 s.

Te pixel distance corresponding to the diagonal of the
detection bounding box generated by the improved faster
RCNN is quantifed to obtain the physical length of the
detected defect. Te results are compared with the actual
measured defect length, as shown in Table 5. As the length of
the scratch defect is longer than that of the pockmark defect,
the length error obtained is also larger, and the detection
error is less than 15%. Te reason is that the defect may not
be completely put into the labeling box when the tiny defect
with a length of less than 3mm in the dataset is labeled.
Specifcally, there is a certain distance between the labeled
box and the real defect, which leads to a larger error in the
quantization of the tiny defect with a length of less than
3mm compared with the defect with a length of more than
3mm.
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Figure 12: Precision-recall curves of each model. (a) Faster RCNN, (b) faster RCNN with ROI align, and (c) ours.

Table 3: Performance comparison of various models.

Model AP for scratch AP for bruise AP for pockmark mAP
Faster RCNN 62.9 68.0 56.5 62.5
Faster RCNN with RoI align 67.0 71.9 71.9 69.0
Ours 79.8 82.1 75.2 79.0
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Compared with the original faster RCNN, the time
consumed by this method is 3.67 s longer. On the other
hand, although the error between the detection length and
the real length is less than 15%, the error is still large. In the
future, emphasis will be placed on reducing the time

consumed by this method. Te structure of the neural
network will be improved. Meanwhile, the error between
the detection length and the physical length will be re-
duced, and the rapidity and accuracy of the method will be
improved.

Output Image

Faster RCNN

Faster RCNN
with RoI Align

Ours

Area 1 Area 2 Area 3

Figure 13: Te detection efect of the actual blade.

Table 4: Comparison of the elapsed time and occupied VRAM for each method.

Method Acquisition
elapsed time (s)

Detection
elapsed time (s)

Total
elapsed time (s) Occupied VRAM (GB)

Faster RCNN 28.00 24.99 52.99 18.06
Faster RCNN+RoI align 28.00 24.31 52.31 18.20
Ours 28.00 27.98 55.98 23.21
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Te image after detection can be displayed instantly in
the developed computer detection software based on PyQT,
as shown in Figure 14. Te resultant image of blade surface
detection can be scaled through the operation of the right
button. Meanwhile, the software displays the coordinates,
types, length, probability, and other information of defects
generated by ourmethod, which is convenient for inspection
personnel to check.

 . Conclusion

In this paper, an aeroengine blade surface defect detection
system based on the improved faster RCNN is designed. It is
proven that the system is able to realize the rapid and ac-
curate detection of blade surface defects through algorithm
improvement and verifcation experiments. Te system has
a fne prospect for application at blade manufacturing sites.
Te results are summarized as follows:

(1) Te typical defects in the manufacturing of aero-
engine blades are analyzed. Two problems that are
automated detection hard and the discontinuous
defects in the complete image existing in the de-
tection of blade surface defects are summarized.

(2) Te hardware platform and software program for
automatic defect detection have been constructed.
Te hardware platform is used to realize automatic
image acquisition of the blade surface, and the
software program is used to realize the inspection
personnel to check the test results quickly.

(3) On the basis of the faster RCNN network structure,
RoI align is used to replace RoI pooling, and FPN is
introduced. Te accurate detection of tiny defects on
the blade surface is realized, and the mAP of the
network is improved.

(4) Te NMS algorithm is improved to keep the tiny
defects while ensuring the continuity of the larger
defects in the complete image of the blade surface,
and the integrity of detected defects is ensured. Te
error detection results are observably reduced, and
the accuracy of blade surface defect detection is
signifcantly improved.
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Table 5: Detection data of defects length.

Defect number Defect type Detection length (mm) Physical length (mm) Error (%)
1 Scratch 2.96 2.60 13.85
2 Scratch 2.92 2.60 12.31
3 Scratch 9.78 8.99 8.80
4 Scratch 8.70 9.36 7.10
5 Scratch 6.04 6.56 7.90
6 Scratch 1.70 1.57 14.65
7 Pockmark 0.11 0.10 10.00
8 Pockmark 0.12 0.11 9.10

Figure 14: Defects detection outputs of the detection software.
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