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Recently, there are lots of literature on improving the robustness of SVM by constructing nonconvex functions, but they seldom
theoretically study the robust property of the constructed functions. In this paper, based on our recent work, we present a novel
capped asymmetric elastic net (CaEN) loss and equip it with the SVM as CaENSVM. We derive the infuence function of the
estimators of the CaENSVM to theoretically explain the robustness of the proposed method. Our results can be easily extended to
other similar nonconvex loss functions. We further show that the infuence function of the CaENSVM is bounded, so that the
robustness of the CaENSVM can be theoretically explained. Other theoretical analysis demonstrates that the CaENSVM satisfes
the Bayes rule and the corresponding generalization error bound based on Rademacher complexity guarantees its good gen-
eralization capability. Since CaEN loss is concave, we implement an efcient DC procedure based on the stochastic gradient
descent algorithm (Pegasos) to solve the optimization problem. A host of experiments are conducted to verify the efectiveness of
our proposed CaENSVM model.

1. Introduction

Support vector machine (SVM), frst proposed by Cortes
and Vapnik [1], is a powerful binary classifcation tool and
has been widely used in various felds, such as bioinformatics
analysis [2, 3], industrial faw detection [4], and fnancial
forecasting [5]. On the one hand, the SVM can be easily
understood in the geometric view, i.e., it aims to seek a single
separating hyperplane for classifying datasets. On the other
hand, there is a solid statistical theory basis behind to well
guarantee the classifcation performance of the SVM [6–8].
Tus, it has been drawing much attention to study the SVM
[9–15]. Although a host of literature demonstrate the ad-
vantages of support vector classifers, there is still a room for
improvement.

One drawback is the sensitivity to feature noise or more
specifcally the instability for resampling. In fact, the SVM
can be ft in the regularization framework of loss + penalty by
adopting hinge loss, i.e., lhinge(u) � max (u, 0). Huang et al.
[11] pointed out that the hinge loss-based SVM lacks

resistance to feature noise and the fnal separating hyper-
plane is severely disturbed by the feature noise around the
decision boundary. To tackle this problem, motivated by the
quantile in the statistical feld, Huang et al. [11] constructed
the so-called pinball loss and applied it to the SVM to
propose PinSVM. Later, Xu et al. [16] extended this idea to
the twin support vector machine, which can simultaneously
obtain a pair of nonparallel separating hyperplanes. Tere
are two typical defects of the pinball loss. Te frst defect is
the heavy optimization burden caused by the singularity of
the pinball loss function at zero. Huang et al. [17] considered
an asymmetric least squared loss, which is also stable for
resampling but is smooth everywhere. A similar idea was
studied by Liu et al. [18]. Unlike them, Li and Lv [19] utilized
Chen–Harker–Kanzow–Smale function to construct
a smooth approximation of the pinball loss. Te second
defect is the lack of sparseness. According to the pinball loss
function, those correctly classifed training samples still
produce losses, which is completely diferent from the hinge
loss and increases the training cost. To enhance the
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sparseness, Huang et al. [11] introduced the pinball loss with
ϵ-insensitive zone, which can achieve sparsity and maintain
the stability simultaneously. Shen et al. [20] truncated the left
part of the pinball loss and proposed pin-SVM, providing
a more fexible framework for the tradeof between sparsity
and stability. Yang and Xu [21] applied a safe screening rule
for accelerating the PinSVM. More PinSVM-related work
can be found in [22–27].

Another drawback is the sensitivity to label noise
(outliers). Since lhinge(u) tends to infnite as u⟶∞,
outliers often produce large losses, indicating that the
resulting decision hyperplane is possibly deviated. Wu and
Liu [28] suggested a truncated hinge loss, termed as ramp
loss, to suppress the infuences of outliers. Based on the ramp
loss and motivated by the Huberized scheme, Wang et al.
[29] proposed a smooth ramp loss function, which is twice
diferentiable and can be efciently solved. Liu et al. [30]
applied ramp loss to a nonparallel support vector machine.
Tang et al. [13] combined the pinball loss with ramp loss to
propose the valley loss, which is both stable for resampling
and robust to outliers. For more related literature, one can
refer to [31–34]. Another diferent strategy to improve ro-
bustness is using correntropy-induced loss (C-loss) [35].
Based on C-loss, Xu et al. [36] proposed the rescaled hinge
loss. Due to the properties of an exponential function, the
rescaled hinge loss is bounded and the induced support
vector classifer is insensitive to label noise. Yang and Dong
[37] applied the idea of the pinball loss to C-loss and
proposed a new generalized quantile loss, which can be
viewed as a rescaled version of the pinball loss. Te gen-
eralized quantile loss inherits the stability for resampling
from the pinball loss and the robustness to outliers from C-
loss. Similarly, we recently proposed a joint rescaled
asymmetric least squared (RaLS) loss and applied it to
a nonparallel support vector machine [38]. Te proposed
RaLS loss is smooth everywhere and enjoys both stability
and robustness.

Inspired by the previous work, we construct a novel
capped asymmetric elastic net (CaEN) loss and apply it to
the SVM (CaENSVM) in this paper. As a generalization of
the pinball loss and ramp loss, the designed CaEN loss is
bounded and asymmetric, as well. However, it is more
fexible than the previous truncated pinball loss functions.
To demonstrate its advantages, we theoretically investigate
several properties of the CaEN loss, including noise in-
sensitivity, Bayes rule, and generalization error bound. Te
main contributions of this work can be summarized as
follows:

(i) A novel capped asymmetric elastic net (CaEN) loss
is proposed to achieve stability for resampling and
robustness to outliers simultaneously. Te advan-
tages of the elastic net (EN) loss for the SVM were
theoretically discussed in our recent work [3]. Te
derived VTUB signifcantly characterizes the ad-
vantage of the EN loss. Tus, it is meaningful to
improve the performance of the EN loss under the
framework of the SVM.

(ii) We derive the infuence function (seeTeorem 1) to
demonstrate the robustness of the CaENSVM.
Tough there are lots of literature on improving the
robustness of the SVM by constructing a nonconvex
function, they seldom theoretically show the robust
property of the constructed functions. Obviously,
theoretical results can ensure the efectiveness of
similar works. We use the infuence function in the
statistics to show the robustness of our constructed
CaEN loss. Our results can be easily extended to
other similar loss functions, such as ramp-type
losses and rescaled-type losses. We further show
the infuence function of the CaENSVM is bounded,
so that the robustness of the CaENSVM can be
theoretically explained.

(iii) CaEN loss is proved to be equivalent to the Bayes
rule, and the corresponding generalization error
bound based on Rademacher complexity well
guarantees a good generalization capability.

(iv) CaENSVM is applied to deal with a real problem,
i.e., handwritten digit recognition. Experimental
results show that CaENSVM is superior to many
state-of-the-art methods.

Te remainder of this paper is organized as follows: In
Section 2, we introduce several related studies. In Section 3,
we frst formulate the proposed CaENSVM. Ten, an ef-
cient DC procedure based on the stochastic gradient descent
algorithm is implemented for optimizing the CaENSVM
problem. Teoretical analysis on the properties of the
CaENSVM, including noise insensitivity, Bayes rule, and
generalization error bound, is carefully discussed in Section
4. We conducted lots of experiments in Section 5 to in-
vestigate the performance of the CaENSVM. In Section 6,
a conclusion summarizes themain contributions and further
potential directions.

2. Background

In this section, we review several related works. Considering
a binary classifcation problemwith n training samples and p

features, let xi ∈ Rp×1 and yi ∈ +1, − 1{ } be i-th instance and
the corresponding label, respectively. All samples are
reorganized as a data matrix X ∈ Rn×p. Without particular
explanations, all vectors are in column form.

2.1. SVM with Elastic Net Loss. Recently, Qi et al. [39]
proposed a so-called elastic net (EN) loss given as follows:

lEN u; c1, c2( 􏼁 �

c1
2

u
2

+ c2u, u≥ 0,

0, u< 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where c1 and c2 are both two positive tuning parameters. EN
loss is a fusion of the standard hinge loss and the squared
hinge loss [9]. Figure 1(a) shows the shapes of the EN loss
with diferent sets of parameters.
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Based on EN loss, Qi et al. [39] constructed the following
elastic net support vector machine (ENSVM):

min
w,b

1
2

‖w‖
2
2 + b

2
􏼐 􏼑 + 􏽘

n

i�1
lEN 1 − yi w

T
xi + b􏼐 􏼑; c1, c2􏼐 􏼑,

(2)

where w ∈ Rp×1 and b ∈ R are the normal vector and the
intercept of the separating hyperplane, respectively. After
obtaining w and b from (2), the decision function of a new
sample xnew is f(xnew) � sign(wTxnew + b), where sign(·) is
a sign function, which maps a real number to its sign and
zero to zero.

We can equivalently transform (2) into the following
constrained optimization problem:

min
w,b

1
2

‖w‖
2
2 + b

2
􏼐 􏼑 +

c1
2
ξTξ + c2e

Tξ,

s.t. D(Xw + eb)≥ e − ξ, ξ ≥ 0,

(3)

where D � diag(y1, · · · , yn) ∈ Rn×n is a diagonal matrix,
e ∈ Rn×1 is flled with ones, and ξ � (ξ1, · · · , ξn)T ∈ Rn is
a slack variable. For ENSVM (3), one can clearly see that the
ENSVM resembles the standard SVM [1] with c1 � 0 and
reduces to the Lagrangian SVM [9] with c2 � 0. Tus, the
ENSVM is more fexible. Moreover, in our recent work [3],
we derived the so-called VTUB for the SVMwith the EN loss
to demonstrate its unique advantages. Tus, it is meaningful
to improve the performance of the EN loss under the
framework of the SVM.

2.2. SVMwith Pinball Loss. Huang et al. [10] proved that the
support vector classifers with hinge-type losses, including
ENSVM, are sensitive to feature noise, or specifcally, are
unstable for resampling. Motivated by the quantile in the
statistical feld, Huang et al. [10] proposed a novel pinball
loss defned as

lPin(u; τ) �
u, u≥ 0,

− τu, u< 0,
􏼨 (4)

where τ ∈ [0, 1] controls the level of stability for resampling.
Figure 1(b) illustrates the shapes of the pin loss with diferent
values of τ. As the fgure shows, unlike the hinge-type losses,
lPin also produces losses for u< 0, which can beneft the
classifer for balancing the disturbance of the feature noise
around the decision boundary (see subsection 3.3 in the
study by Huang et al. [10] for details).

Following the method of formulating the hinge loss-
based SVM, Huang et al. [10] constructed the pinball loss
SVM (PinSVM) as

min
w,b

1
2
‖w‖

2
2 + c 􏽘

n

i�1
lPin 1 − yi w

T
xi + b􏼐 􏼑; τ􏼐 􏼑, (5)

where c≥ 0 is a tuning parameter. We can also equivalently
rewrite (5) as

min
w,b

1
2

‖w‖
2
2 + b

2
􏼐 􏼑 + ce

Tξ,

s.t. D(Xw + eb)≥ e − ξ,

D(Xw + eb)≤ e +
1
τ
ξ.

(6)

Note that if τ � 0, the second constraint of problem (6)
turns to ξ ≥ 0, and PinSVM reduces to the standard SVM
with hinge loss. In other words, the PinSVM can be viewed
as a generalization of the standard SVM.

2.3. SVM with Ramp Loss. Since the values of losses pro-
duced by the hinge-type loss [1, 9, 39] and the pinball-type
loss [11, 17, 18] functions tend to infnite when u⟶∞, the
support vector classifers induced by these losses are sen-
sitive to label noise (outliers). To reduce the infuence of label
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Figure 1: Diferent types of loss functions: (a) “EN loss” is an elastic net loss, (b) “pin loss” is a pinball loss, and (c) “ramp loss” is a ramp loss.
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noise, Wu and Liu [28] truncated the hinge loss and pro-
posed the so-called ramp loss, which is defned as

lRamp(u; s) �

0, u< 0,

u, 0≤ u≤ s,

s, u> s,

⎧⎪⎪⎨

⎪⎪⎩
(7)

where s> 0 controls the truncation level. Figure 1(c) shows
diferent shapes of the ramp loss. As compared with the
hinge-type losses, ramp loss is upper bounded, such that it
can weaken the disturbance of label noise.

Applying ramp loss to the SVM, we can obtain
RampSVM, i.e.,

min
w,b

1
2
‖w‖

2
2 + c 􏽘

n

i�1
lRamp 1 − yi w

T
xi + b􏼐 􏼑; s􏼐 􏼑, (8)

where c> 0 is a tuning parameter.

3. Capped Asymmetric Elastic Net Loss-
Based SVM

3.1. Te CaENSVM Model. In our recent work [3], we de-
rived the so-called VTUB to demonstrate the unique ad-
vantages of the EN loss under the framework of the SVM.
Tus, it is meaningful to improve the performance of the EN
loss. Motivated by the pinball loss, we designed the following
asymmetric elastic net (aEN) loss:

laEN(u; τ, θ) �

θ
2
u
2

+(1 − θ)u, u≥ 0,

τ
θ
2
u
2

− (1 − θ)u􏼠 􏼡, u< 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

where θ ∈ [0, 1] corresponds to a tradeof between L1 norm
and L2 norm, τ ∈ [0, 1] is a tuning parameter controlling the
bias of the penalization for positive and negative losses.

Figure 2(a) illustrates diferent shapes of aEN losses with
diferent sets of tuning parameters. According to defnition
(9), laEN can be regarded as a generalization of elastic net
loss, pinball loss, and asymmetric least squared loss func-
tions [17], since laEN reduces to lEN for τ � 0, laEN becomes
lPin for θ � 0 and laEN is equivalent to laLS for θ � 1.

According to (9), laEN goes to infnity along with
u⟶∞, so the proposed aEN loss is also sensitive to
outliers (label noise). To improve its robustness against
outliers, we further use capped trick to propose a capped
asymmetric elastic net (CaEN) loss function, which is de-
fned as

lCaEN(u; τ, θ, s) � min laEN(u), s( 􏼁, (10)

where s> 0 is a thresholding parameter. Figure 2(b) depicts
the shapes of the CaEN loss with diferent groups of pa-
rameters. As shown in Figure 2(b) , the proposed CaEN loss
function is exactly upper bounded and concave. Te trun-
cation of the left part of the CaEN loss can increase the
sparseness [13, 20], while the boundness of the right part of
the CaEN loss can enhance its robustness against label noise.
Detailed discussion on the properties of CaENSVM is
provided in Section 4. However, the concavity of the CaEN
loss often involves high optimization costs.

Combining CaEN loss with the standard SVM, we
propose a novel robust CaEN loss-based SVM (termed as
CaENSVM), which is formulated as

min
w

1
2
‖w‖

2
2 +

c

n
􏽘

n

i�1
lCaEN 1 − yiw

T
xi; τ, θ, s􏼐 􏼑, (11)

where c> 0 is the tuning parameter.We remove the intercept
term b in (11) for simplicity, which can be achieved before
training by centering features just like [10, 13]. After
obtaining w from (11), the decision function of the linear
CaENSVM for a new sample xnew is f(xnew)

� sign(wTxnew).
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Figure 2: (a) “aEN loss” is an asymmetric elastic net loss. (b) “CaEN loss” is a capped asymmetric elastic net loss. (c) Te convex de-
composition of CaEN loss, where s � 1, τ � 0.7, and θ � 0.2.
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For nonlinear CaENSVM, we consider the following
kernel-generated separating hyperplane [40, 41]:

w
Tϕ(x) � 0, (12)

where ϕ(x) maps x to a high-dimensional Hilbert space. In
application, we often utilize kernel trick, i.e., ϕ(x) � K(X, x),
where K(·, ·) is a kernel function and
K X( ), x( ) � K( )(x1, x( ), · · · , K(xn, x( )T. Ten, by replacing
wTxi with wTK(X, xi) in (11), we can obtain the nonlinear
CaENSVM model. For determining the class of a new sample
xnew, we only need to replacexnew withK(X, xnew) in the linear
decision function.

3.2. DC Algorithm for CaENSVM. Te truncation for aEN
loss results in a nonconvex loss, indicating that solving
CaENSVM (11) involves nonconvex minimization, which is
often difcult. Note that, though CaEN loss is concave, we
can decompose lCaEN into the diference of two convex
functions, i.e.,

lCaEN(u; τ, θ, s) � laEN(u; τ, θ) − laEN1(u; τ, θ, s), (13)

where laEN1 corresponds to the so-called aEN1 loss, which is
given as follows:

laEN1(u; τ, θ, s) � max laEN(u; τ, θ) − s, 0( 􏼁. (14)

Figure 2(c) depicts the above convex decomposition of
the CaEN loss. As the fgure shows, both aEN and aEN1
losses are exactly convex. By calculating the diference of
aEN and aEN1 losses, we can fnally obtain the nonconvex
CaEN loss. Using this property of the CaEN loss, we apply
the DC (diference of convex functions) algorithm [42] to
optimize problem (11).

Considering the following optimization problem:

min
Θ

f(Θ) � g(Θ) − h(Θ),Θ ∈ Rm
, (15)

where g and h are both convex functions on Rm. To solve
problem (15), the DC algorithm turns to minimize a se-
quence of convex subproblems. A general framework of the
DC algorithm for (15) is illustrated as Algorithm 1.

Recalling (11), based on the decomposition (13), we can
reformulate CaENSVM optimization problem as

w
∗

� argmin
w

1
2
‖w‖

2
2 +

c

n
􏽘

n

i�1
laEN 1 − yiw

T
xi; τ, θ􏼐 􏼑

􏽼√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√􏽽
g

−
c

n
􏽘

n

i�1
laEN1 1 − yiw

T
xi; τ, θ, s􏼐 􏼑

􏽼√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√􏽽
h

,

(16)

where g and h are both convex functions on Rp.
According to the DC algorithm, we have to calculate the

derivative of h with respect to w. Since laEN1 in (16) has sharp
points, h is also nondiferentiable. Tus, we utilize the

subgradient instead of the derivative. For a set of tuning
parameters (τ, θ, s), the subgradient of laEN1 with respect to
w is given as follows:

∇laEN1(w)i �

τ θxix
T
i w +(1 − 2θ)yixi􏼐 􏼑, 1 − yiw

T
xi < u1,

0, u1 < 1 − yiw
T

xi < u2,

θxix
T
i w − yixi, 1 − yiw

T
xi > u2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

where u1 and u2(u1 < 0< u2) are two sharp points of both
laEN1(u) and lCaEN(u) except for zero, which can be easily
calculated from (9) and (14) and are given as follows:

Require: k � 0; Θ(0), the initial value of Θ.
Ensure: optimal solution of (15).

(1) repeat
(2) Θ(k+1) � argminΘg(Θ) − h′(Θ(k))T(Θ − Θ(k)), h′ is the derivative of h with respect to Θ.
(3) until convergence.
(4) returnΘ(k+1).

ALGORITHM 1: A general framework of the DC algorithm for (15).
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u1 �
1 − θ −

�������������

(1 − θ)
2

+ 2θs/τ
􏽱

θ
, u2 �

θ − 1 +

�����������

(1 − θ)
2

+ 2θs

􏽱

θ
. (18)

Terefore, by Algorithm 1 and given w(k), the main
optimized subproblem is

w
(k+1)

� argmin
w

1
2
‖w‖

2
2 +

c

n
􏽘

n

i�1
laEN 1 − yiw

T
xi; τ, θ􏼐 􏼑 −

c

n
􏽘

n

i�1
∇laEN1 w

(k)
􏼐 􏼑

T

i
w − w

(k)
􏼐 􏼑

� argmin
w

1
2
‖w‖

2
2 +

c

n
􏽘

n

i�1
laEN 1 − yiw

T
xi; τ, θ􏼐 􏼑 −

c

n
􏽘

n

i�1
∇laEN1 w

(k)
􏼐 􏼑

T

i
w.

(19)

For the sake of scalability and efciency, we apply
a stochastic gradient descent algorithm, i.e., Pegasos [43], to
solve problem (19). Let At ⊂ 1, 2, · · · , n{ } and |At| � m be
a subset of k samples, randomly chosen from the whole

dataset for the t-th iteration during optimizing a problem
(19). Tus, we consider the following approximate objective
function:

F v; At( 􏼁 �
1
2
‖v‖

2
2 +

c

m
􏽘
i∈At

laEN 1 − yiv
T

xi; τ, θ􏼐 􏼑 −
c

m
􏽘
i∈At

∇laEN1 w
(k)

􏼐 􏼑
T

i
v, v ∈ Rp

. (20)

Ten, the subgradient of F(v; At) with respect to v at v(t)

is given as follows:

∇F v
(t)

􏼐 􏼑 � v
(t)

+
c

m
􏽘
i∈At

δ v
(t)

􏼐 􏼑
i
−

c

m
􏽘
i∈At

∇laEN1 w
(k)

􏼐 􏼑
i
,

(21)

Require: T1, T2, eps, w(0), (xT
i , yi)􏼈 􏼉

n

i�1, c, τ, θ, and s.
Ensure: optimal solution of (11).

(1) Set t � 0, v(0) � w(0).
(2) while (t≤T2) do
(3) Choose At ⊂ 1, 2, · · · , n{ }, where |At| � m, uniformly at random.
(4) Compute ∇F(v(t)) by (21) and (22).
(5) Set ηt � c/t.
(6) Set v(t+1)←v(t) − ηt∇F(v(t)).
(7) end while
(8) Set w(1) � v(t+1).
(9) Set k � 0.
(10) while (k≤T1 & ‖w(k+1) − w(k)‖≥ eps) do
(11) Set k←k + 1.
(12) Set t � 0, v(0) � w(k).
(13) while (t≤T2) do
(14) Choose At ⊂ 1, 2, · · · , n{ }, where |At| � m, uniformly at random.
(15) Compute ∇F(v(t)) by (21) and (22).
(16) Set ηt � c/t.
(17) Set v(t+1)←v(t) − ηt∇F(v(t)).
(18) end while
(19) Set w(k+1) � v(t+1).
(20) end while
(21) returnw(k+1).

ALGORITHM 2: Pegasos-based DC procedure for CaENSVM.
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where v(t) is the optimal value at the t-th iteration and

δ v
(t)

􏼐 􏼑
i

�
τ θxix

T
i v

(t)
+(1 − 2θ)yixi􏼐 􏼑, 1 − yix

T
i v

(t) < 0,

θxix
T
i v

(t)
− yixi, 1 − yix

T
i v

(t) > 0.

⎧⎪⎨

⎪⎩

(22)

In line with Pegasos, the update can be written as

v
(t+1)←v

(t)
− ηt∇F v

(t)
􏼐 􏼑, (23)

where ηt � c/t is the step size.
Finally, based on the aforementioned results about the

DC algorithm and Pegasos, we design a Pegasos-based DC
procedure to solve the CaENSVM optimization problem
(11), which is shown in Algorithm 2. Note that if we sub-
stitute the training sample matrix X with the kernelized
form XK � K(X, XT) � (K(X, x1), · · · , K(X, xn)), we can
directly apply the implemented Algorithm 2 to solve non-
linear CaENSVM.

4. Properties of CaENSVM

In this section, we theoretically investigate several properties
of the proposed CaENSVM, including noise insensitivity,
Bayes rule, and generalization error bound. Since the fol-
lowing analysis involves the statistical distribution of the
training dataset, we frst make several notations and as-
sumptions. Supposing the training samples (xT

i , yi)􏼈 􏼉
n

i�1 are
independently drawn from a probability measure ρ on X ×

Y, where Y ∈ +1, − 1{ }. Let Prob(·) and Prob(·|·) be the
probability and the conditional probability, respectively.

4.1.Noise Insensitivity. By the construction of the CaEN loss,
it inherits the robustness to label noise (outliers) from ramp
loss and the resampling stability to feature noise from the
pinball loss. Terefore, we focus on the noise insensitivity of
CaENSVM from two aspects: the robustness to label noise
and the resampling stability to feature noise.

4.1.1. Robustness to Label Noise. For the robustness to label
noise, we show this property throughout proving the
boundness of the infuence function, which was frst in-
troduced by Hampel [44]. Te infuence function aims to
measure the stability of estimators against an infnitesimal
contamination. Te infuence function of a robust estimator
should be bounded [44, 45]. Before giving the main result,
we have to make the following assumption for the distri-
bution of the training dataset, which is common in statistical
analysis.

Assumption 1. Te random variable x ∈ X has fnite second
moment.

We denote by (xT
0 , y0)

T a sample point with mass
probability distribution ∆x0 ,y0

. Given the distribution F of
(xT, y)T in Rp+1, let the mixed distribution of F and ∆x0 ,y0
be Fϵ � (1 − ϵ)F + ϵ∆x0 ,y0

, where ϵ ∈ (0, 1) is the pro-
portion parameter. Fixing τ, θ and s, let

w
∗
0 � argmin

w

c 􏽚 lCaEN 1 − yw
T
x􏼐 􏼑dF +

1
2
‖w‖

2
2􏼚 􏼛,

w
∗
ϵ � argmin

w

c 􏽚lCaEN 1 − yw
T
x􏼐 􏼑􏼑dFϵ +

1
2
‖w‖

2
2􏼚 􏼛.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

Ten, the infuence function at a sample point (xT
0 , y0)

T

is defned as

IF x0, y0; w
∗
0( 􏼁 � lim
ϵ⟶ 0+

w
∗
ϵ − w
∗
0
ϵ

, (25)

provided that the limit exists.

Theorem 1. (infuence function). For linear CaENSVM (11)
with τ, θ and s fxed, the infuence function IF(x0, y0; w∗0 ) at
a sample point (xT

0 , y0)
T is given by

IF x0, y0; w
∗
0( 􏼁 � W

− 1
0 ∇lCaEN 1 − y0x

T
0 w
∗
0􏼐 􏼑y0x0 −

1
c
w
∗
0 + c0􏼒 􏼓,

(26)

where W0 � 1/cI + 􏽒 xxT∇2lCaEN(1 − yxTw∗0 )dF, and

∇2lCaEN(u) �

0, u< u1,

τθ, u1 < u< 0,

θ, 0< u< u2,

0, u> u2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(27)

and

c0 � 􏽚 yx
z

zϵ
ζ1(ϵ, x, y) + ζ2(ϵ, x, y) + ζ3(ϵ, x, y)( 􏼁dF

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ϵ�0
,

(28)

where ζ1(ϵ, x, y) ∈ [τ(θu2 + (1 − θ)), 0], ζ2(ϵ, x, y) ∈ [− τ(1
− θ), (1 − θ)], and ζ3(ϵ, x, y) ∈ [0, θu2 + (1 − θ)].

Proof. According to KKT conditions, w∗ϵ must satisfy

− c 􏽚∇lCaEN 1 − yx
T
w
∗
ϵ􏼐 􏼑yxdFϵ + w

∗
ϵ � 0. (29)

Since Fϵ � (1 − ϵ)F + ϵ∆x0 ,y0
, equation (29) can be

rewritten as

1
c
w
∗
ϵ � (1 − ϵ) 􏽚∇lCaEN 1 − yx

T
w
∗
ϵ􏼐 􏼑yxdF + ϵ∇lCaEN 1 − y0x

T
0 w
∗
ϵ􏼐 􏼑y0x0. (30)

Diferentiating with respect to ϵ in both sides of (30) and
letting ϵ⟶ 0, we have
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1
c

zw∗ϵ
zϵ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ϵ�0
� − 􏽚∇lCaEN 1 − yx

T
w
∗
0􏼐 􏼑yxdF − 􏽚 xx

T∇2lCaEN 1 − yx
T
w
∗
0􏼐 􏼑dF ·

zw∗ϵ
zϵ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ϵ�0
+ c0 + ∇lCaEN 1 − y0x

T
0 w
∗
0􏼐 􏼑y0x0,

(31)

where

c0 � 􏽚 yx
z

zϵ
ζ1(ϵ, x, y) + ζ2(ϵ, x, y) + ζ3(ϵ, x, y)( 􏼁dF

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ϵ�0
,

(32)

where ζ1(ϵ, x, y) ∈ [τ(θu2 + (1 − θ)), 0], ζ2(ϵ, x, y) ∈ [− τ(1
− θ), (1 − θ)], and ζ3(ϵ, x, y) ∈ [0, θu2 + (1 − θ)] are from
the results of the optimality condition (36).

Combining (30) and (31), we can obtain that

1
c

I + 􏽚 xx
T∇2lCaEN 1 − yx

T
w
∗
0􏼐 􏼑IF􏼒 􏼓IF x0, y0; w

∗
0( 􏼁 � ∇lCaEN 1 − y0x

T
0 w
∗
0􏼐 􏼑y0x0 −

1
c
w
∗
0 + c0, (33)

where I is an identity matrix with a proper size. Let W0 �

􏽒 xxT∇2lCaEN(1 − yxTw∗0 )dF. Since ∇2lCaEN(u) is
nonnegative by (27), W0 can be always invertible. Terefore,
we fnally obtain

IF x0, y0; w
∗
0( 􏼁 � W

− 1
0 ∇lCaEN 1 − y0x

T
0 w
∗
0􏼐 􏼑y0x0 −

1
c
w
∗
0 + c0􏼒 􏼓. (34)

Te proof is completed. □

Corollary 1. Te infuence function IF(x0, y0; w∗0 ) is
bounded, i.e., the CaENSVM is robust to label noise.

Proof. First, since ζ i(ϵ, x, y), i � 1, 2, 3 are bounded and
continuous with respect to ϵ in closed intervals, their cor-
responding derivatives with respect to ϵ are also bounded.
Ten, by Assumption 1 and Teorem 1, we have

IF x0, y0; w
∗
0( 􏼁

����
����≤ λmin W0( 􏼁 θu2 +(1 − θ)( 􏼁 x0

����
���� +

1
c

w
∗
0

����
���� + c0

����
����􏼒 􏼓<∞. (35)

For u1 ≤ 1 − y0x
T
0 w∗0 ≤ u2, where λmin(·) is the smallest

eigenvalue of a matrix. Otherwise, by (36),
∇lCaEN(1 − y0x

T
0 w∗0 ) � 0, the boundness of IF(x0, y0; w∗0 )

also holds. □

Remark 1. According to Corollary 1, the derivative of loss,
i.e., ∇lCaEN(u), signifcantly relates to the characteristics of
the infuence function. In fact, because ∇lCaEN(u) is
bounded, we can easily deduce the bounds of the infuence
function. For those convex losses, such as elastic net loss and
pinball loss, their derivatives are boundless, whichmeans the
corresponding estimators are not robust. In other words,
Corollary 1 reveals the reason of the robustness of the CaEN
loss, or those concave losses.

4.1.2. Resampling Stability to Feature Noise. For the
resampling stability to feature noise, we demonstrate this
property in line with Huang et al. [11]. Recalling the CaEN
loss (10), the subgradient of lCaEN with respect to u is given
by

∇lCaEN(u) �

0, u< u1,

τ θu1 − (1 − θ)( 􏼁, 0􏼂 􏼃, u � u1,

τ(θu − (1 − θ)), u1 < u< 0,

[− τ(1 − θ), (1 − θ)], u � 0,

θu +(1 − θ), 0< u< u2,

0, θu2 +(1 − θ)􏼂 􏼃, u � u2,

0, u> u2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Ten, by KKT (Karush–Kuhn–Tucker) conditions, the
solution of CaENSVM satisfes

0 ∈
n

c
w − 􏽘

n

i�1
∇lCaEN 1 − yiw

T
xi􏼐 􏼑yixi, (37)

where 0 is a proper length vector with all components equal
to zero. For given w, the training sample index set can be
partitioned into the following seven sets:
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S
w
0 � i: 1 − yiw

T
xi < u1􏽮 􏽯,

S
w
1 � i: 1 − yiw

T
xi � u1􏽮 􏽯,

S
w
2 � i: u1 < 1 − yiw

T
xi < 0􏽮 􏽯,

S
w
3 � i: 1 − yiw

T
xi � 0􏽮 􏽯,

S
w
4 � i: 0< 1 − yiw

T
xi < u2􏽮 􏽯,

S
w
5 � i: 1 − yiw

T
xi � u2􏽮 􏽯,

S
w
6 � i: 1 − yiw

T
xi > u2􏽮 􏽯.

(38)

Using the notations (38), the optimal conditions (37) can
be equivalently rewritten as

n

c
w − 􏽘

i∈Sw
1

∇lCaEN 1 − yiw
T
xi􏼐 􏼑􏼑yixi − 􏽘

i∈Sw
2

∇lCaEN 1 − yiw
T
xi􏼐 􏼑􏼑yixi − 􏽘

i∈Sw
3

∇lCaEN 1 − yiw
T
xi􏼐 􏼑􏼑yixi

− 􏽘
i∈Sw

4

∇lCaEN 1 − yiw
T
xi􏼐 􏼑􏼑yixi − 􏽘

i∈Sw
5

∇lCaEN 1 − yiw
T
xi􏼐 􏼑􏼑yixi � 0.

(39)

Since Sw
1 , Sw

3 , and Sw
5 are based on equalities, it is rea-

sonable to see that Sw
1 , Sw

3 , and Sw
5 have much smaller sizes

than Sw
2 or Sw

4 . Tus, the contributions of Sw
1 , Sw

3 , and Sw
5 to

(39) are considerably weak. In other words, we can roughly
determine w by Sw

2 and Sw
4 , i.e.,

n

c
w + τ 􏽘

i∈Sw
2

(1 − θ) − θ 1 − yiw
T
xi􏼐 􏼑􏼐 􏼑yixi − 􏽘

i∈Sw
4

θ 1 − yiw
T
xi􏼐 􏼑 +(1 − θ)􏼐 􏼑yixi � 0. (40)

With parameters τ and θ properly selected, equation (40)
indicates that τ controls the sensitivity of the CaENSVM to
feature noise. In fact, by (38), ((1 − θ) − θ(1 − yiw

Txi)) and
(θ(1 − yiw

Txi) + (1 − θ)) are both positive, which means
that a large τ (close to 1) can well balance the size of Sw

2 and
Sw
4 for zero mean feature noise. Terefore, the efect of zero
mean feature noise is weakened, and the fnal separating
hyperplane of the CaENSVM is stable for resampling. Along
with τ decreasing (close to 0), by (38), the fnal separating
hyperplane is gradually dominated by the instances in Sw

4 . As
a result, the classifcation results are signifcantly disturbed
by the zero mean feature noise around the decision
boundary.

4.2. Bayes Rule. Let P(x) � Prob(Y � 1|X � x) be the
conditional probability of the positive class givenX � x. Lin
[46] claimed that sign(P(x) − 1/2) is the decision-theoretic
optimal classifcation rule with the smallest generalization
error, which is the so-called Bayes rule. We can also
equivalently defne Bayes rule as

fC(x) �
+1, Prob(y � +1|x)≥ Prob(y � − 1|x);

− 1, Prob(y � +1|x)< Prob(y � − 1|x).
􏼨

(41)

For any loss function l(·), we defne the expected risk of
a classifer f: X⟼Y as

Rl,ρ(f) � 􏽚
X×Y

l(1 − yf(x))dρ. (42)

By minimizing the expected risk over all measurable
functions, we can obtain fl,ρ(x) as

fl,ρ(x) � argmin
μ

􏽚
Y

l(1 − yμ)dρ(y|x), ∀x ∈ X, (43)

where ρ(y|x) is the conditional distribution of y given x.
Note that ρ(y|x) is a binary distribution, corresponding to
Prob(y � +1|x) and Prob(y � − 1|x).

Huang et al. [11] proved that the pinball loss can lead to
the Bayes classifer. In the following, we demonstrate that the
Bayes rule also holds for our proposed capped asymmetric
elastic net loss function.

Theorem 2. Te decision function flCaEN ,ρ obtained by
minimizing lCaEN-based expected risk over all measurable
functions f: X⟶ Y is equivalent to the Bayes rule, i.e.,
flCaEN ,ρ(x) � fC(x),∀x ∈ X.

Proof. By simple calculating, we can obtain
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􏽚
Y

lCaEN(1 − yμ)dρ(y|x) � lCaEN(1 − μ)Prob(y � +1|x) + lCaEN(1 + μ)Prob(y � − 1|x). (44)

According to (10), it follows that

lCaEN(1 − μ) �

s, μ< 1 − u2,

θ
2
(1 − μ)

2
+(1 − θ)(1 − μ), 1 − u2 ≤ μ< 1,

τ
θ
2
(1 − μ)

2
− (1 − θ)(1 − μ)􏼠 􏼡, 1≤ μ< 1 − u1,

s, μ≥ 1 − u1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

and

lCaEN(1 + μ) �

s, μ≤ u1 − 1,

τ
θ
2
(1 + μ)

2
− (1 − θ)(1 + μ)􏼠 􏼡, u1 − 1< μ≤ − 1,

θ
2
(1 + μ)

2
+(1 − θ)(1 + μ), − 1< μ≤ u2 − 1,

s, μ> u2 − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

Let P(+1) � Prob(y � +1|x) and P(− 1) � Prob(y

� − 1|x), respectively. We denote by r1(θ, μ) � θ/2(1 − μ)2 +

(1 − θ)(1 − μ), r2(θ, μ) � τ(θ/2(1 − μ)2 − (1 − θ)(1 − μ)),
r3(θ, μ) � θ/2(1 + μ)2 + (1 − θ)(1 + μ), and r4(θ, μ)

� τ(θ/2(1 + μ)2 − (1 − θ)(1 − μ)) for convenience,

respectively. We found that the expected risk relates to the
value of u2. Tus, based on (45) and (46) and the continuity
of lCaEN, we discuss all cases as follows:

For the case of 0< u2 < 1, we have

􏽚
Y

lCaEN(1 − yμ)dρ(y|x) �

sP(+1) + sP(− 1), μ≤ u1 − 1,

sP(+1) + r4(θ, μ)P(− 1), u1 − 1< μ≤ − 1,

sP(+1) + r3(θ, μ)P(− 1), − 1< μ≤ u2 − 1,

sP(+1) + sP(− 1), u2 − 1< μ≤ 1 − u2,

r1(θ, μ)P(+1) + sP(− 1), 1 − u2 < μ≤ 1,

r2(θ, μ)P(+1) + sP(− 1), 1< μ≤ 1 − u1,

sP(+1) + sP(− 1), μ> 1 − u1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

If u2 � 1, u2 − 1 � 1 − u2 and the interval [u2 − 1, 1 − u2]

disappears. One can easily verify that the minimal value is
not afected. Supposing that P(+1)>P(− 1), the minimal
value of μ is +1 according to the increase-decrease

characteristics of lCaEN with respect to μ in each interval.
Similarly, the minimal value of μ is − 1 if P(+1)<P(− 1) or
the minimal value of μ is +1 or − 1 if P(+1) � P(− 1).
Consequently, we have flCaEN

(x) � fC(x) when 0< u2 ≤ 1.
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For the case of 1< u2 < 2, we have

􏽚
Y

lCaEN(1 − yμ)dρ(y | x) �

sP(+1) + sP(− 1), μ≤ u1 − 1,

sP(+1) + r4(θ, μ)P(− 1), u1 − 1< μ≤ − 1,

sP(+1) + r3(θ, μ)P(− 1), − 1< μ≤ 1 − u2,

r1(θ, μ)P(+1) + r3(θ, μ)P(− 1), 1 − u2 < μ≤ u2 − 1,

r1(θ, μ)P(+1) + sP(− 1), u2 − 1< μ≤ 1,

r2(θ, μ)P(+1) + sP(− 1), 1< μ≤ 1 − u1,

sP(+1) + sP(− 1), μ> 1 − u1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

If u2 � 2, we have 1 − u2 � − 1 and u2 − 1 � 1.Ten, the
intervals [− 1, 1 − u2], and [1, u2 − 1] both disappear, which
has no efects on the minimum value. After simple

calculations, one can fnd that the minimal value is the same
as 0< u2 ≤ 1. Tus, we have flCaEN

(x) � fC(x) when
1< u2 ≤ 2.

For the case of 2< u2 < 2 − u1, we have

􏽚
Y

lCaEN(1 − yμ)dρ(y | x) �

sP(+1) + sP(− 1), μ≤ u1 − 1,

sP(+1) + r4(θ, μ)P(− 1), u1 − 1< μ≤ 1 − u2,

r1(θ, μ)P(+1) + r4(θ, μ)P(− 1), 1 − u2 < μ≤ − 1,

r1(θ, μ)P(+1) + r3(θ, μ)P(− 1), − 1< μ≤ + 1,

r2(θ, μ)P(+1) + r3(θ, μ)P(− 1), 1< μ≤ u2 − 1,

r2(θ, μ)P(+1) + sP(− 1), u2 − 1< μ≤ 1 − u1,

sP(+1) + sP(− 1), μ> 1 − u1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

If u2 � 2 − u1, u1 − 1 � 1 − u2, and u2 − 1 � 1 − u1, the
interval [u1 − 1, 1 − u2], and [u2 − 1, 1 − u1] disappear,
which has no efects on the minimum value; the minimal

value is the same as 0< u2 ≤ 1, i.e., we have
flCaEN

(x) � fC(x) when 2< u2 ≤ 2 − u1.
For the case of u2 > 2 − u1, we have

􏽚
Y

lCaEN(1 − yμ)dρ(y | x) �

sP(+1) + sP(− 1), μ≤ 1 − u2,

r1(θ, μ)P(+1) + sP(− 1), 1 − u2 < μ≤ u1 − 1,

r1(θ, μ)P(+1) + r4(θ, μ)P(− 1), u1 − 1< μ≤ − 1,

r1(θ, μ)P(+1) + r3(θ, μ)P(− 1), − 1< μ≤ + 1,

r2(θ, μ)P(+1) + r3(θ, μ)P(− 1), 1< μ≤ 1 − u1,

sP(+1) + r3(θ, μ)P(− 1), 1 − u1 < μ≤ u2 − 1,

sP(+1) + sP(− 1), μ> u2 − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)
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One can easily obtain the same minimal value as
0< u2 ≤ 1, i.e., we have flCaEN

(x) � fC(x) when u2 > 2 − u1.
With the abovementioned results, minimizing lCaEN-based
expected risk over all measurable functions can lead to the
Bayes rule. Tus, Teorem 2 is proved. □

4.3. Generalization Error Bound. We have proved that the
proposedCaENSVM is equivalent to the Bayes rule, which is also
called classifcation-calibrated in the study of Bartlett et al. [7],
indicating that the CaENSVM enjoys many good properties.
Here, we further give the generalization error bound of the
CaENSVM based on the empirical Rademacher complexity [6],
where the empirical Rademacher complexity is defned as follows:

Defnition 1. Supposing that x1, · · · , xn are independently
selected from X with a probability distribution ], and F is
a real-valued function class mapping from X to R, the
empirical Rademacher complexity of F is a random variable
defned as

􏽢Rn(F) � Eσ sup
f∈F

2
n

􏽘

n

i�1
σif xi( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
: x1, · · · , xn

⎡⎣ ⎤⎦, (51)

where σ � (σ1, . . . , σn)T is independently uniform ± 1{ }

-valued (Rademacher) random variables and Eσ[·] means
the expectation over σ. Te Rademacher complexity of F is

Rn(F) � E]
􏽢Rn(F)􏼐 􏼑, (52)

where E][·] means the expectation over ].
According to (51), 􏽢Rn(F) can be viewed as a correlation

between f � f( 􏼁(x1), · · · , f(xn)T and σ for given x1, · · · , xn.
Tus, the higher 􏽢Rn(F) is, the more complex F is. By (52),
Rn(F) depicts the average complexity of F based on ] instead
of a set of particular samples.

In line with the abovementioned defnitions and lemmas
in the study of Bartlett and Mendelson [6], we provide the
following theorem to yield the generalization error bound of
the CaENSVM.

Theorem  . Fix ζ ∈ (0, 1) and B ∈ R+ and consider the
binary classifcation problem on (xT

i , yi)􏼈 􏼉
n

i�1 drawn in-
dependently from a probability distribution F. Let
F � f|f: x↦wTϕ(x), ‖w‖≤B􏼈 􏼉 and
G � g|g: (y, f(x))↦ − yf(x), f ∈ F􏼈 􏼉 be function classes,
respectively. If the CaEN loss (10) with s≥ 1/2 and the optimal
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Figure 3: Te separating hyperplanes (black solid lines) obtained by ENSVM, PinSVM, RampSVM, Rhinge-SVM, Valley-SVM, and
CaENSVM, respectively. Te green “+” notation is the midpoint between the centers of two classes of samples. (a) ENSVM. (b) PinSVM.
(c) RampSVM. (d) Rhinge-SVM. (e) Valley-SVM. (f) CaENSVM.
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w∗0 satisfes ‖w∗0 ‖≤B, then with probability at least 1 − ζ, the
prediction function f(x) satisfes f ∈ F and

Prob(yf(x)≤ 0)≤
2
n

􏽘

n

i�1
lCaEN 1 − yif xi( 􏼁( 􏼁 +

8B θu2 +(1 − θ)( 􏼁

n

���

􏽘

n

i�1

􏽶
􏽴

K xi, xi( 􏼁 +

��������

8 ln (2/ζ)

n

􏽳

. (53)

Proof. defne the Heaviside function Ξ(·) as

Ξ(u) �
1, u≥ 0,

0, otherwise.
􏼨 (54)

Ten, we can easily obtain

Prob(yf(x) ≤ 0) � Eρ[Ξ(− yf(x))]. (55)

By defning Ψ(u) � 2lCaEN(1 + u; τ, θ, s � 1/2), we can
easily verify that u2 ≤ 1 and Ψ(u) ∈ [0, 1] dominates the
function Ξ(·) on the support of ρ, we can obtain the
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Figure 6: Te one-run CPU time (in seconds) of PinSVM, Rhinge-SVM, and CaENSVM with Gaussian kernel. x-coordinate is the log10
(sample size), while y-coordinate is the training time (seconds).

Table 1: Te information of UCI datasets.

ID Dataset #Obs #Fea
1 Absenteeism 740 19
2 Autism 702 15
3 baDS 1372 5
4 Banknote 1371 4
5 Forestfre 121 10
6 ILPD 579 10
7 Knowledge 251 5
8 Messidor 1151 19
9 Popfailure 540 15
10 Seed 210 8
11 wdbc 569 34
12 Wine 130 13
13 Amphibians 189 21
14 Raisin 900 7
15 Tripadvisor 980 9
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following inequality by Teorem 8 in the study of Bartlett
and Mendelson [6] as

Eρ[Ξ(g(y, f(x)))]≤Eρ[Ψ(g(y, f(x)))] ≤ 􏽢En[Ψ(g(y, f(x)))] + 􏽢Rn( 􏽥ΨG) +

��������

8 ln (2/ζ)

n

􏽳

, (56)

Table 2: Te mean accuracy (Acc.) and standard deviation (sd) with linear kernel for UCI datasets.

ENSVM PinSVM RampSVM Rhinge-SVM Valley-SVM CaENSVM
Acc.± sd Acc.± sd Acc.± sd Acc.± sd Acc.± sd Acc.± sd

(a) 0% label noise
Absenteeism 0.946± 0.014 0.946± 0.018 0.946± 0.012 0.946± 0.051 0.954± 0.012 0.97 ± 0.01 
Autism 0.836± 0.023 0.734± 0.024 0.734± 0.025 0.729± 0.083 0.810± 0.067 0.99 ± 0.01 
baDS 0.968± 0.012 0.912± 0.029 0.982± 0.015 0.972± 0.015 0.977± 0.011 0.987± 0.007
Banknote 0.983± 0.013 0.936± 0.014 0.983± 0.011 0.975± 0.018 0.974± 0.006 0.992± 0.005
Forestfre 0.870± 0.082 0.652± 0.015 0.652± 0.009 0.809± 0.073 0.835± 0.057 0.922± 0.020
ILPD 0.649± 0.016 0.287± 0.025 0.287± 0.013 0.381± 0.687 0.447± 0.220 0.716± 0.012
Knowledge 0.931± 0.040 0.967± 0.0 1 0.959± 0.032 0.939± 0.043 0.718± 0.152 0.967± 0.0 1
Messidor 0.678± 0.044 0.481± 0.025 0.542± 0.119 0.687± 0.0 7 0.675± 0.023 0.642± 0.073
Popfailure 0.735± 0.364 0.084± 0.013 0.916± 0.009 0.490± 0.380 0.084± 0.012 0.929± 0.025
Seed 0.907± 0.041 0.500± 0.022 0.500± 0.010 0.800± 0.041 0.686± 0.150 0.929± 0.025
wdbc 0.894± 0.027 0.372± 0.036 0.372± 0.024 0.857± 0.052 0.897± 0.018 0.715± 0.178
Wine 0.888± 0.052 0.560± 0.011 0.560± 0.012 0.872± 0.052 0.904± 0.061 0.912± 0.052
Amphibians 0.671± 0.044 0.692± 0.082 0.681± 0.088 0.698± 0.055 0.687± 0.045 0.698± 0.070
Raisin 0.864± 0.030 0.864± 0.038 0.863± 0.034 0.864± 0.031 0.834± 0.041 0.872± 0.01 
Tripadvisor 0.733± 0.012 0.732± 0.005 0.735± 0.009 0.731± 0.008 0.740± 0.009 0.741± 0.008
(b) 15% label noise
Absenteeism 0.935± 0.024 0.946± 0.012 0.946± 0.008 0.795± 0.331 0.946± 0.020 0.948± 0.010
Autism 0.806± 0.035 0.734± 0.023 0.734± 0.002 0.794± 0.068 0.796± 0.088 0.81 ± 0.028
baDS 0.973± 0.017 0.915± 0.047 0.973± 0.012 0.974± 0.007 0.968± 0.012 0.977± 0.010
Banknote 0.969± 0.011 0.905± 0.051 0.979± 0.014 0.975± 0.012 0.972± 0.011 0.979± 0.011
Forestfre 0.848± 0.095 0.652± 0.015 0.652± 0.023 0.739± 0.141 0.800± 0.140 0.852± 0.050
ILPD 0.402± 0.158 0.287± 0.008 0.287± 0.025 0.640± 0.175 0.593± 0.182 0.654± 0.161
Knowledge 0.947± 0.031 0.972± 0.023 0.972± 0.023 0.976± 0.027 0.690± 0.114 0.979± 0.029
Messidor 0.585± 0.096 0.470± 0.022 0.548± 0.128 0.578± 0.026 0.635± 0.052 0.6 6± 0.0  
Popfailure 0.677± 0.332 0.084± 0.000 0.905± 0.022 0.084± 0.006 0.084± 0.023 0.802± 0.099
Seed 0.900± 0.059 0.500± 0.025 0.500± 0.019 0.807± 0.057 0.857± 0.124 0.824± 0.160
wdbc 0.810± 0.038 0.372± 0.031 0.372± 0.015 0.780± 0.042 0.832± 0.045 0.864± 0.0 9
Wine 0.872± 0.018 0.560± 0.010 0.560± 0.032 0.768± 0.107 0.888± 0.044 0.896± 0.0 6
Amphibians 0.660± 0.024 0.665± 0.053 0.681± 0.048 0.665± 0.031 0.638± 0.065 0.692± 0.05 
Raisin 0.860± 0.031 0.855± 0.025 0.870± 0.026 0.862± 0.026 0.856± 0.019 0.875± 0.018
Tripadvisor 0.723± 0.014 0.729± 0.002 0.728± 0.005 0.7 0± 0.004 0.710± 0.018 0.724± 0.004
(c) 25% label noise
Absenteeism 0.916± 0.067 0.940± 0.023 0.940± 0.008 0.772± 0.360 0.945± 0.003 0.946± 0.008
Autism 0.746± 0.050 0.734± 0.010 0.763± 0.064 0.816± 0.092 0.779± 0.136 0.780± 0.035
baDS 0.972± 0.014 0.887± 0.098 0.977± 0.008 0.966± 0.017 0.965± 0.020 0.978± 0.01 
Banknote 0.972± 0.013 0.966± 0.021 0.980± 0.014 0.976± 0.015 0.978± 0.011 0.982± 0.011
Forestfre 0.791± 0.048 0.652± 0.025 0.652± 0.012 0.661± 0.142 0.783± 0.102 0.800± 0.079
ILPD 0.421± 0.186 0.287± 0.011 0.346± 0.132 0.515± 0.179 0.657± 0.044 0.546± 0.125
Knowledge 0.939± 0.038 0.963± 0.030 0.967± 0.023 0.967± 0.023 0.657± 0.106 0.972± 0.0 0
Messidor 0.686± 0.0 2 0.470± 0.023 0.564± 0.088 0.610± 0.057 0.660± 0.048 0.595± 0.101
Popfailure 0.673± 0.038 0.084± 0.034 0.914± 0.020 0.084± 0.025 0.090± 0.013 0.693± 0.031
Seed 0.907± 0.048 0.500± 0.012 0.500± 0.023 0.910± 0.100 0.600± 0.096 0.914± 0.074
wdbc 0.871± 0.039 0.372± 0.015 0.372± 0.041 0.731± 0.082 0.892± 0.039 0.894± 0.047
Wine 0.852± 0.066 0.560± 0.020 0.560± 0.026 0.664± 0.061 0.856± 0.108 0.860± 0. 21
Amphibians 0.649± 0.085 0.725± 0.048 0.676± 0.054 0.687± 0.059 0.665± 0.056 0.698± 0.052
Raisin 0.856± 0.025 0.851± 0.011 0.863± 0.014 0.863± 0.014 0.846± 0.031 0.867± 0.006
Tripadvisor 0.723± 0.031 0.731± 0.007 0.736± 0.015 0.736± 0.013 0.732± 0.008 0.7 7± 0.011
Te bold is the best one.
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where 􏽢En[Ψ(g(y, f(x)))] � (1/n) 􏽐
n
i�1Ψ(g(f(xi), yi)) and

􏽥ΨG � (x, y)↦Ψ(g(y, f(x))) − Ψ(g(y, 0)): f ∈ F􏼈 􏼉.
According to the CaEN loss (10) with the optimal w∗0 , we

have

􏽢En[Ψ(g(y, f(x)))] �
1
n

􏽘

n

i�1
Ψ g yi, f xi( 􏼁( 􏼁( 􏼁 �

2
n

􏽘

n

i�1
lCaEN 1 − yif xi( 􏼁( 􏼁. (57)

Table 3: Te mean accuracy (Acc.) and standard deviation (sd) with Gaussian kernel for UCI datasets.

ENSVM PinSVM RampSVM Rhinge-SVM Valley-SVM CaENSVM
Acc.± sd Acc.± sd Acc.± sd Acc.± sd Acc.± sd Acc.± sd

(a) 0% label noise
Absenteeism 0.946± 0.053 0.955± 0.00 0.947± 0.010 0.946± 0.120 0.946± 0.022 0.955± 0.00 
Autism 0.921± 0.106 0.978± 0.012 0.997± 0.004 0.978± 0.089 0.903± 0.081 0.999± 0.00 
baDS 0.987± 0.010 1.000± 0.000 1.000± 0.000 1.000± 0.000 0.944± 0.05 1.000± 0.000
Banknote 0.980± 0.010 0.996± 0.008 0.993± 0.010 0.944± 0.018 0.957± 0.024 0.998± 0.005
Forestfre 0.861± 0.084 0.913± 0.062 0.870± 0.044 0.635± 0.146 0.722± 0.090 0.9 1± 0.0 9
ILPD 0.711± 0.013 0.716± 0.022 0.621± 0.187 0.714± 0.222 0.374± 0.195 0.727± 0.018
Knowledge 0.882± 0.070 0.951± 0.023 0.963± 0.027 0.926± 0.148 0.718± 0.125 0.968± 0.028
Messidor 0.585± 0.033 0.649± 0.0 8 0.603± 0.017 0.529± 0.043 0.497± 0.040 0.619± 0.054
Popfailure 0.563± 0.439 0.744± 0.369 0.905± 0.018 0.497± 0.291 0.084± 0.034 0.903± 0.022
Seed 0.936± 0.046 0.971± 0.0 0 0.936± 0.046 0.949± 0.036 0.943± 0.054 0.971± 0.0 0
wdbc 0.727± 0.079 0.917± 0.018 0.680± 0.040 0.907± 0.114 0.372± 0.023 0.908± 0.015
Wine 0.728± 0.107 0.896± 0.046 0.648± 0.066 0.864± 0.046 0.568± 0.018 0.888± 0.033
Amphibians 0.633± 0.093 0.789± 0.0 5 0.698± 0.067 0.730± 0.051 0.568± 0.000 0.692± 0.059
Raisin 0.865± 0.023 0.860± 0.028 0.852± 0.016 0.860± 0.016 0.828± 0.043 0.868± 0.012
Tripadvisor 0.725± 0.007 0.733± 0.016 0.722± 0.014 0.742± 0.009 0.728± 0.000 0.734± 0.014
(b) 15% label noise
Absenteeism 0.946± 0.013 0.946± 0.014 0.947± 0.003 0.943± 0.015 0.946± 0.008 0.970± 0.05 
Autism 0.873± 0.127 0.951± 0.025 0.996± 0.004 0.964± 0.008 0.846± 0.105 0.997± 0.065
baDS 0.945± 0.032 0.946± 0.004 0.941± 0.013 0.949± 0.003 0.940± 0.035 0.951± 0.055
Banknote 0.986± 0.010 0.993± 0.007 1.000± 0.000 0.966± 0.008 0.879± 0.148 1.000± 0.000
Forestfre 0.818± 0.095 0.91 ± 0.069 0.905± 0.078 0.910± 0.072 0.739± 0.087 0.912± 0.082
ILPD 0.556± 0.231 0.717± 0.026 0.696± 0.049 0.701± 0.029 0.287± 0.021 0.698± 0.076
Knowledge 0.857± 0.097 0.929± 0.029 0.917± 0.031 0.921± 0.034 0.710± 0.113 0.9 7± 0.024
Messidor 0.586± 0.031 0.629± 0.039 0.625± 0.028 0.651± 0.020 0.478± 0.017 0.634± 0.062
Popfailure 0.222± 0.309 0.731± 0.364 0.725± 0.360 0.392± 0.423 0.084± 0.023 0.7 5± 0.192
Seed 0.9 6± 0.0 9 0.914± 0.074 0.9 6± 0.0 9 0.9 6± 0.0 0 0.836± 0.188 0.929± 0.061
wdbc 0.703± 0.079 0.436± 0.053 0.626± 0.143 0.864± 0.042 0.372± 0.023 0.890± 0.066
Wine 0.648± 0.087 0.812± 0.072 0.648± 0.087 0.820± 0.063 0.560± 0.010 0.844± 0.128
Amphibians 0.611± 0.053 0.660± 0.062 0.649± 0.099 0.708± 0.084 0.579± 0.024 0.714± 0.056
Raisin 0.693± 0.177 0.860± 0.021 0.864± 0.020 0.855± 0.033 0.840± 0.014 0.867± 0.026
Tripadvisor 0.726± 0.011 0.718± 0.019 0.691± 0.039 0.726± 0.022 0.656± 0.102 0.728± 0.010
(c) 25% label noise
Absenteeism 0.945± 0.003 0.936± 0.013 0.943± 0.008 0.945± 0.008 0.946± 0.02 0.946± 0.015
Autism 0.883± 0.085 0.967± 0.014 0.969± 0.006 0.973± 0.021 0.796± 0.085 0.974± 0.012
baDS 0.933± 0.065 0.972± 0.004 0.971± 0.010 0.975± 0.006 0.956± 0.022 0.978± 0.082
Banknote 0.987± 0.004 0.990± 0.008 0.990± 0.002 0.995± 0.006 0.953± 0.016 0.993± 0.042
Forestfre 0.809± 0.109 0.870± 0.044 0.852± 0.039 0.852± 0.058 0.817± 0.108 0.867± 0.021
ILPD 0.602± 0.178 0.697± 0.007 0.689± 0.015 0.709± 0.048 0.287± 0.021 0.712± 0.091
Knowledge 0.841± 0.060 0.972± 0.023 0.943± 0.034 0.980± 0.014 0.669± 0.170 0.814± 0.038
Messidor 0.537± 0.053 0.617± 0.027 0.583± 0.040 0.604± 0.027 0.502± 0.043 0.628± 0.057
Popfailure 0.366± 0.386 0.249± 0.368 0.733± 0.363 0.411± 0.448 0.084± 0.041 0.784± 0.098
Seed 0.914± 0.065 0.9 6± 0.064 0.929± 0.067 0.929± 0.044 0.914± 0.054 0.871± 0.054
wdbc 0.681± 0.054 0.864± 0.066 0.492± 0.171 0.844± 0.055 0.372± 0.023 0.774± 0.032
Wine 0.672± 0.072 0.716± 0.046 0.672± 0.052 0.732± 0.100 0.560± 0.008 0.748± 0.059
Amphibians 0.606± 0.122 0.714± 0.056 0.7 5± 0.048 0.714± 0.041 0.563± 0.012 0.714± 0.073
Raisin 0.819± 0.048 0.852± 0.021 0.853± 0.017 0.858± 0.015 0.747± 0.148 0.860± 0.02 
Tripadvisor 0.673± 0.121 0.702± 0.041 0.701± 0.057 0.708± 0.022 0.721± 0.008 0.722± 0.008
Te bold is the best one.
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By Teorem 14 in the study of Bartlett and Mendelson
[6], and since Lipschitz function Ψ(u) pertains to Lipschitz
constant θu2 + (1 − θ), we have

􏽢Rn
􏽥Ψ°G􏼐 􏼑≤ 4 θu2 +(1 − θ)( 􏼁􏽢Rn(G). (58)

According to the defnition (51), we can deduce that

􏽢Rn(G) � Eσ sup
g∈G

2
n

􏽘

n

i�1
σig yi, f xi( 􏼁( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
: x1, · · · , xn

⎡⎣ ⎤⎦ � Eσ sup
f∈F

2
n

􏽘

n

i�1
− σiyi( 􏼁f xi( 􏼁⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
: x1, · · · , xn

⎡⎢⎢⎣ ⎤⎥⎥⎦

� Eσ sup
f∈F

2
n

􏽘

n

i�1
σif xi( 􏼁􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
: x1, · · · , xn

⎡⎣ ⎤⎦ � 􏽢Rn(F).

(59)

Hence, by Lemma 22 in the study of Bartlett and
Mendelson [6], 􏽢Rn(F) satisfes

􏽢Rn(F)≤
2B

n

���

􏽘

n

i�1

􏽶
􏽴

K xi, xi( 􏼁. (60)

Finally, combining (56)–(58) and (60), we can reach the
result of the theorem. □

Remark 2. From Teorem 3, if the number of training
samples n⟶ +∞, we have Prob(yf(x)≤ 0)⟶ 0.
Terefore, the generalization capability of the proposed
CaENSVM can be theoretically guaranteed.

Remark 3. According to the proof ofTeorem 3, s � 1/2 can
lead to a tighter generalization error bound. However, ex-
perimental results indicate that larger s may produce a more
satisfactory classifer.

5. Numerical Studies

In this section, we conduct a host of experiments to in-
vestigate the performance of the proposed CaENSVM on
both synthetic and benchmark datasets. For fair assessment,
we compare with several famous or recent related SVMs,
including ENSVM [39], PinSVM [11], RampSVM [28],
Rhinge-SVM [36], and Valley-SVM [13]. Note that Tang
et al. [13] frst proposed the valley loss and applied it to the

Table 4: Average ranks of each SVM with respect to diferent kernels and ratios of label noise for UCI datasets.

ENSVM PinSVM RampSVM Rhinge-SVM Valley-SVM CaENSVM
(a) Linear kernel
Avg. rank 0% 3.200 4.833 4.267 3.733 3.500 1.467
Avg. rank 15% 3.567 4.933 3.833 3.433 3.800 1.433
Avg. rank 25% 3.867 5.067 3.733 3.400 3.467 1.467
(b) Gaussian kernel
Avg. rank 0% 4.367 2.100 3.600 3.700 5.533 1.700
Avg. rank 15% 4.333 3.067 3.400 2.900 5.800 1.500
Avg. rank 25% 4.833 3.033 3.533 2.367 5.200 2.033
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Figure 7: Comparison by the Nemenyi test under 0.1 signifcant level. (a)–(c) correspond to the linear cases with 0%, 15%, and 25% label
noises, while (d)–(f) correspond to the nonlinear cases with 0%, 15%, and 25% label noises, respectively. (a) Case 1. (b) Case 2. (c) Case 3.
(d) Case 4. (e) Case 5. (f ) Case 6.

International Journal of Intelligent Systems 17



RSSVM for robust multiclass classifcation, we here combine
the valley loss with the standard SVM to construct a novel
robust Valley-SVM for binary classifcation. All experiments
are carried out in R 4.0.5 onUbuntu 18 running on a PCwith
system confguration AMD R9 5900x CPU (3.70GHz) with
16GB of RAM.

For PinSVM and CaENSVM, we set τ ∈ 0.3, 0.5, 0.7{ }.
For RampSVM, Valley-SVM, and CaENSVM, we optimize s

in 1, 1.5, 2{ }. Parameter η of Rhinge-SVM is tuned in
0.2, 0.5, 1, 2{ } like [36] and parameter θ of CaENSVM is
tuned in 0.1, 0.5, 0.9{ }, respectively. For nonlinear cases, we
consider Gaussian kernel, i.e.,
K(x1, x2) � exp (− c‖x1 − x2‖), where c> 0 is the kernel
parameter. If not otherwise specifed, all remaining pa-
rameters are optimized in 2− 8, 2− 7, · · · , 27, 28􏼈 􏼉, including
kernel parameter. We use the fve-fold cross-validation
strategy to search for the optimal parameters. Note that,
for the implemented Pegasos-based DC algorithm, eps is
fxed to 10− 3, T1 � 10, and T2 � 500 through our experi-
ments. According to the numerical studies, this setting can
often lead to a satisfactory result.

5.1. Synthetic Datasets. We generate a two-dimensional
synthetic dataset to test the robustness of CaENSVM. Te
training dataset consists of 60 equal positive and negative
samples. Te positive samples are independently drawn
from a two-dimensional normal distribution with the mean
vector μ+ � (− 0.4, 1.0)T and the covariance matrix
V � di ag(0.02, 0.06). Te negative samples are in-
dependently drawn from a similar normal distribution with
the mean vector μ− � (0.4, 0.2)T and the same covariance
matrix.

Case 1. In this case, we only add three extra outliers for
positive samples. Figure 3 shows the training samples and
the separating lines (black solid lines) obtained by six SVMs.
Note that the green “+” notation in each fgure is the
midpoint between the centers of two classes of samples.
Since the distributions behind two classes of training
samples only difer from the location of centers, it is rea-
sonable for the obtained separating line crossing the mid-
point, i.e., the green “+” notation in each fgure. In other
words, we can measure the level of disturbance caused by
outliers by comparing the relative location between the
obtained separating lines and the corresponding midpoints.

According to Figure 3, our proposed CaENSVM is more
robust to outliers and produces the most satisfactory clas-
sifer. Due to the infnity of EN losses, ENSVM is easily
attracted by outliers. As Figure 3(a) shows, ENSVM dis-
tinguishes two classes of samples worst, and the obtained
separating line is clearly away from the midpoint, indicating

its high sensitivity to outliers. Tough pinball loss is un-
bounded, the correctly classifed samples also produce losses,
which behave like a balance and can reduce the attraction of
outliers. From Figure 3(b), PinSVM performs little better
than the ENSVM. Note that the separating line induced by
the PinSVM is also close to outliers, which means PinSVM is
still sensitive to outliers. ramp, Rhinge, and valley losses are
all concave and bounded; they can limit the infuence of
outliers and contribute to robust classifers. Te perfor-
mances of RampSVM and Rhinge-SVM closely resemble
each other. However, both provide totally diferent shapes of
classifers compared with others. According to Figures 3(c)
and 3(d), the corresponding classifers indicate their over-
ftness as well as the sensitivity to outliers. Valley-SVM and
our proposed CaENSVM share analogical performance.
According to Figures 3(e) and 3(f) and based on the mid-
point, our CaENSVM seems slightly better than Valley-
SVM.

Case 2. In this case, we add three extra outliers for both
positive and negative samples. Figure 4 shows the training
samples and the fnal decision lines (black solid lines) of six
SVMs. Te midpoint between the centers of two classes of
samples is also marked in each fgure to help measure the
robustness of each classifer.

According to Figure 4, our proposed CaENSVM still
performs best compared with other fve SVMs. ENSVM,
RampSVM, and Rhinge-SVM present similar performances.
Tey are all severely attracted by outliers and provide un-
satisfactory decision lines.Tough the decision line obtained
by PinSVM is also deviated by outliers, it seems clearly better
than those given by the ENSVM, RampSVM, and Rhinge-
SVM. In our opinion, since pinball loss produces losses for
corrected classifed training samples, it can balance and
reduce the infuence of outliers to some extent. Valley-SVM
performs competitively like PinSVM, but the decision line of
Valley-SVM is also drawn by outliers. In comparison with
other fve SVMs, our proposed CaENSVM shows the best
robustness against outliers as before.

Case 3. In this case, we investigate the time cost of the
implemented Pegasos-based DC procedure for the proposed
CaENSVM. Specifcally, we turn to generate from 50 to 5000
equal positive and negative training samples. For a fair
assessment, we compare the PinSVM solved by clipDCD
[47] and Rhinge-SVM solved by clipDCD-based half-

Figure 8: Selected images from the PMU-UD dataset.

Table 5: Te information of the PMU-UD dataset.

ID Dataset #Obs #Fea
1 2-vs-3 937 9600
2 2-vs-4 1003 9600
3 2-vs-6 1007 9600
4 2-vs-7 1019 9600
5 2-vs-8 1003 9600
6 3-vs-4 986 9600
7 6-vs-7 1072 9600
8 6-vs-8 1056 9600
9 7-vs-8 1068 9600
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quadratic optimization algorithm [36]. All tuning parame-
ters are fxed to 0.5 for simplicity. Figures 5 and 6 show the
one-run CPU time of PinSVM, Rhinge-SVM, and
CaENSVM with linear and Guassian kernels, respectively.

According to Figures 5 and 6, our implemented Pegasos-
based DC procedure obviously runs the fastest in comparison
with PinSVM and Rhinge-SVM. For the linear kernel, PinSVM
and Rhinge-SVM consume time similarly, though Rhinge-
SVM needs to iterate a clipDCD chunk many times. It may
be that the adaptive weighting scheme and sparsity of Rhinge-
SVM can help reduce the training cost. Our CaENSVM runs
fast, and the time cost is free of the sample size, indicating the
scalability of Pegasos [43]. For the Guassian kernel, Rhinge-
SVM is clearly more time-consuming than PinSVM due to the
outer iteration of the half-quadratic procedure. Te training
time of CaENSVMalso depends on the sample size, but it is still
efcient. According to the experimental results, our proposed
CaENSVM can be easily applied in solving large-scale data
classifcation problems.

5.2. UCI Datasets

5.2.1. Experimental Settings and Results. We select twelve
UCI datasets to further demonstrate the advantages of our
proposed CaENSVM. Te detailed information of the chosen
datasets is listed in Table 1. To investigate the label noise in-
sensitivity, we artifcially add 15% and 25% label noises to the
raw datasets, i.e., we randomly select 15% and 25% training
samples and exchange their labels. Te experimental results
with linear and Gaussian kernels based on fve-fold cross-
validation criterion are shown in Tables 2 and 3, respectively.

From Table 2 our proposed CaENSVMwith linear kernel
outperforms others in most cases, according to the average
prediction accuracies. For the case without label noise, our
CaENSVM performs slightly better than the ENSVM, fol-
lowed by Valley-SVM. Rhinge-SVM and RampSVM have
competitive performances, while PinSVM seems to be the
worst. Along with the ratio of label noise increasing, the
performances of all SVMs seem roughly reduced. Specif-
cally, the prediction accuracy of the ENSVM is most afected
by label noise, since the elastic net loss lacks robustness.
Tough PinSVM performs little stably due to the asym-
metric pinball loss, its prediction accuracy is often the most

unsatisfactory and competitive with the ENSVM for the case
with moderate and high label noise. Due to the robustness of
ramp, Rhinge, and valley losses, RampSVM and Rhinge-
SVM together with Valley-SVM present more clearly high
prediction accuracies for the case with label noise in com-
parison with ENSVM and PinSVM. Because our designed
CaEN loss enjoys both outlier insensitivity and resampling
stability, the CaENSVM always achieves the highest average
prediction accuracies for the cases with label noise. Tere-
fore, the advantage of CaENSVM becomes more concrete,
indicating its good robustness to label noise.

From Table 3, our proposed CaENSVM with Gaussian
kernel slightly performs better than others according to the
average prediction accuracies. For the raw datasets, the
CaENSVM gives higher average prediction accuracies in
more than half of the datasets.Te PinSVM turns to perform
well, only behind the CaENSVM. RampSVM also has a good
performance, but it is clearly worse than PinSVM. Te
remaining three SVMs are competitive with each other. For
the datasets with moderate and high label noise, the
CaENSVM still has a weak superiority, followed by Rhinge-
SVM and PinSVM. ENSVM and Valley-SVM seem to be the
worst in most datasets. Compared with the predicting
performance in the linear cases, the superiority of our
proposed CaENSVM is not overwhelming. In our opinion,
this situation is possibly caused by the Pegasos procedure,
since the efciency of Pegasos is reduced in the nonlinear
cases [43]. We will consider designing efcient algorithms
for nonlinear cases in future.

5.2.2. Comparisons by Statistical Test. In this part, we
conduct a statistical test on the experimental results of UCI
datasets to further demonstrate the advantage of the
CaENSVM. Specifcally, we utilize the famous Friedman test
with the corresponding post hoc test [48] to study whether
there is a statistically signifcant diference among
CaENSVM and other fve compared SVMs. Firstly, we
calculate the average ranks of each method with respect to
diferent kernels and ratios of label noise in Tables 2 and 3.
Te results are presented in Table 4.

Secondly, we need to obtain the Friedman statistic based
on Table 4. LetDn andCk be the total number of compared
datasets and classifers, respectively. By Tables 2 and 3, we

Table 6: Te mean accuracy (Acc.) and standard deviation (sd) with linear kernel for the PMU-UD dataset.

ENSVM PinSVM RampSVM Rhinge-SVM Valley-SVM CaENSVM
Acc.± sd Acc.± sd Acc.± sd Acc.± sd Acc.± sd Acc.± sd

2-vs-3 0.942± 0.011 0.922± 0.006 0.942± 0.004 0.975± 0.010 0.949± 0.054 0.979± 0.017
2-vs-4 0.947± 0.026 0.925± 0.015 0.925± 0.020 0.948± 0.020 0.951± 0.022 0.951± 0.014
2-vs-6 0.999± 0.002 0.997± 0.012 0.997± 0.014 0.990± 0.004 0.999± 0.002 1.000± 0.000
2-vs-7 0.999± 0.002 0.992± 0.009 0.993± 0.003 0.993± 0.006 0.999± 0.002 0.999± 0.002
2-vs-8 0.994± 0.003 0.995± 0.001 0.992± 0.001 0.991± 0.007 0.997± 0.003 0.998± 0.00 
3-vs-4 0.981± 0.002 0.933± 0.002 0.953± 0.005 0.971± 0.008 0.98 ± 0.012 0.976± 0.011
5-vs-9 0.994± 0.002 0.980± 0.004 0.981± 0.006 0.988± 0.011 0.994± 0.002 0.988± 0.007
6-vs-7 0.962± 0.012 0.970± 0.023 0.965± 0.020 0.985± 0.012 0.960± 0.056 0.973± 0.043
6-vs-8 0.996± 0.006 0.988± 0.010 0.989± 0.013 0.980± 0.016 0.994± 0.008 0.998± 0.002
7-vs-8 0.973± 0.006 0.983± 0.008 0.970± 0.121 0.960± 0.010 0.971± 0.011 0.986± 0.004
Te bold is the best one.
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haveDn � 15 andCk � 6 for each type of kernel and ratio of
label noise. Ten, we consider the following F statistic:

FF �
Dn − 1( 􏼁χ2F

Dn Ck − 1( 􏼁 − χ2F
, (61)

where χ2F is the raw Friedman statistic defned as

χ2F �
12Dn

Ck Ck + 1( 􏼁
􏽘

Ck

i�1
R

2
i −

Ck Ck + 1( 􏼁
2

4
⎛⎝ ⎞⎠, (62)

where Ri is the average rank of the i-th classifer for each
type of kernel and ratio of label noise. Te obtained FF

statistic obeys F distribution with (Ck − 1) and
(Ck − 1)(Dn − 1) degrees of freedom. When the signifcant
level is set to 0.1, we have F0.1(5, 70) � 1.93. According to
Table 4, we obtain that the values of FF are 8.57, 8.34, and
8.87 with respect to diferent ratios of label noise for linear
cases, 19.27, 21.21, and 12.69 with respect to diferent ratios
of label noise for nonlinear cases. All values of FF statistic are
larger than the critical value 1.93, which means that there is
indeed a statistical diference among those compared
six SVMs.

Tirdly, we apply the Nemenyi test for post hoc test to
further distinguish the detailed diferences of six classifers.
Te critical domain (CD) of the diference of the average
ranks of two SVMs given by Nemenyi is defned as

CD � q0.1

����������
Ck Ck + 1( 􏼁

6Dn

􏽳

� 1.769, (63)

where q0.1 � 2.589. If the absolute diference of two SVMs is
larger than CD, it means that they perform statistically
diferently. Otherwise, they have no statistical diferences
with each other. Figure 7 shows the comparison of the
average ranks of each SVM for diferent type of kernels and
ratios of label noise.

According to Figure 7, there is no signifcant diference
between CaENSVM and ENSVM with linear kernel. However,
by Figures 7(a)–7(c), the diference between CaENSVM and
ENSVM becomes larger as the ratio of label noise increases,
which means the proposed CaENSVM is still better than others.
Rhinge-SVM, RampSVM, and PinSVM always have no sig-
nifcant diferences for linear cases, they all are signifcantly
worse than CaENSVM. Valley-SVM shows good robustness for

a high ratio of label noise, but there is still a gap between it and
CaENSVM. For the cases with Gaussian kernel, our CaENSVM
always presents slightly better performances than others, though
the diferences among it and Rhinge-SVM and PinSVM are not
signifcant. Te performances of Valley-SVM and ENSVM are
signifcantly worse than those of other four methods, especially
for high ratio of label noise. In short, ourCaENSVMenjoys good
performance in the statistical viewpoint.

5.3. Handwritten Digit Recognition. In this subsection, we
apply CaENSVM to solve a real problem, i.e., handwritten digit
recognition. Te test dataset is the PMU-UD dataset from the
study of Alghazo et al. [49], containing handwritten Urdu/
Arabic numerals from 0 to 9. Each handwritten number is
standardized as a 120 × 80 image. Figure 8 shows four selected
images for every handwritten number. We choose the datasets
corresponding to two diferent handwritten numbers each time
to conduct binary classifcation. Te information of all con-
sidered datasets is listed in Table 5.

For a fair evaluation, we also compare our CaENSVM
with ENSVM, PinSVM, RampSVM, Rhinge-SVM, and
Valley-SVM. Te average prediction accuracies with linear
and Gaussian kernels based on the fve-fold cross-validation
criterion are presented in Tables 6 and 7, respectively.
According to Tables 6 and 7, our CaENSVM achieves the
highest prediction accuracies in more than half of the cases,
indicating its excellent performance in handwritten digit
recognition problems.

6. Conclusion

In this paper, we have proposed a novel robust support vector
classifer (CaENSVM) with a capped elastic net loss function.
Teoretical analysis is conducted to thoroughly demonstrate the
properties of CaENSVM, including noise insensitivity, Bayes
rule, and the generalization error bound based on the Rade-
macher complexity. It is worth noting that we use the infuence
function to explain well the robustness of CaENSVM. Tough
the constructed CaEN loss is nonconvex, the implemented
Pegasos-basedDC algorithm can efciently solve theCaENSVM
optimization problem. Te results of numerical studies indicate
the following: (1) our CaENSVM is robust to outliers and
performs better than many similar state-of-the-art SVMs
according to prediction accuracy. Te superiority of the

Table 7: Te mean accuracy (Acc.) and standard deviation (sd) with Gaussian kernel for the PMU-UD dataset.

ENSVM PinSVM RampSVM Rhinge-SVM Valley-SVM CaENSVM
Acc.± sd Acc.± sd Acc.± sd Acc.± sd Acc.± sd Acc.± sd

2-vs-3 0.954± 0.024 0.990± 0.010 0.987± 0.008 0.992± 0.010 0.952± 0.039 0.979± 0.018
2-vs-4 0.914± 0.029 0.994± 0.007 0.972± 0.014 0.995± 0.005 0.955± 0.023 0.996± 0.002
2-vs-6 0.997± 0.004 0.999± 0.002 1.000± 0.000 0.999± 0.002 0.962± 0.029 0.967± 0.030
2-vs-7 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 0.995± 0.004 1.000± 0.000
2-vs-8 0.988± 0.012 1.000± 0.000 0.998± 0.003 1.000± 0.000 0.806± 0.257 1.000± 0.000
5-vs-9 0.987± 0.011 0.998± 0.00 0.993± 0.005 0.998± 0.00 0.947± 0.029 0.949± 0.062
6-vs-7 0.962± 0.036 0.997± 0.003 0.993± 0.005 0.997± 0.003 0.971± 0.025 1.000± 0.000
6-vs-8 0.899± 0.198 0.995± 0.004 0.994± 0.006 0.939± 0.095 0.996± 0.004 0.998± 0.00 
7-vs-8 0.966± 0.019 0.981± 0.006 0.981± 0.008 0.992± 0.004 0.966± 0.020 0.985± 0.010
Te bold is the best one.
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CaENSVM is also supported by the statistical test. (2) Te
performance of the CaENSVM for nonlinear cases is not
overwhelming like the performance for linear cases in com-
parisonwith othermethods, indicating that theremay be a room
for improving the efciency of the algorithm. In fact, though
Pegasos algorithm is scalable, the performance with nonlinear
kernel is little unsatisfactory. Further work will focus on de-
signing a more stable and efcient algorithm to achieve higher
prediction accuracy, especially for nonlinear cases. Note that the
R code of the proposed CaENSVM is developed by the authors
and it is available at https://github.com/jiandan94/CaENSVM.
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