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Tis paper studies data with mass features, commonly observed in applications such as text classifcation and medical diagnosis.
We allow data to have several structures without requiring a specifc model and propose an efcient model-free feature selection
procedure. Te proposed method can work with various types of datasets. We demonstrate that this method has several desirable
properties, including high accuracy, model-free, and computational efciency and can be applied to practical problems with
diferent modelings. We prove that the proposed method achieves selection consistency and L2 consistency under mild regularity
conditions. We conduct simulations on various datasets, including data generated from the generalized linear model, additive
model, Poisson regression, and binary classifcation model. Tese simulations illustrate the superior performance of the proposed
method compared to other existing methods across diferent model settings. In addition, we apply our method to two real
examples, the Tecator dataset and the Daily Demand Orders dataset, both of which are continuous and high dimensional. In both
cases, our method consistently achieves high accuracy in prediction and model selection.

1. Introduction

Due to the rapid development of data technology, feature
selection is a critical component in both statistics and
machine learning. High-dimensional and ultrahigh di-
mensional datasets are commonly encountered in various
felds, including fnance, text classifcation, biology, and
medicine [1–6]. In the case of fnancial stockmarket analysis,
the samples correspond to the latest trading days, and the
features represent the returns of a large number of stocks.
Te number of samples is limited, while the number of
features is often much higher than the number of samples
[7]. Te presence of numerous redundant features can
weaken model generalization and make data analysis more
challenging [8]. Te efciency of feature selection is crucial,
as it focuses on identifying a small subset of informative
features that contain the necessary information to address
specifc concerns arising from a study. In many data

analyses, feature selection is a signifcant and frequently used
dimensionality reduction technique and is often regarded as
a key preprocessing step in data analysis that ofers ad-
vantages such as interpretability, accuracy, lower compu-
tational costs, and reduced risk of overftting [9, 10].

1.1. Literature Review. Tere has been a considerable
amount of research on feature selection, which can generally
be categorized into three types: embedded, flter, and
wrapper methods [11, 12]. Embedded approaches involve
model learning by selecting variables during the learning
process using methods such as objective function optimi-
zation, change calculation, and selecting the set of variables
with the best solution as the best model. Lasso [13] with the
l1 regularization penalty and decision trees [14] are two
typical examples of embedded methods. Penalized regula-
rizations that shrink estimates by penalty functions, such as
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Lasso, SCAD [15], MCP [16], and LSP [17] have been ex-
tensively studied for high-dimensional data. Tese methods
estimate and select features simultaneously and are com-
putationally efcient. Many researchers have studied their
algorithms and statistical properties, such as the least angle
regression [18], coordinate descent algorithm [19, 20], it-
erative majority minimization [21], and theoretical guar-
antees for Lasso [22]. However, regularization methods are
restricted by model assumptions and are mostly applied to
regression problems. Furthermore, the selection of tuning
parameters can impact the estimation accuracy and
computational cost.

Filter techniques, also known as variable ranking tech-
niques, involve calculating a specifc statistical measure for
each variable and ranking the features based on this mea-
sure. Tey select the optimal subset of features according to
predetermined selection criteria. Tese techniques are often
used as preselection strategies that are independent of the
machine learning algorithms applied later in the analysis
[23]. Since they do not rely on inductive algorithms, they are
practically free. Classic ranking criteria such as Fisher score
[24] and Pearson correlation [25] are commonly used in
flter techniques. In addition, nonlinear approaches such as
Joint mutual information maximization and normalized
joint mutual information maximization [26] use mutual
information and the maximum of the minimum criterion to
balance accuracy and stability. Ramı́rez-Gallego et al. [27]
proposed fast-mRMR, an extension of the mRMR flter
method based on several optimizations and can tackle high-
dimensional big data. Moreover, F-score technique is
a valuable flter for binary datasets, which has been found
successful applications in numerous biomedical contexts
[28–31]. Te key characteristics of flter techniques are their
speed, simplicity, and efciency [32, 33].

Feature screening is a type of flter technique that ad-
dresses the problem of ultrahigh dimensionality by
screening out irrelevant variables. Unlike other feature se-
lection methods that aim to identify a subset of informative
features, feature screening is less ambitious as it only aims to
discover a majority of irrelevant variables. In other words, it
identifes a set of features that contains important variables
while allowing many irrelevant variables to be included.

Te concept of feature screening as a flter technique is
essential in solving problems caused by ultrahigh di-
mensionality. Fan and Lv [34] proposed this idea for the frst
time through a feature screening method called sure in-
dependence screening (SIS). Te paper aimed to remove
redundant features by ranking their marginal Pearson
correlations and provided theoretical results called the sure
independence screening property. Tese results showed that
the remaining feature set contains all the important variables
with high probability. SIS has gained popularity among
ultrahigh dimensional analyses due to its facility, efec-
tiveness, and promising numerical performance [35, 36].
Feature screening has since been applied to many problems,
including parametric models (e.g., [37–39]) and semi-
parametric or nonparametric models (e.g., [40–44]). Te
main drawback of this flter technique is that the selection
process does not take into consideration the performance of

the learning model. Te previous studies mentioned above
also have model limitations and cannot accurately select the
active set.

Te last category is wrapper techniques, which involves
searching for the optimal model by computing the model
performance for every possible combination of available
features, similar to a search problem.Te goal is to select the
best model with the highest performance. Wrappers are
widely studied for their simplicity, availability, and gener-
alizability. Commonly used wrapper methods include for-
ward selection-based approaches [42, 45] and backward
selection-based approaches [46, 47]. However, these
methods can be computationally expensive and are not
suitable for ultrahigh dimensional data. To address these
challenges, researchers have proposed advanced methods
such as the forward-backward selection with early dropping
[48], sequential conditioning approach [49], and forward
variable selection procedures for ultrahigh dimensional
generalized varying coefcient models [50]. Although these
methods are suitable for ultrahigh dimensionality, they still
rely on model-based feature selection procedures.

1.2. Motivation and Contribution. Based on the existing
results, we summarize that an appealing feature selection
approach should satisfy the following three properties:

(i) High accuracy, which means that the subset con-
sisting of informative features can be correctly se-
lected. Tis is a basic requirement, and most
methods have desirable accuracy under suitable
conditions.

(ii) Model-free, i.e., it can be implemented without
requiring a specifc model. Specifying a model is
challenging for empirical analysis. Recently, the
model-free feature selection method has become
a hot research topic for its generalization and
validity.

(iii) Computational efciency, especially for the ultra-
high dimensional dataset that is usually time-
consuming.

For the second property, model-free feature screening is
frst proposed by Zhu et al. [51]. After that, He et al. [52]
proposed a quantile-adaptive model-free feature screening
framework for high dimensional heterogeneous data. Mai
and Zou [53] further developed the fused Kolmogorov flter
for model-free feature screening with categorical, discrete,
and continuous responses. Liu et al. [54] proposed a model-
free and data-adaptive feature screening method named PC-
Screen, which is based on ranking the projection correlations
between features and response. A state-of-the-art approach
to wrapper methods without model restrictions is recursive
feature elimination (RFE), a sequential backward elimina-
tion, i.e., support vector machine-based recursive feature
elimination [55–57], random forest-based recursive feature
elimination [58, 59], partial least squares-based recursive
feature elimination [60]. Motivated by RFE, Xia and Yang
[61] proposed an iterative model-free feature screening
procedure named forward recursive selection.
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Regarding the third property, flter-based feature se-
lection methods often have lower computational complexity
than embedded and wrapper techniques [59, 62]. Some
improvements have been made to the computational ef-
ciency of wrapper methods. For example, Borboudakis and
Tsamardinos [48] introduced early dropping to increase
computational efciency. Honda and Lin [50] and Xia and
Yang [61] reduced computational consumption by adding
a stopping rule that takes into account the model size.

Since the abovementioned approaches always cannot
satisfy the three properties simultaneously, to fll this gap, this
paper proposes a model-free feature selection procedure for
ultrahigh dimensional datasets. Te proposed approach, FK-
RFE, combines the fused Kolmogorov flter and random
forest-based recursive feature elimination techniques to
overcome model limitations and reduce computational
complexity. Te approach consists of two phases: the frst
phase ranks the features based on their relevance and retains
the most relevant features based on a threshold value; the
second phase evaluates successive subsets of features
according to a predefned search strategy and an optimality
criterion. Both theoretically and empirically, we demonstrate
the efectiveness of the proposed method in addressing the
challenges associated with ultrahigh dimensional datasets.We
show that the proposed method exhibits desirable properties:
model-free, high accuracy, and computational efciency. Te
specifc contributions are shown in the following points:

(1) Te frst contribution is that the proposed model-
free approach can be applied to a variety of ultrahigh
dimensional datasets. Specifcally, we propose to use
the fused Kolmogorov flter and random forest to
remove model assumptions and data assumptions.
Besides, this approach combines the advantages of
the wrapper and flter strategies and is computa-
tionally efcient, making it well-suited for datasets
with large numbers of features. We demonstrate that
our method is capable of handling ultrahigh di-
mensional data with complex structures.

(2) We address the challenge of the theoretical guar-
antees for model-free algorithms and prove the
convergence of the proposed algorithm. Specifcally,
we prove that the feature selection procedure is
selection consistent and L2 consistent under mild
conditions. Tis theoretical analysis provides a solid
foundation for the efectiveness of the proposed
method and further validates its suitability for ul-
trahigh dimensional datasets.

(3) We evaluate the performance of our proposed
method against several existing methods in various
models, including the generalized linear model,
additive model, and Poisson regression model, et al.,
in high and ultrahigh dimensional settings. We
conduct simulations and apply the proposed ap-
proach to two real datasets. Our experimental results
demonstrate the efectiveness and efciency of our
proposed method.

Te remainder of this paper is organized as follows.
Section 2 describes the proposed method, the algorithm, and
its advantages. Section 3 illustrates the theoretical properties.
Sections 4 and 5 present the simulation and application
results. Section 6 concludes the paper. Technical details are
provided in Appendix.

2. Methods

In this section, we introduce the proposed model-free fea-
ture selection procedure, FK-RFE.Tis method incorporates
a flter phase and wrapper phase possessing the advantages
of feature screening, recursive feature elimination, and
random forest. In the following, we show that this technique
is efcient and can be applied to various data. For simplicity
of description, we frst consider a supervised problem with
a response Y, predictors X � (X1, . . . , Xp) and the following
model framework:

Y � f(X) + ϵ, (1)

where f is a measurable function and can be any model, e.g.,
parametric, semiparametric, or nonparametric model. ϵ,
a noise term, is independent of predictor Xj with E(ϵ) � 0
and Var(ϵ) � σ2 ∈ (0,∞). When the dimension p becomes
very large, a reasonable requirement is the sparsity as-
sumption that only a small subset of variables is responsible
for modeling Y. Before presenting the complete algorithm of
the proposed procedure, we frst introduce the two phases
that comprise the algorithm. Furthermore, we will delve into
the two fundamental techniques used in each respective
phase: the fused Kolmogorov flter and the random forest.

2.1. Te First Phase of FK-RFE: Filter. In this section, we
introduce the frst screening phase of our proposed method,
the fused Kolmogorov flter, which was originally in-
troduced for model-free feature screening [53]. Te fused
Kolmogorov flter enjoys the sure screening property under
weak regularity conditions and is a powerful technique for
datasets with strongly dependent covariates. We extend this
technique to handle a variety of datasets, including both
parametric and nonparametric regression. In our proposed
algorithm, we compute the fused Kolmogorov flter statistics
for all the features and then select the top dn features based
on these values.Tis frst phase serves as a rapid downscaling
step, where the parameter dn is a predetermined positive
integer. In this part, we introduce the defnition and the
calculation of the fused Kolmogorov flter statistic.

Consider a dataset with n samples pairs denoted as
(xij, yi) obtained from the response Y and predictors X �

(X1, . . . , Xp) (i � 1, . . . , n, j � 1, . . . , p). Te main idea of
this flter is that Xj and Y are independent if and only if the
conditional distributions of Xj given diferent values of Y

remain the same. Tus, the fused Kolmogorov flter focuses
on a diference measure denoted as Kj for Xj and Y,

Kj � sup
y1 ,y2

sup
x

Fj x | Y � y1( 􏼁 − Fj x | Y � y2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (2)
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where Fj denotes the generic cumulative distribution
function (CDF) of Xj. Based on the defnition, Kj � 0 if and
only if Xj is independent of Y. Estimating Kj is straight-
forward for the binary response case; for instance, when
Y � 1, 2, we have

􏽢Kj � sup
x

􏽢Fj(x | Y � 1) − 􏽢Fj(x | Y � 2)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (3)

where 􏽢Fj denotes the generic empirical CDF. If Y is con-
tinuous, following the approach suggested by [53], the ap-
proximation of Kj involves partitioning the response.
Specifcally, defne N(∈ N+) distinct partitions of the re-
sponse values. Let Gt denote the t th partition, consisting of
gt slices (t � 1, . . . , N), i.e.,

Gt � al−1, al􏼂 􏼁: al−1 < al   for  l � 1, . . . , gt, and∪
gt

l�1 al−1, al􏼂 􏼁 � R􏽮 􏽯,

(4)

where each [al−1, al) denotes a slice, a0 � −∞, agt
� +∞, and

the interval [a0, a1) � (−∞, a1). Ten, we defne a random
variable Hj ∈ 1, . . . , gt􏼈 􏼉 such that Hj � l if Y falls into the
lth slice.Te partitionGt should consist of intervals bounded
by the (1/gt) th sample quantiles of Y. For a given partition
Gt, K

Gt

j , which is the approximation of Kj, is defned as
follows:

K
Gt

j � max
l,c

sup
x

Fj x | Hj � l􏼐 􏼑 − Fj x | Hj � c􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (5)

Note that Fj represents the generic CDF of Xj. We have
Fj(x | Hj � l) � P(Xj ⩽x | Hj � l), where l � 1, . . . , gt.
Naturally, the empirical version of K

Gt

j based on the samples
(xij, yi) is defned as follows:

􏽢K
Gt

j � max
l,c

max
l,c

􏽢Fj x | Hj � l􏼐 􏼑 − 􏽢Fj x | Hj � c􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (6)

where 􏽢Fj denotes the generic empirical CDF, defned as
􏽢Fj(x | Hj � l) � (1/nl)􏽐 Hj�l􏼈 􏼉

1(xij ⩽ x), where nl is the

sample size of Hj � l􏽮 􏽯. Te fused Kolmogorov flter statistic is
then computed as the sum over N diferent partitions, which
integrates various slicing schemes, and is defned as follows:

􏽢Kj � 􏽘
N

t�1

􏽢K
Gt

j . (7)

In practice, utilizing diferent partitioning strategies for
the response does not signifcantly afect feature screening
results. We choose that gt ⩽ 􏼆log n􏼇 for all t so that each slice
contains a sufcient sample size for all slicing strategies. In
addition, if Y is a multilevel categorical variable, such as
Y � 1, . . . , g, a single partition is used (N � 1). Tis par-
tition, denoted as G, is directly derived from Y’s level, i.e.,
G � 1, . . . , g􏼈 􏼉. In this case, we simply set H � Y.

For ease of notation, we denote the fused Kolmogorov
flter as 􏽢Kj to represent its form across all data types.
Consequently, the screening set of the fused Kolmogorov
flter, denoted as V0, is defned as follows:

V0 � 1⩽ j⩽p: 􏽢Kj is among the first dn largest of all􏽮 􏽯. (8)

2.2. Te Second Phase of FK-RFE: Wrapper. In the second
half of our proposed method, we utilize a backward strategy
known as recursive feature elimination. At each step of this
strategy, the variable importance ranking is updated under
the current model, and the feature with the lowest impor-
tance measure is removed from the active set. Tis strategy
was introduced by Guyon et al. [55] for support vector
machines and has gained popularity in numerous felds,
such as gene selection [63, 64] and medical diagnosis
[65, 66].

Random forest is an ensemble learning approach that
operates on the bagging method’s mechanism [67]. It
consists of a collection of decision trees. Let D � (x1,􏼈

y1), . . . , (xn, yn)} be the sample set of (X, Y). 􏽢f is an esti-
mate of f used to predict Y. Te trees are constructed using
M bootstrap samples D1, . . . , DM of D. Te learning rule of
random forest is the aggregation of all the tree-based esti-
mators denoted by 􏽢f1, . . . , 􏽢fM where the aggregation is
calculated based on the average of the predictions
􏽢f � 1/M􏽐

M
m�1

􏽢fm.
Random forest accesses the relevance of a predictor by

the permutation importance measure [58, 67], which is used
to eliminate features in the wrapper phase. Tis measure is
based on the idea that a variable Xj is relevant to Y if the
prediction error increases when we break the link between
Xj and Y, and this link can be broken by random permuting
the observations of Xj. Tat is, for j � 1, . . . , p, set X(j) �

(X1, . . . , Xj
′, . . . , Xp) be the random vector in which Xj

′ is an
independent replication of Xj. Te permutation importance
measure is given by

I Xj􏼐 􏼑 � E Y − f X(j)􏼐 􏼑􏼐 􏼑
2

􏼔 􏼕 − E (Y − f(X))
2

􏽨 􏽩. (9)

Note that the random permutation also breaks the link
between Xj and other predictors. In other words, Xj

′ is
independent of Y and other predictors Xj′ , j′ ≠ j, simulta-
neously. Denote Dm � D/Dm as the out-of-bag samples of
Dm to contain the observations which are not selected in Dm.
Let D

j

m be the permuted out-of-bag samples by random
permutations of the observations of Xj. Te empirical
permutation importance measure is expressed as follows:

􏽢I Xj􏼐 􏼑 �
1

M
􏽘

M

m�1
R 􏽢fm, D

j

m􏼐 􏼑 − R 􏽢fm, Dm􏼐 􏼑􏼔 􏼕, (10)

where R(􏽢fm, T) � (1/|T|)􏽐i:(xi,yi)∈T(yi − 􏽢fm(xi))
2 for sam-

ple set T � D
j

m or T � Dm. Te permutation importance
measure is recalculated to rank the predictors in each it-
eration. In addition to other criteria, the permutation im-
portance measure has proven to be efective for leading
variable selection methods [58, 68].

Te random forest has several advantages. First, it allows
us to deal with diferent data types, including both con-
tinuous and categorical variables. Second, both theoretical
and empirical evidence support the application of this
method. In addition, combining with the permutation im-
portance, we achieve high accuracy in feature selection and
outperform other compared methods.
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2.3. FK-RFE. In this section, we present the FK-RFE in
detail. Te proposed algorithm consists of a flter phase and
a wrapper phase. In the flter phase, we use the fused
Kolmogorov flter, a feature screening technique, to remove
a large number of uninformative features and obtain a re-
duced active set V0, which includes the true model. Sub-
sequently, in the wrapper phase, we utilize the random forest
to train the model and rank the features based on their
permutation importance measure. During this step, we it-
eratively update the active set by eliminating the least sig-
nifcant feature. In each iteration, we rerank the remaining
features by recalculating the permutation importance
measure, as it is more efective than the approach without
reranking [69, 70]. We determine the optimal subset of
features based on the best model performance. Te pseu-
docode of FK-RFE with the execution process is given in the
following Algorithm 1, and the fowchart is given in Figure 1.

We utilize the fused Kolmogorov flter as the frst
screening phase in our proposed method, which has several
main advantages. First, it allows the method to be widely
applicable to various types of data by being free from model
restrictions. Second, it is fast and straightforward, especially
for ultrahigh dimensional settings. Tird, it has theoretical
guarantees, as we show in the next section, that the subset
obtained from FK-RFE includes all relevant variables. Fi-
nally, it achieves screening efciency, meaning that after the
screening phase, the model size is controlled by dn.

Te random forest-based recursive feature elimination
and permutation importance measure have several advan-
tages. Te frst advantage is that they allow the proposed
method to apply to diferent types of data, including both
continuous and categorical variables. Te second advantage
is that the proposed method achieves high accuracy in
feature selection, as supported by both theoretical guaran-
tees and empirical evidence. In particular, the permutation
importance measure provides a reliable and robust way to
rank the importance of features, and the recursive feature
elimination algorithm can iteratively eliminate unimportant
features, leading to a fnal subset of relevant features.

Te proposed algorithm contains some parameters,
hyperparameters, and criteria. To obtain the optimal set, we
utilize the mean squared error (MSE) for continuous re-
sponse or the out-of-bag (OOB) error for the multilevel
categorical response as the criteria for model performance.
Te frst screening phase, known as the flter, involves
certain related parameters. First, we use a parameter denoted
as dn to control the number of features selected through the
fused Kolmogorov flter statistics. For ultrahigh dimensional
sparse models, we follow the common setting that
dn � a􏼆n/ log n􏼇, where a is a given constant [34, 35, 53]. In
this case, the frst screening phase tends to choose a larger
model size compared to the true size of the relevant features.
In the wrapper phase, there are some hyperparameters in
random forest, such as the number of trees to grow and the
number of variables randomly sampled as candidates at each
split. According to our numerical experience and the rec-
ommendation from references [58, 60, 71], the results do not
diferent much over a range of hyperparameters. Tus, we
follow the regular setting of the random forest, as

recommended by references, that apply the default hyper-
parameters provided by the R package random forest. For
example, the number of trees to grow is set at 500. For the
number of variables randomly sampled as candidates at each
split, the values are ��

p
√ for classifcation and p/3 for re-

gression. Te minimum size of terminal nodes is set at 1 and
5 for classifcation and regression, respectively. More details
can be found in [72]. Te source codes of the proposed
algorithm and datasets are available on GitHub (URL:
https://github.com/momoxia1992/FK-RFE).

2.4. Discussions and Comparison with Other Methods and
Algorithms. In this section, we aim to discuss the charac-
teristics of the proposed method and compare it with other
existing methods. Notably, the FK-RFE approach does not
require any model or data assumptions, rendering it suitable
for diverse datasets and applicable to nonparametric,
semiparametric, and parametric scenarios. Moreover, by
employing random forest for training, the proposed method
is robust to noise, missing data, outliers, and ultrahigh di-
mensional data. We substantiate these claims through nu-
merical experiments. To gain further insight into the FK-
RFE, we diferentiate it from other methods based on the
following criteria. We frst compare it with some specifc
methods:

(i) Compared to forward selection [73], which starts
with an empty set and adds features one by one,
FK-RFE uses a backward strategy, which starts with
a large set of features and removes the least im-
portant ones iteratively. Tis strategy efciently
reduces the risk of overftting, providing better
adaptation to noisy or redundant features and
improving the generalization ability of the model.

(ii) Compared to Lasso and other regularization
methods that are commonly solved using the co-
ordinate descent algorithm, FK-RFE ofers many
advantages. It does not rely on tuning penalties or
model assumptions, for example, linearity or nor-
mality assumptions. In this case, FK-RFE would
have better performance in situations where the
model assumptions fail and avoids the efects of the
selection of tuning parameters.

(iii) Compared to flter methods, such as mutual
information-based methods [26, 74], FK-RFE
considers the joint efects of features by using the
fused Kolmogorov flter, which is more suitable for
situations where covariates are strongly dependent
on each other. Furthermore, the proposedmethod is
applicable to a wide range of data types. Tis broad
applicability makes it more suitable for practical
problem compared to some methods designed
specifcally for certain data types, such as F-score
[28] for binary data and SIS [34] for
continuous data.

(iv) Compared to wrapper methods, such as sequential
forward selection [75], FK-RFE is computationally
efcient, especially for ultrahigh dimensional data,
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because it reduces the number of features in the
wrapper phase by screening out irrelevant features
in the flter phase.

(v) Compared to other similar iterative algorithms, the
FK-RFE method also ofers some advantages. For
instance, recursive feature elimination [58] is

Training data

Calculate the fused 
Kolmogorov filter statistics

Rank feautres

Preserve the first dn features

Train the remaining features 
using the RF

Calculate the model 
performance

Gain the permutation 
importance measures

Remove the least important 
feature

Active set is 
empty?

Select the best-performing 
active set

Filter phase

Wrapper phase

Yes

No

Figure 1: Te fowchart of FK-RFE consists of two main phases: the flter phase and the wrapper phase. Te flter phase aims to efciently
downscale the features, reducing computational consumption. On the other hand, the wrapper phase focuses on selecting the most
appropriate subset to ensure accuracy.

Inputs:
X: Sample of predictors
Y: Sample of response
M: Number of trees
dn: Treshold of flter
Output: Te set with the best model performance
Filter phase:
(1) Rank the features according to the fused Kolmogorov flter statistic 􏽢Kj, j � 1, . . . , p

(2) Obtain the reduced set
V0 � j: 􏽢Kj is among the firstdn largest of all􏽮 􏽯

Wrapper phase:
(1) for all the remaining features do
(2) Train the model using the random forest
(3) Calculate the model performance
(4) Calculate the permutation importance measures
(5) Update Vl−1 to Vl by eliminating the least important feature
(6) Update l � l + 1
(7) Continue until no features are left
(8) end for

ALGORITHM 1: FK-RFE.
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computationally demanding, as the iteration starts
with all variables and ends when no variables re-
main. Forward recursive selection [61] is suitable for
high-dimensional data, but the number of iterations
is determined by the number of samples, leading to
high computational costs when dealing with large
datasets.

Te FK-RFE method ofers a unique combination of the
wrapper and flter techniques without their respective dis-
advantages. In the frst phase, it efciently reduces di-
mensions using the flter technique, while in the second
phase, it avoids the computational burden of the wrapper
method. Tis combination leads to high accuracy in feature
selection. Unlike model-based techniques such as regula-
rization approaches [13, 15, 76] and model-based forward
selections [49, 73, 77], the proposed FK-RFE method is
model-free and requires fewer assumptions, making it
suitable for a wider variety of data formats. Moreover, the
algorithm requires only one parameter dn, which is not
crucial and can be easily calculated without cross-validation,
BIC, or other parameter selection techniques.

3. Consistency Analysis

Noted that we consider sparse learning problems with the
model framework (1), i.e.,

Y � f(X) + ϵ. (11)

Considers a subset S � j: Xj is relevant toY􏽮 􏽯 ⊂ 1, 2,{

. . . , p} with cardinality |S| � q that much less than the di-
mension p. Formally speaking, we refer to a predictor j ∈ S

as informative or relevant. If a predictor j belongs to the
complement of S, i.e., j ∈ Sc � 1, . . . , p􏼈 􏼉\S, it is regarded as
uninformative or unimportant. In practice, a forest can only
be created with a fnite number of trees. On the other hand,
in the theoretical analysis, it is generally assumed that M

tends to infnity. Tis is because when M �∞, the pre-
dictors do not depend on the realization of the specifc tree
in the forest. To simplify the proof, we follow this as-
sumption and consider the consistent property among the
infnite forest. Te infnite forest estimate is defned by
f � E(􏽢f). By the law of large numbers,

f � lim
M⟶∞

􏽢f � lim
M⟶∞

1
M

􏽘

M

m�1

􏽢fm, (12)

where more details can be found in [67, 78]. We consider the
following regularity conditions, under which we can guar-
antee the convergence of Algorithm 1, that the FK-RFE is
selection consistent and L2 consistent.

C1. Tere exists a set S1 such that S ⊂ S1 and

△S1
� min

t
min
j∈S1

K
Go

t

j − max
j∉S1

K
Go

t

j􏼠 􏼡> 0, (13)

where K
Go

t

j is K
Gt

j under oracle partition Gt which
contains the intervals bounded by the 1/gt th theo-
retical quantiles of Y.

C2. For any b1, b2 such that P(Y ∈ [b1, b2))⩽ 2/min
gt􏼈 􏼉, we have

Fj x | y1( 􏼁 − Fj x | y2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⩽
△S1

8
, (14)

for all x, j and y1, y2 ∈ [b1, b2).

Theorem 1. Suppose conditions C1-C2 hold. Assume the
importance measure 􏽢I(Xj) is an unbiased estimator of I(Xj),
i.e., limM⟶∞E(􏽢I(Xj)) � I(Xj), as n⟶∞, and the
infnite random forest is L2 consistent. Ten the FK-RFE is
selection consistent. Tat is, denoting 􏽢S to be the set selected by
the FK-RFE, we have

P(􏽢S � S)⟶ 1, as n⟶∞. (15)

Remark 2. Conditions C1 and C2 follow the conditions C1
and C2 in [53], which guarantee the sure screening property
of the fused Kolmogorov flter. Specifcally, Condition C1
ensures that the predictors in the set S are marginally im-
portant, which is a regular condition in marginal screening
approaches. Condition C2 guarantees that the sample
quantiles of Y are close enough to the population quantiles
of Y. Both conditions are mild.

Remark 3. Te validity of the importance measure is for-
mally proven to be valid under some general assumptions in
[68]. Tis guarantees that the permutation importance
measure of the informative predictor converges to a nonzero
constant and that one of the uninformative predictors
converges to 0 with probability. Terefore, the un-
informative predictors are eliminated before the informative
ones. Te permutation importance measure is widely
studied in various references, such as [58, 61, 68, 79]. For
instance, Gregorutti et al. [58] proposed I(Xj) � 2Var(fj

(Xj)) under an additive regression model, i.e., f(X) �

􏽐
p

j�1fj(Xj). Furthermore, Ramosaj and Pauly [68] proved
that under more general assumptions and model (1), I(Xj)

equals E[(f(X) − f(X(j)))
2] for j ∈ S, or equals 0 for j ∈ Sc.

Remark 4. It is worth noting that another important re-
quirement forTeorem 1 is the L2 consistency of the random
forest estimator. Tis requirement has been extensively
studied in the literature, with numerous references pro-
viding insights into this topic. For instance, Breiman [67]
established an upper bound on the generalization error of
forests based on the correlation and strength of individual
trees. Denil et al. [80] proved the consistency of online
random forests, while Scornet et al. [78] demonstrated L2
consistency of random forests in an additive regression
framework. Athey et al. [81] proposed a generalized random
forest and developed an asymptotic and consistency theory
for it. Given the vastness of this topic, we refer interested
readers to the aforementioned references for a more detailed
discussion of L2 consistency in random forests and state the
following result without proof.
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Proposition 5. Assume the infnite random forest is L2
consistent. Te FK-RFE is L2 consistent too.

4. Simulations

In this section, we conduct a comparative analysis of the
FK-RFE with other feature selection methods on simulated
datasets spanning from low to ultrahigh dimensional set-
tings.Te sample size is fxed at n � 100, while the number of
features varies from p � 100 to p � 2000. As recommended
by [53], we set gt � 3, 4 in the fused Kolmogorov flter of the
FK-RFE for 􏼆log n􏼇 � 4, and the threshold dn � 􏼆n/log n􏼇.
We compare the FK-RFE with fve other feature selection
methods, namely, recursive feature elimination (RFE) [58],
forward recursive selection (FRS) [61], Lasso [13], forward-
backward selection with early dropping (FBED) [48], and F-
score [28]. Note that the F-score is proposed for binary data,
thus we only apply and compare this method in this case.
Lasso is the corresponding form under logistic regression
when the response is binary. We consider six models in this
simulation study.

Example 1. Y � exp(X1 + X2 + X3 + X4 + X5) + ϵ.

Example 2. Y1/9 � 2.8X1 − 2.8X2 + ϵ.

Example 3. Y � (X1 + X2 + 1)3 + ϵ.

Example 4. Y � 2(X1 + X2) + 2 tan(πX3/2) + 5X4 + ϵ.

Example 5. Y∼Poisson(u), where u � exp(0.8X1 − 0.8X2),
Xj ∼ t2 independently.

Example 6. Y ∼ B(1, π), where ln(π/1 − π) � 3X1X2 + 2X3
+ 2X4.

Te error ϵ∼N(0, 1). In the Examples 1–4 and 6, the
predictor X � (X1, . . . , Xp)∼N(0,Σ) and the covariance
matrix is generated as Σ � (σij)p×p with σij � 0.5|i− j|.

Diferent examples generate the response Y using var-
ious models. Examples 1–3 use three diferent generalized
linear models, Example 4 considers an additive model,
Example 5 uses a Poisson regression model from [53], and
Example 6 is a logistic regression model. Te number of
relevant features in these models ranges from 2 to 5. Te
parameters of the Lasso and F-score are selected from the 5-
fold CV. Meanwhile, we conduct two correlation tests,
Kendall test and Spearman test, to analyze the relationship
between the response and each predictor sample. Te
p-values associated with the relevant predictors, in relation
to the response, are consistently lower than 0.05, and
a notable proportion of them are below 10− 6. Tese results
demonstrate strong and robust correlations between the
relevant predictors and the response.Tis observation aligns
well with the context of the underlying dataset. Te per-
formance is evaluated using true positive rate (TPR), true
negative rate (TNR), balanced accuracy, and the number of
selected features abbreviated as model size, which are
common in feature selection, i.e., [29, 30, 34, 53]. We im-
plement the program using R code and conduct the

computational analysis on a standard laptop computer with
a 2.30GHz Intel Core i7-11800H processor. Tables 1–6
summarize the average results of Examples 1–6 based on
200 simulations, respectively. Due to the limited computing
power and the R software limitation, the entries of RFE
among p � 2000 are missing. Te sample standard deviation
is shown in parentheses. Te best results under each di-
mension are highlighted in all the tables.

As shown in Tables 1–6, the performance of the FK-RFE
archives high balanced accuracy and small model size
compared to other methods across all examples, while
consistently achieving a high TPR and TNR. Tables 1–6
show that FK-RFE performs signifcantly better than FBED
in terms of TPR, suggesting that the latter is less efective in
selecting relevant features. In particular, as shown in Table 5,
FK-RFE consistently achieves better balanced accuracy,
TPR, and TNR than other methods.

In Examples 1–4, FK-RFE has a slightly lower TPR than
some other methods, with a diference of approximately
0.15. However, this is because other methods tend to select
a larger number of features, including both relevant and
irrelevant ones, while FK-RFE strikes a better balance be-
tween them. In Example 6, FK-RFE slightly outperforms
RFE and signifcantly outperforms F-score technique for
binary dataset. Moreover, as the dimension increases and the
number of irrelevant features grows, FK-RFE’s selection
accuracy remains stable. In summary, across various models
and dimensions, FK-RFE consistently achieves high selec-
tion accuracy and outperforms other methods in terms of
balanced accuracy and model size.

5. Applications

In this section, we demonstrate the efectiveness of the
proposed method using the Tecator dataset and Daily De-
mand Orders dataset. We compare the proposed method
with RFE, FRS, and Lasso. However, it should be noted that
FBED is not applicable for prediction as it is specifcally
designed for feature selection. For both datasets, we increase
the dimensionality by adding noise. Both datasets are
continuous and high dimensional for they have small sample
sizes and large numbers of features.

5.1. Tecator Data. Te frst real example is to analyze the
Tecator dataset, which was collected using the near infrared
transmission (NIT) principle by the Tecator infratec food and
feed analyzer within the wavelength range of 850–1050nm.Te
dataset consists of 240 samples and 100 predictors, representing
absorbance channel spectra, with the response being the
proportion of fat in fnely chopped meat. Te dataset was
previously analyzed byMai andZou [53] and can be accessed at
https://lib.stat.cmu.edu/datasets/tecator.

We randomly select 200 samples as the training set and use
the remaining 40 samples as the testing set. In addition to the
100 predictors in the original dataset, we add 900 independent
noise variables following the standard normal distribution and
simulate 50 times. We evaluated the efectiveness of the
methods in terms of model selection performance, ftting

8 International Journal of Intelligent Systems

https://lib.stat.cmu.edu/datasets/tecator


performance, and prediction performance. Model size and
wrong selection (the number of selections from generated
noises) are used to measure model selection performance, and
the results are presented in Table 7 (the best results are
highlighted). We also calculate mean square error,

MSE �
1
n

􏽘

n

i�1
􏽢yi − yi( 􏼁

2
, (16)

mean absolute error,

MAE �
1
n

􏽘

n

i�1
􏽢yi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (17)

and mean absolute percentage error,

MAPE �
1
n

􏽘

n

i�1

􏽢yi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

yi

× 100%, (18)

Table 1: Performance comparison under Example 1.

Methods p Balanced accuracy Model size TPR TNR

FK-RFE

100 0.848 (0.12) 9.50 (5.78) 0.757 (0.26) 0.940 (0.05)
300 0.868 (0.12) 9.36 (5.66) 0.755 (0.25) 0.981 (0.02)
500 0.855 (0.12) 9.02 (5.52) 0.721 (0.25) 0. 8 (0.01)
2000 0.867 (0.13)  .8 (5.73) 0.737 (0.26) 0.  7 (0.01)

RFE

100 0.696 (0.15) 48.24 (36.63) 0.854 (0.23) 0.537 (0.38)
300 0.660 (0.13) 186.98 (94.46) 0.938 (0.14) 0.382 (0.32)
500 0.689 (0.13) 286.24 (141.96) 0. 47 (0.13) 0.431 (0.29)
2000 — — — —

FRS

100 0.699 (0.14) 50.04 (35.42) 0.878 (0.22) 0.519 (0.37)
300 0.873 (0.06) 62.66 (28.54) 0. 42 (0.15) 0.804 (0.10)
500 0. 03 (0.07) 66.70 (28.40) 0.932 (0.16) 0.875 (0.06)
2000 0. 22 (0.07) 72.57 (25.13) 0.878 (0.15) 0.966 (0.01)

Lasso

100 0.613 (0.10) 62.18 (27.01) 0.836 (0.17) 0.789 (0.28)
300 0.723 (0.10) 79.72 (24.15) 0.704 (0.19) 0.742 (0.08)
500 0.730 (0.11) 57.88 (34.20) 0.572 (0.24) 0.889 (0.07)
2000 0.725 (0.11) 87.52 (18.34) 0.492 (0.22) 0.957 (0.01)

FBED

100 0.642 (0.07) 3.40 (1.02) 0.304 (0.13) 0. 80 (0.01)
300 0.637 (0.06) 5.5 (1.25) 0.288 (0.12) 0. 86 (0.01)
500 0.621 (0.06) 6.  (1.30) 0.254 (0.12) 0.988 (0.01)
2000 0.591 (0.06) 11.40 (1.29) 0.187 (0.12) 0.995 (0.01)

Te best results under each dimension are highlighted in all the tables.

Table 2: Performance comparison under Example 2.

Methods p Balanced accuracy Model size TPR TNR

FK-RFE

100 0.805 (0.1 ) 7.31 (5.54) 0.670 (0.38) 0.939 (0.06)
300 0.816 (0.18) 7.51 (5.39) 0.653 (0.37) 0.979 (0.02)
500 0.755 (0.19) 7.30 (5.55) 0.523 (0.38) 0.987 (0.01)
2000 0.712 (0.17) 7.36 (5.40) 0.428 (0.35) 0.  7 (0.01)

RFE

100 0.658 (0.18) 42.81 (38.48) 0.738 (0.36) 0.578 (0.39)
300 0.567 (0.09) 251.34 (58.62) 0. 70 (0.15) 0.163 (0.20)
500 0.589 (0.11) 377.86 (106.34) 0. 33 (0.20) 0.245 (0.21)
2000 — — — —

FRS

100 0.630 (0.16) 49.49 (41.02) 0.750 (0.37) 0.510 (0.41)
300 0.767 (0.14) 62.98 (33.86) 0.740 (0.34) 0.794 (0.11)
500 0.771 (0.16) 71.76 (29.40) 0.683 (0.34) 0.859 (0.06)
2000 0.701 (0.19) 78.05 (25.96) 0.440 (0.38) 0.961 (0.01)

Lasso

100 0.679 (0.14) 62.62 (27.60) 0. 78 (0.12) 0.781 (0.28)
300 0.844 (0.11) 68.91 (27.82) 0.913 (0.20) 0.775 (0.09)
500 0.850 (0.11) 88.44 (17.34) 0.875 (0.22) 0.826 (0.03)
2000 0.750 (0.17) 95.29 (8.60) 0.548 (0.33) 0.953 (0.01)

FBED

100 0.747 (0.15) 3.11 (1.07) 0.515 (0.30) 0. 7 (0.01)
300 0.675 (0.15) 5.47 (1.21) 0.365 (0.29) 0. 84 (0.01)
500 0.683 (0.16) 6.83 (1.24) 0.378 (0.33) 0. 88 (0.01)
2000 0.621 (0.15) 11.55 (1.21) 0.248 (0.30) 0.994 (0.01)

Te best results under each dimension are highlighted in all the tables.
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on the training and testing set, respectively. Te perfor-
mance of the RFE and the FRS is based on the random forest,
and the results of all approaches on these three metrics are
shown in Tables 8 and 9. Te sample standard deviation is
shown in parentheses.

In Tecator data analysis, FK-RFE consistently out-
performs the other methods. As shown in Table 7, the model
size and the number of wrong selections of FK-RFE are
signifcantly smaller than those of the other methods.
Specifcally, FK-RFE reduces the number of wrong selections

of RFE by 81%, FRS by 92%, and Lasso by 99%. Furthermore,
FK-RFE achieves the lowest MSE, MAE, and MAPE on both
the training and testing sets, as shown in Tables 8 and 9. For
instance, FK-RFE reduces the predicted MAPE of RFE by
4%, FRS by 13%, and Lasso by 54%.

5.2. Daily Demand Orders Data. Te second real example is
to analyze daily demand orders data, which was studied by
an artifcial neural network [82].Te original dataset is a real
database of a Brazilian logistics company. It was collected

Table 3: Performance comparison under Example 3.

Methods p Balanced accuracy Model size TPR TNR

FK-RFE

100 0.815 (0.13) 7.72 (5.40) 0.695 (0.28) 0.935 (0.05)
300 0.818 (0.13) 7.64 (5.39) 0.658 (0.28) 0.979 (0.02)
500 0.826 (0.14) 7.60 (5.38) 0.665 (0.29) 0.987 (0.01)
2000 0.822 (0.15) 7.13 (5.57) 0.648 (0.30) 0.997 (0.01)

RFE

100 0.710 (0.16) 42.01 (36.95) 0.833 (0.25) 0.588 (0.37)
300 0.615 (0.14) 208.80 (94.32) 0. 25 (0.18) 0.306 (0.32)
500 0.591 (0.15) 360.16 (114.44) 0. 03 (0.20) 0.280 (0.23)
2000 — — — —

FRS

100 0.812 (0.19) 26.19 (35.75) 0.873 (0.22) 0.751 (0.36)
300 0.86 (0.12) 40.88 (38.53) 0.870 (0.23) 0.869 (0.13)
500 0.8 4 (0.11) 51.78 (36.58) 0.888 (0.23) 0.900 (0.07)
2000 0. 23 (0.11) 46.56 (39.69) 0.868 (0.23) 0.978 (0.02)

Lasso

100 0.656 (0.17) 42.46 (41.46) 0.730 (0.34) 0.582 (0.42)
300 0.694 (0.15) 30.80 (38.71) 0.488 (0.34) 0.900 (0.13)
500 0.643 (0.15) 15.05 (30.59) 0.315 (0.33) 0.971 (0.06)
2000 0.801 (0.16) 40.97 (38.95) 0.623 (0.32) 0.980 (0.02)

FBED

100 0.814 (0.11) 2.44 (1.17) 0.640 (0.23) 0. 88 (0.01)
300 0.791 (0.11) 3.41 (1.54) 0.590 (0.21) 0.  3 (0.01)
500 0.775 (0.11) 3.85 (1.56) 0.555 (0.23) 0.  5 (0.01)
2000 0.753 (0.12) 4.84 (1.51) 0.508 (0.23) 0.  8 (0.01)

Te best results under each dimension are highlighted in all the tables.

Table 4: Performance comparison under Example 4.

Methods p Balanced accuracy Model size TPR TNR

FK-RFE

100 0.801 (0.14) 10.50 (6.19) 0.683 (0.29) 0.919 (0.06)
300 0.804 (0.16) 10.44 (6.03) 0.634 (0.32) 0.973 (0.02)
500 0.813 (0.15) 11.47 (6.35) 0.644 (0.31) 0.982 (0.01)
2000 0.765 (0.14) 11.52 (6.12) 0.535 (0.29) 0.  5 (0.01)

RFE

100 0.643 (0.16) 49.38 (34.36) 0.768 (0.34) 0.518 (0.35)
300 0.621 (0.20) 188.36 (96.48) 0.868 (0.22) 0.375 (0.33)
500 0.625 (0.21) 279.77 (152.97) 0.808 (0.27) 0.442 (0.31)
2000 — — — —

FRS

100 0.640 (0.16) 56.76 (34.93) 0.836 (0.26) 0.544 (0.36)
300 0.804 (0.14) 63.14 (30.11) 0.811 (0.29) 0.798 (0.10)
500 0.85 (0.12) 69.07 (27.76) 0.850 (0.25) 0.868 (0.06)
2000 0. 1 (0.11) 69.81 (28.30) 0.871 (0.22) 0.967 (0.01)

Lasso

100 0.637 (0.15) 48.11 (23.45) 0.745 (0.21) 0.530 (0.24)
300 0.669 (0.16) 63.98 (25.04) 0.548 (0.27) 0.791 (0.09)
500 0.652 (0.17) 81.36 (17.67) 0.464 (0.30) 0.840 (0.04)
2000 0.643 (0.17) 90.10 (10.17) 0.330 (0.34) 0.956 (0.01)

FBED

100 0.604 (0.11) 3.11 (1.16) 0.230 (0.22) 0. 77 (0.01)
300 0.584 (0.10) 5.34 (1.26) 0.184 (0.20) 0. 84 (0.01)
500 0.593 (0.11) 6.75 (1.3 ) 0.199 (0.22) 0. 88 (0.01)
2000 0.571 (0.10) 11.32 (1.50) 0.148 (0.19) 0.995 (0.01)

Te best results under each dimension are highlighted in all the tables.

10 International Journal of Intelligent Systems



Table 5: Performance comparison under Example 5.

Methods p Balanced accuracy Model size TPR TNR

FK-RFE

100 0. 77 (0.02) 6.43 (3.27) 1.000 (0.00) 0.955 (0.03)
300 0.  1 (0.02) 6.36 (3.04) 0.  8 (0.04) 0. 85 (0.01)
500 0.  4 (0.02) 6.44 (3.05) 0.  8 (0.04) 0.  1 (0.01)
2000 0.  8 (0.02) 6.56 (3.33) 0.  8 (0.04) 0.  8 (0.01)

RFE

100 0.945 (0.05) 11.13 (6.01) 0.983 (0.09) 0.906 (0.06)
300 0.982 (0.01) 12.80 (7.52) 1.000 (0.00) 0.964 (0.03)
500 0.978 (0.05) 15.55 (8.41) 0.983 (0.09) 0.973 (0.02)
2000 — — — —

FRS

100 0.745 (0.18) 42.00 (34.81) 0.900 (0.20) 0.590 (0.35)
300 0.824 (0.13) 61.63 (36.33) 0.850 (0.27) 0.799 (0.12)
500 0.841 (0.14) 52.03 (36.94) 0.783 (0.31) 0.899 (0.07)
2000 0.953 (0.08) 57.77 (35.96) 0.933 (0.17) 0.972 (0.02)

Lasso

100 0.585 (0.15) 82.38 (28.60) 0.990 (0.07) 0.180 (0.29)
300 0.563 (0.11) 22.50 (39.55) 0.200 (0.30) 0.926 (0.13)
500 0.724 (0.15) 71.62 (39.04) 0.590 (0.30) 0.859 (0.08)
2000 0.592 (0.13) 33.84 (46.46) 0.200 (0.29) 0.983 (0.02)

FBED

100 0.747 (0.08) 3.20 (1.16) 0.517 (0.16) 0. 78 (0.01)
300 0.743 (0.11) 5.43 (1.63) 0.500 (0.23) 0.985 (0.01)
500 0.753 (0.10) 6.60 (1.67) 0.517 (0.21) 0.989 (0.01)
2000 0.665 (0.15) 8.23 (1.96) 0.333 (0.30) 0.996 (0.01)

Te best results under each dimension are highlighted in all the tables.

Table 6: Performance comparison under Example 6.

Methods p Balanced accuracy Model size TPR TNR

FK-RFE

100 0.870 (0.11) 9.72 (5.13) 0.807 (0.21) 0.932 (0.05)
300 0.83 (0.10) 16.92 (9.92) 0.725 (0.20) 0.953 (0.03)
500 0.825 (0.0 ) 19.65 (10.65) 0.684 (0.1 ) 0.966 (0.02)
2000 0.779 (0.11) 31.59 (17.56) 0.573 (0.23) 0.985 (0.01)

RFE

100 0.870 (0.10) 9.77 (5.68) 0.807 (0.1 ) 0.932 (0.05)
300 0.825 (0.12) 16.52 (10.99) 0.697 (0.25) 0.953 (0.03)
500 0.810 (0.12) 20.14 (12.04) 0.655 (0.24) 0.964 (0.02)
2000 — — — —

FRS

100 0.819 (0.08) 14.74 (8.36) 0.76 (0.16) 0.878 (0.08)
300 0.809 (0.08) 25.08 (15.17) 0.693 (0.18) 0.925 (0.05)
500 0.801 (0.07) 31.33 (18.96) 0.660 (0.16) 0.942 (0.03)
2000 0.7 3 (0.07) 40.89 (20.85) 0.605 (0.14) 0.981 (0.01)

Lasso

100 0.729 (0.05) 11.45 (2.68) 0.554 (0.11) 0.904 (0.02)
300 0.740 (0.04) 11.38 (3.06) 0.512 (0.07) 0.968 (0.01)
500 0.743 (0.03) 11.13 (3.19) 0.504 (0.06) 0.982 (0.01)
2000 0.736 (0.04) 22.66 (4.51) 0.482 (0.08) 0.990 (0.01)

FBED

100 0.717 (0.05) 3.24 (0. 2) 0.450 (0.10) 0. 85 (0.01)
300 0.699 (0.06) 4. 5 (1.16) 0.409 (0.12) 0. 8 (0.01)
500 0.703 (0.06) 6.18 (1.11) 0.415 (0.12) 0.  1 (0.01)
2000 0.670 (0.06) 8.18 (1.14) 0.344 (0.12) 0.  7 (0.01)

F-score

100 0.773 (0.07) 20 (0) 0.725 (0.14) 0.822 (0.01)
300 0.770 (0.06) 17 (0) 0.605 (0.13) 0.951 (0.01)
500 0.787 (0.06) 14 (0) 0.598 (0.12) 0.977 (0.01)
2000 0.767 (0.05) 18 (0) 0.542 (0.11) 0.992 (0.01)

Te best results under each dimension are highlighted in all the tables.

Table 7: Te performance of model selection.

FK-RFE RFE FRS Lasso
Model size 20.14 (15.80) 21.76 (10.47) 93.41 (6.19) 163.27 (7.84)
Wrong selection 0.15 (0.45) 0.80 (1.03) 1.90 (1.86) 162.86 (7.66)
Te best results under each dimension are highlighted in all the tables.
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during 60 days, which has 12 predictive attributes and
a target that is the total of orders for daily treatment and can
be accessed at https://archive.ics.uci.edu/ml/datasets/Daily+
Demand+Forecasting+Orders.

We randomly split 60 samples into a training set (40
samples) and a testing set (20 samples) with 50 times
simulations. We add 900 independent noise variables and
use the same performance measures as the above real data.
Te experimental results are shown in Tables 10–12, in
which the best results are highlighted.

In this data analysis, FK-RFE consistently outperforms
other methods in terms of model selection and prediction.
Table 10 demonstrates that FK-RFE achieves the smallest
model size and wrong selection compared to the other
methods. In addition, Table 12 shows that FK-RFE leads to
reduced MSE, MAE, and MAPE values compared to other
methods. For example, FK-RFE reduces the predicted MSE
of RFE by 26%, FRS by 14%, and Lasso by 80%. In terms of
ftting, as shown in Table 11, FK-RFE performs comparably
to RFE and achieves the best results.

6. Summary

In this paper, we introduce a novel feature selection
procedure combining the flter and wrapper technique,
named FK-RFE. Tis method is designed to efciently
handle complex ultrahigh dimensional datasets without
being limited by model assumptions. We demonstrate
that the proposed method is selection consistent and L2
consistent under mild conditions. We evaluate the per-
formance of the proposed method under various types of
data. Results obtained from simulations and applications
show that FK-RFE outperforms some existing methods,
highlighting its superior efciency in feature selection.
Overall, FK-RFE is fast, accurate, and model-free, making
it a useful and efcient technique for resolving feature
selection issues.

On the other hand, there exist some limitations to the
proposed method that deserve further improvement. Due to
the limitation of the fused Kolmogorov flter and the random
forest, FK-RFE does not consider the capacity of model

Table 8: Te performance of ftting error.

FK-RFE RFE FRS Lasso
MSE 0.04 (0.004) 0.049 (0.004) 0.058 (0.005) 0.081 (0.017)
MAE 0.151 (0.006) 0.154 (0.008) 0.173 (0.009) 0.225 (0.024)
MAPE (%) 48.60 (6.748) 49.32 (7.433) 51.80 (5.873) 52.94 (8.150)
Te best results under each dimension are highlighted in all the tables.

Table 9: Te performance of prediction error.

FK-RFE RFE FRS Lasso
MSE 0.255 (0.103) 0.283 (0.095) 0.342 (0.116) 1.672 (0.306)
MAE 0.354 (0.067) 0.380 (0.065) 0.432 (0.069) 1.026 (0.100)
MAPE (%) 108.18 (54.5) 113.62 (55.031) 125.65 (52.64) 233.77 (117.301)
Te best results under each dimension are highlighted in all the tables.

Table 10: Te performance of model selection.

FK-RFE RFE FRS Lasso
Model size 5. 6 (3.12) 11.18 (9.64) 6.22 (4.55) 6.06 (2.59)
Wrong selection 1.42 (2.27) 5.22 (8.92) 1.66 (3.16) 5.46 (2.29)
Te best results under each dimension are highlighted in all the tables.

Table 11: Te performance of ftting error.

FK-RFE RFE FRS Lasso
MSE 0.038 (0.008) 0.036 (0.008) 0.045 (0.016) 0.664 (0.057)
MAE 0.113 (0.011) 0.110 (0.011) 0.125 (0.027) 0.620 (0.030)
MAPE (%) 45.535 (15.195) 37.524 ( .153) 43.712 (14.330) 111.888 (15.552)
Te best results under each dimension are highlighted in all the tables.

Table 12: Te performance of prediction error.

FK-RFE RFE FRS Lasso
MSE 0.18 (0.125) 0.256 (0.222) 0.221 (0.210) 0.994 (0.413)
MAE 0.274 (0.073) 0.308 (0.112) 0.279 (0.125) 0.737 (0.134)
MAPE (%)  4.421 (54.741) 96.514 (53.096) 85.201 (43.064) 139.322 (37.936)
Te best results under each dimension are highlighted in all the tables.
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learning in the frst flter phase. Furthermore, FK-RFE also
has limitations, particularly when dealing with specifc types
of datasets, such as unbalanced datasets. In such cases, for
applying random forest, FK-RFE is unsuitable. It would be
interesting to explore novel techniques to address the
challenges posed by these kinds of data.

Exploring the potential of combining FK-RFE with other
feature selection methods, such as information gain or
correlation-based methods, could be a promising direction
for future research. Moreover, investigating the in-
terpretability of the selected features by FK-RFE and the
potential for discovering novel biomarkers or causal re-
lationships in complex systems could be a fruitful area for
further investigation. Applying FK-RFE to real-world
problems in felds such as bioinformatics, fnance, or im-
age analysis could provide valuable insights into its practical
applications and limitations.

Appendix

Proof 1. As shown in Algorithm 1, let V0, V1, . . . , Vdn−1 be
the sequence of active sets selected during iterations, in
which V0 is selected by the flter phase and V1, . . . , Vdn−1 are
obtained by eliminating one variable at each step in the

wrapper phase. By the nature of the sequential procedure,
this is a nested sequence, i.e.,

V0 ⊃ V1 ⊃ V2 ⊃ . . . ⊃ Vdn−1. (A.1)

We aim to prove the convergence of the algorithm. It
sufces to show that there exists a step k ∈ 0, 1, 2 . . . ,{ dn − 1}

such that the performance error of the random forest es-
timation under the model Vk is the minimum and Vk is the
true model S.

As mentioned inTeorem 1 of [53], under conditions C1
and C2, we have S ⊂ V0􏼈 􏼉. Under the assumption of the
importance measure,

lim
M⟶∞

E 􏽢I Xj􏼐 􏼑􏼐 􏼑 � I Xj􏼐 􏼑. (A.2)

We have the empirical permutation importance measure
is unbiased. Based on the defnition of the permutation
importance measure, for j ∈ Sc,

I Xj􏼐 􏼑 � E Y − f X(j)􏼐 􏼑􏼐 􏼑
2

􏼔 􏼕 − E (Y − f(X))
2

􏽨 􏽩

� E (Y − f(X))
2

􏽨 􏽩 − E (Y − f(X))
2

􏽨 􏽩 � 0.

(A.3)

On the other hand, for j ∈ S,

I Xj􏼐 􏼑 � E Y − f X(j)􏼐 􏼑􏼐 􏼑
2

􏼔 􏼕 − E (Y − f(X))
2

􏽨 􏽩

� E (Y − f(X)) + f(X) − f X(j)􏼐 􏼑􏼐 􏼑􏼐 􏼑
2

􏼔 􏼕 − E (Y − f(X))
2

􏽨 􏽩

� E f(X) − f X(j)􏼐 􏼑􏼐 􏼑
2

􏼔 􏼕 + E ϵ f(X) − f X(j)􏼐 􏼑􏼐 􏼑􏽨 􏽩

� E f(X) − f X(j)􏼐 􏼑􏼐 􏼑
2

􏼔 􏼕.

(A.4)

Te last equality follows from the assumption that ϵ is
independent of X and X(j). Tis leads to E[ϵ(f(X)] � 0 and
E[ϵ(f(X(j))] � 0. Tus, we can obtain that.

I Xj􏼐 􏼑 � 0, for j ∈ S
c
,

I Xj􏼐 􏼑> 0, for j ∈ S.
(A.5)

Noted that at each iteration, the wrapper phase elimi-
nates the least important variable with the smallest value of
the permutation importance measure. Based on the
abovementioned result (A.5), we have that the unimportant
variables would be eliminated frst. Tus, set k � dn − q. We
have that there exists an active subset that Vk � S. Under the
requirement of the random forest estimator, we have

lim
n⟶∞

E[f − f]
2

� 0. (A.6)

It means that the random forest under model Vk has the
best performance and thus Vk can be selected as the optimal
model according to the criterion, i.e., 􏽢S � Vk, completing
the proof. □
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