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In recent years, COVID-19 has become the hottest topic. Various issues, such as epidemic transmission routes and preventive
measures, have “occupied” several online social media platforms. Many rumors about COVID-19 have also arisen, causing public
anxiety and seriously afecting normal social order. Identifying a rumor at its very inception is crucial to reducing the potential
harm of its evolution to society as a whole. However, epidemic rumors provide limited signal features in the early stage. In order to
identify rumors with data sparsity, we propose a few-shot learning rumor detection model based on capsule networks (CNFRD),
utilizing the metric learning framework and the capsule network to detect the rumors posted during unexpected epidemic events.
Specifcally, we constructively use the capsule network neural layer to summarize the historical rumor data and obtain the
generalized class representation based on the historical rumor data samples. Besides, we calculate the distance between the
epidemic rumor sample and the historical rumor class-wise representation according to the metric module. Finally, epidemic
rumors are discriminated against according to the nearest neighbor principle. Te experimental results prove that the proposed
method can achieve higher accuracy with fewer epidemic rumor samples.Tis approach provided 88.92% accuracy on the Chinese
rumor dataset and 87.07% accuracy on the English rumor dataset, which improved by 7% to 23% over existing approaches.
Terefore, the CNFRD model can identify epidemic rumors in COVID-19 as early as possible and efectively improve the
performance of rumor detection.

1. Introduction

Online social networks (OSN) play a crucial role in our daily
lives [1–3].Tey help people gather, communicate, and share
their common interests [4]. Multiple social network plat-
forms, such as Facebook, Twitter, Sina Weibo, and a few
e-mail systems [5], allow users to access various services
simultaneously [6, 7]. Te use of online platforms is ex-
ponentially amplifed, which increases the risk of infor-
mation leakage and opens the door to several cybercrimes
due to the large amount of data and information available on
these online platforms [8, 9]. Platform users can create
information at a very low cost, which also acts as a bridge of
information difusion regardless of the truth or falsity of the

information [10]. Information can easily be accessed, cre-
ated, and disseminated [11, 12]. Tese online user dynamics
are essential for a wide range of social risk analyses. Te
spread of rumors has seriously afected the health of the OSN
information ecosystem and the operation of social order,
causing social unrest, endangering public safety, and
harming public interests [13, 14]. Typical examples of the
highly destructive power of online rumors can be found in
the following three online events. Te once-popular event
“salt rumor” resulted in a nationwide “salt grabbing storm”.
Millions of people in the Shanxi Province of China took
refuge on the streets because of an earthquake rumor. It has
been reported that domestic dairy products have sufered
from the “leather milk powder” rumor. Overall, major public
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crises are almost always accompanied by an explosion of
online rumors. Terefore, detecting COVID-19 rumors as
early as possible is of great practical signifcance for the
governance of the network environment, the comfort of
people’s emotions, the stability of social order, and the ef-
fective prevention and control of epidemics. Not all events
will be predicted in the future, but we can prepare for their
potential rumors with our best eforts [15].

A series of noteworthy worldwide rumors are associated
with the novel coronavirus disease (COVID-19), a major
global public health event widely publicized since January
2020. Rumors concerning COVID-19 have spread widely
throughmultiple onlinemedia such as news reports, Twitter,
etc. Tese can be illustrated briefy by the “pet rumor” that
pets could spread the novel coronavirus. In a similar rumor
event involving disease treatment, the Chinese medicine
“Shuanghuanglian” could prevent the novel coronavirus.
Another rumor claims that 80 Chinese citizens were isolated
and abused in Moscow. Many news organizations and social
media service providers are making eforts to build rumor-
reporting platforms. For example, Sina’s misinformation
management center (https://service.account.weibo.com/?
type�5&status�0) as well as the social network manage-
ment sites Snopes (http://www.snopes.com/) and Factcheck
(http://www.factcheck.org/) have contributed to the rumor
reporting. Researchers observed that fact-checking eforts on
COVID-19 increased by more than 900 percent as rumors
spread [16]. In a short period of 74 days from January 18 to
March 31, 2020, the three major Chinese rumor-refuting
platforms (China Internet Joint Rumor-refuting Platform
(https://www.piyao.org.cn/), Baidu rumor-refuting plat-
form, and Tencent’s Jiaozhen rumor-refuting platform
(https://vp.fact.qq.com/)) verifed and refuted 1,491
COVID-19 rumors. Figure 1 shows the distribution of ru-
mor detection results of the three platforms. We can con-
clude that more than 75% of the information on OSN during
this period is rumors. Unfortunately, manual fact-checking
is labor-intensive and has difculty scaling with the volume
of emerging rumors [17, 18].

Rumor detection, which aims to recognize the rumors
that have appeared on OSN, has recently attracted sub-
stantial research attention due to its signifcant research
challenges and practical value. Traditionally, rumor detec-
tion has been dominated by retrospective detection models
[19, 20]. Such models combine a large number of features
and require much time and labor to achieve accuracy.
However, rumors do not ofer adequate features during the
incubation stage. Epidemic rumors exhibit their own par-
ticular characteristics. Consequently, existing retrospective
detection models do not apply to this severe epidemic
scenario. A systematic understanding and process of how to
use small-sample learning in rumor detection are still
lacking.

Tis study aims to introduce the few-shot learning (FSL)
method into the rumor detection task to overcome the
problem of insufcient epidemic rumor data. We observe
that the newly emerging epidemic rumors and historical
rumors generally share certain similarities in their linguistic
expressions, word usages, punctuation, and distinct

linguistic features such as “Central notice: XXX can prevent
the virus, please spread a lot!” and “Shocked! Doctor’s advice
that 99.99 percent of people don’t know. Be careful!”.
Terefore, we use the characteristics of historical rumor data
to classify a small number of epidemic rumor data since
historical rumors are implicitly related to epidemic rumors.
Besides, meta-learning is a technique for training a model on
a small batch of data in order to develop the ability to
generalize across diferent training sets. Te excellent
method can be efective in helping the model simulate the
low-resource scenario and deal with new rumors during the
early stages of an epidemic. Our objective is to develop an
epidemic rumor detection model based on meta-learning
training and FSL.

Tis paper proposes a rumor detection model based on
the prototype network [21] in FSL. Figure 2 illustrates a
comparison between the proposed CNFRD model and the
prototype network, in which c1, c2, and c3 represent the
class-wise representation of all vectors belonging to the same
class, i.e., the prototypes. Figure 2(a) depicts the main steps
of the prototype network.

(i) Step 1 (sample-wise vector): Te sample-wise vector
representation is generated for all samples in the
support set.

(ii) Step 2 (class-wise vector): Each class has a prototype
created by taking the average of all the vectors in
that class.

(iii) Step 3 (measure the distance): Te network calcu-
lates the distance between the query sample and
each prototype representation. As a result, the query
sample will then be classifed by its nearest
prototype.

Figure 2(b) portrays the concept of CNFRD, which is
similar to the prototype network in a certain sense. Teir
main diferences include:

(i) Representations of prototypes are acquired difer-
ently. Te prototypes in the prototype network are
calculated based on averaging the vectors of samples
belonging to the same class. In contrast, CNFRD
prototypes are produced by introducing the capsule
network.

(ii) Distances are measured in a variety of ways. Te
prototype network utilizes Euclidean distances,
while the CNFRD model uses a modifed cosine
similarity function.

Te calculation of class-wise features using FSL learning,
such as the prototype network [21] and relation network
[22], depends heavily on simply summing or averaging
representations over samples belonging to the same class.
Much critical information in rumors may be lost due to
simplistic representations. Terefore, this paper introduces
the capsule network (Capsnet) [23] initialed by Sabour et al.
to generate the epidemic rumor class representation based
on historical rumors. Utilizing the advantages ofered by the
convolutional neural network (CNN) for extracting spatial
features, the Capsnet provides the structure of the capsules
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Figure 1: Distribution of rumor identifcation results on China’s three major rumor-refuting platforms (from top to bottom: Baidu rumor-
refuting platform, China Internet Joint Rumor-refuting Platform, and Tencent’s Jiaozhen rumor-refuting platform).
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Figure 2: Comparisons of the proposed CNFRD model and the prototype network. (a) Prototype network. (b) CNFRD.
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as well as the feature selection method of dynamic routing.
High-level capsules in the Capsnet represent the overall
abstract characteristics of samples, while low-level capsules
depict their local features. In addition, the dynamic routing
mechanism aggregates lower-level capsule information to
update high-level capsules. Compared to traditional CNN,
the Capsnet performs better in few-shot classifcation with
only a small amount of training data and has greater in-
terpretability and generalization capabilities. Moreover,
capsules in the Capsnet contain rich information, including
spatial locations and strong correlations between neigh-
boring nodes, which posses the ability to preserve the un-
derlying details in the original data. Tese properties ft well
with the connection and natural ordering of contexts in text
data. Consequently, the Capsnet can extract semantic in-
formation from words and facilitate the correct categori-
zation of texts.

In summary, this paper proposes a novel few-shot
learning rumor detection model based on a capsule network
(CNFRD). Specifcally, individual historical rumor data
samples are regarded as elements, while the historical rumor
class is treated as a whole. Te capsule encodes the internal
spatial relationships between the elements such that a
generalized class-level representation of historical rumor
data samples can be obtained by performing dynamic
routing. Ten, we measure the distance between the his-
torical rumor class-wise vector and the epidemic rumor
sample-wise vector. Finally, the nearest neighbor principle is
applied to determine whether it is a rumor.

To verify the efectiveness of our CNFRD model, we
conducted rumor detection experiments on two represen-
tative real-world datasets in Chinese and English, respec-
tively. Experiments reveal that our proposed model can
identify rumors earlier with higher detection accuracy even
with a limited number of epidemic rumor samples. A list of
key acronyms used in this paper is summarized in Table 1.
Te contributions of our work are summarized as follows:

(i) Tis study applies a metric learning framework of
few-shot learning to the rumor detection task,
which employs the features from a large amount of
historical rumor data to classify a small amount of
epidemic rumor information. Tis approach efec-
tively deals with the problem of small amounts of
data in the early stages of epidemic rumor propa-
gation by combining a well-established meta-
learning training approach.

(ii) Our study introduces the capsule network as a
rumor class generator to enhance the quality of
rumor class-wise representation. We propose a few-
shot rumor detection model for COVID-19. Tis is
the frst study to combine a metric learning
framework with the capsule network for social
media rumor detection.

(iii) Our experiments on Chinese and English datasets
have demonstrated that the proposed CNFRD
model has obvious advantages and can detect epi-
demic rumors equally well with fewer epidemic

rumor samples, reaching 88.92% accuracy on the
Chinese dataset and 87.07% accuracy on the English
dataset. Te performance is higher than the existing
models by 7% to 23%, and proves the efectiveness
of our model.

Te remainder of this paper is organized as follows.
Section 2 describes related work. Section 3 elaborates some
preliminary knowledge about rumor detection and meta-
learning. Section 4 details the developed framework for
rumor detection. Section 5 discusses the main fndings in
light of experimental results. Te conclusion and future
work are represented in Section 6.

2. Related Work

Tree aspects of related research and recent trends are
discussed in this section, including rumor detection
methods on OSN, few-shot learning methods, and capsule
network.

Rumor detection on OSN has gained considerable at-
tention in recent years. Early studies on rumor detection
have primarily focused on shallow features of rumors. It is
common for rumor mongers to use emotive language and
novel words in their messages in order to catch the attention
of the public. Hence, rumor messages frequently share
similar language expressions, word usages, punctuations,
etc. Yang et al. [24] initially developed the rumor detection
method based on Sina Weibo. Tey introduced location
features and client features and verifed the efectiveness of
the features through corresponding quantitative experi-
ments. Takahashi and Igata [19] introduced retweet rate,
outbreak points, and word distribution as the main features
for analyzing Twitter data related to the event of the “Jap-
anese earthquake-triggered tsunami”. Te study determined
a distinct diference between rumors and nonrumors in
terms of word distribution. Kwon et al. [20] used temporal,
structural, and linguistic features to improve the detection of
rumors. However, hand-crafted feature extraction is time-
consuming and labor-intensive, resulting in feature bias and
limiting it to specifc scenes. Te hand-crafted methods for
detecting rumors are not efective at identifying unknown
rumors [25].

Several rumor identifcation methods relying on deep
learning have emerged, andmany studies have explored how
deep learning can be used to identify rumors based on se-
mantic features [26]. Ma et al. [27] frst used a recurrent
neural network (RNN) to learn the hidden contextual in-
formation of relevant posts and combine it with time-series
information to determine the credibility of suspicious
statements or events. Te efectiveness of RNN in rumor
detection was demonstrated through experiments. A study
by Yu et al. [28] recommended using CNN for capturing text
semantic features. Chen et al. [29] proposed a new algorithm
for extracting text features from tweet using the attention
mechanism based on the RNNmodel to achieve better tweet
text feature extraction. It is believed that deep neural net-
work methods are capable of more accurately identifying
rumors because they use continuous vectors to represent text
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instead of sparsity features. Yang et al. [30] applied the
adversarial graph framework to construct a heterogeneous
information network to model the rich information between
users, posts, and user comments. Bian et al. [31] applied a
graph convolution network (GCN) for the frst time to
rumor detection on OSN, accounting for propagation and
dispersal characteristics. Rao et al. [32] used the stacked
BERTmodel for rumor detection.Temethod is fed into two
similar BERT modules for respective characterization
learning after obtaining corresponding posts by both timing
sequences and emotion score orders. Tese approaches are
integrated and input into the full connection layer for
classifcation prediction. Srinivasan [33] deployed two
parallel CNN networks to minimize the data imbalance and
facilitate fexible feature extraction. Tis automated rumor
detection approach provides better results for larger and
scale-free networks. Teir experimental results on real-life
datasets indicated that the model achieved good perfor-
mance in rumor detection. Sahoo and Gupta [34] proposed
an automatic fake news detection approach in a chrome
environment. Tey used multiple features associated with
Facebook accounts and some news content to analyze the
account’s behavior through deep learning. Tembhurne et al.
[35] utilized a multichannel deep learning model, leveraging
and processing the news headlines and news articles along
diferent channels to diferentiate between fake and real
news. Recently, researchers have explored external knowl-
edge in rumor detection studies because interpreting news
content usually requires sufcient background or profes-
sional knowledge [14, 36]. In addition to the above work,
researchers have operated adaptive learning [37], fuzzy
graph convolutional networks [38], multimodal network
[39], and other methods to detect rumors on OSN. Even
though all the studies above indicate that detecting rumors
on OSN by employing various approaches is efective,
certain limitations are identifed as follows:

(i) In the early stages of rumor propagation, there are
limited data available. As a result, detecting rumors
using neural networks is a complicated problem,
rendering it less efcient for early-stage rumors [40].

(ii) Some deep learning-based rumor detection methods
involve a lot of parameters and require massive
corpora for calculation.

During COVID-19, many OSN have sprung up rumors
[41]. However, this data remains insufcient compared to
thousands of historical rumors. Developing a method for
detecting rumors on OSN is challenging. Hence, we propose
a model that uses few-shot learning combined with the
capsule network to overcome the problems associated with
previous studies. Among them, few-shot learning is capable
of learning large amounts of data from a given class and then
quickly learning new classes with fewer samples to solve the
problem of insufcient data for early rumors detection.
Experiments show that the parameter number of the pro-
posed model is 8M, which is 77% less than the 35M pa-
rameters of the CNN deep learning model.

Te human brain can recognize new objects with a few
examples as opposed to the deep learning models described
above, for which large amounts of data are required. A child
also does not need to see many pictures to understand what a
sheep or tiger are. In order to replicate the rapid learning
capacity of human beings, few-shot learning [42] is proposed
that allows a computer to learn about new objects with only a
few labeled examples, as opposed to the transitional deep
learning models which require large amounts of data.

Few-shot learning has emerged in the feld of computer
vision research [43–45] and more recently in natural lan-
guage processing (NLP). Some few-shot methods [46–48]
aim to fne-tune a pretrained model in a specifc way [49].
Tis means that they train the model on a large-scale data,
then fne-tune its parameters (full connection layer or the
top layer) on the specifc small-sample dataset.Te fnal fne-
tuning model is more likely to be accurate. However, these
approaches can lead to overftting of the model on the target
dataset since a small number of data do not refect the true
distribution of a large number of data.

Te few-shot problem can be solved more intuitively
through data augmentation that is a process of expanding or
enhancing the original small-sample dataset with additional
(auxiliary) information. Xian et al. [50] developed a method
for generating zero-shot/few-shot samples for few-shot
learning tasks. Te method constructed VAE [51] +GAN
[52] model, but unfortunately it also introduces noise.

Some researchers believe that metrics-based approaches
are efective under resource-constrained conditions. If there
is a specifc correlation between two domains (source and
target), then knowledge can be transferred between them by
using the knowledge and features obtained in the source
domain. Te transformation can help train the classifcation
model in the target domain. Koch et al. [53] frst proposed to
use the siamese neural network for one-shot image recog-
nition, map input into target space via the embedding

Table 1: A list of key acronyms.

Full form Abbreviation
Bidirectional encoder representation from
transformers BERT

Bidirectional long short-term memory BiLSTM
Novel coronavirus disease 2019 COVID-19
Online social networks OSN
Few-shot learning FSL
Capsule network Capsnet
Convolutional neural network CNN
Recurrent neural network RNN
Graph convolution network GCN
Natural language processing NLP
Generative adversarial network GAN
Variational auto-encoder VAE
Gated recurrent unit GRU
Support vector machine SVM
Euclidean distance EuD
With W/
Without W/O
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function, and calculate similarity through a simple distance
calculation. Snell et al. [21] proposed the prototype network
that applies a deep neural network to map images into
vectors. For each class the model is trying to learn, there is a
prototype (a summary vector) representing that class. Tis
vector is created by taking the average vector value of all the
samples that belong to that class. As a result, the prototypes
for each sample class constitute the vector space. Ten, the
metric between the class representation and the query
embedding can be measured to determine their relationship.
Te prototype network [21] greatly infuenced the subse-
quent work. Geng et al. [54] used a dynamic routing al-
gorithm to compute the prototype representation. Each
cycle of dynamic routing results in a preliminary prototype
derived from weighting and summarizing the sentence
vectors of the support set, followed by the fnal output
derived from multiple cycles. Li et al. [55] proposed a novel
and compact end-to-end covariance metric network that can
represent concepts (or categories) with covariance matrices,
and then compute the consistency between query samples
and categories to construct a covariance metric as a rela-
tional measure. Zhao et al. [56] designed the self-guided
information convolution model, an improved convolution
structure, which utilizes the high-level features to guide the
network to extract the required discriminative features for
few-shot classifcation. Xu and Xiang [57] proposed a
multiperspective aggregation-based graph neural network
that observes through eyes (support and query instance) and
speaks by mouth (pair) for few-shot text classifcation. Pang
et al. [58] proposed an adapted bidirectional attention
mechanism to exploit the interaction between query and
support instances in metric learning to better describe text
classifcation features.

Temodel we constructed was derived from the prototype
network. Still, it introduced the Capsnet and dynamic routing
to learn generalized class-level representation based on his-
torical rumor data samples instead of the average of sample
vectors. Te Capsnet is an emerging neural network that
improves classifcation accuracy in small datasets and ach-
ieves excellent results in image classifcation. However, there
are limited studies on the application of the Capsnet in NLP.
Wang et al. [59] applied the Capsnet to sentiment analysis.
Teir model relied on the idea of creating capsules and fo-
cusing each capsule on a specifc sentiment. Kim et al. [60]
followed up by exploring the application of the Capsnet ar-
chitecture in text classifcation and obtained certain results in
multiple datasets. Te improved capsule network model
proposed by Yang et al. [61] is suitable for supervised text
classifcation of large labeled datasets. Local information
diversity is improved within the capsule by adding shared and
unshared matrices. Te noise in the network is reduced by
introducing isolated categories and updating connection
strength. As a model extension of Yang et al. [61], Xia et al.
[62] developed the capsule-based architecture to determine
the similarity of target and source intents. Inspired by the
excellent performance of the Capsnet in image classifcation,
Ren andHu [63] designed a capsule network combined with a
compositional weighted coding method for text classifcation.
Tey also ofered a new routing algorithm based on the k-

means clustering theory to thoroughly mine the relationship
between capsules. Chen et al. [64] applied the graph con-
volutional network to learn label embeddings and the cor-
relations between labels, a fusion layer to combine the label
information with the contextual semantic information of
texts, and the Capsnet to extract the spatial feature infor-
mation of texts. Kenarang et al. [65] combined the attention
mechanism and the Capsnet method to obtain text topics in
the Persian news corpus. Te results of the comparison show
an improvement in the classifcation performance of the
Persian texts. Our study attempts to introduce the idea of the
capsule neural network to rumor detection tasks against the
background of COVID-19. Te efectiveness of the proposed
CNFRD model has been validated through the related in-
dicators obtained from a series of experiments.

3. Problem Definition

3.1. RumorDetection. Tis paper defnes rumors as ofcially
unverifed information that is spread around on OSN and
causes a signifcant (normally negative) social impact. Fig-
ure 3 illustrates the composition of rumors on OSN. Rumor
detection is the process of identifying false or unverifed
information that is being disseminated on OSN. Tis can be
done by classifying messages as either rumors or not. Tere
are two types of information involved in social media rumor
detection: (i) detect rumors based on a single post, and (ii)
detect rumors within a set of posts [66].Tis paper presents a
rumor detection model based on scenario (i).

Let M � (a1, a2, . . . , aN) denote a post from an online
social media platform, where ai indicates a single word,
number, or symbol, and N indicates the number of char-
acters contained in the post. Our objective is to learn the
prediction function F: M⟶ ef⟶ 1, 0{ }. More Specif-
ically, we convert the postM into an f -dimensional matrix-
vector ef and fnally turn it into a credibility binary clas-
sifcation problem, i.e., distinguish between nonrumor (0)
and rumor (1), as shown in equation (1). It is important to
note that all vectors ef have f -dimensions. Hence, this
study abbreviates ef with e for simplicity.

F �
1, if M is a piece of rumor,

0, otherwise.
􏼨 (1)

3.2. Meta-Learning in Few-Shot Learning. Contrary to tra-
ditional data partitioning, meta-learning divides data into
three separate components: meta-training, meta-validation,
and meta-testing. Te three components are also known as
episodes in meta-learning, which simulate the few-shot
situation by using a specially divided small set of data.
Typically, an episode contains C classes of data involved in
the current phase of the data pool. Each class of data has
K + Q randomly selected instances, where K of the instances
are labeled and the remaining Q unlabelled. In an episode,
the C × K labeled data is referred to as the support set, while
the C × Q unlabelled data is known as the query set. Several
few-shot problems with K labeled examples for each C class
in the support set are known as C -way K -shot problems.
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Te model is supervised and trained on the support set for
each episode, and its performance is verifed on the query
set. Consequently, we aim to perform meta-learning in the
training set in order to extract transferable knowledge from
multiple episodes and generalize a small set of labeled data to
a large set of unlabelled data.

4. Methodology

Teobjective of this section is to establish the framework of a
particular CNFRD model that can determine whether a post
is a rumor or not. Te model is explained in detail, including
eachmodule and the defnition of the objective function.Te
notations we will use throughout the article are summarized
in Table 2.

4.1.Model Overall Framework. We are seeking to determine
whether a post is a rumor. Tis goal can be achieved by
establishing a particular CNFRDmodel. Figure 4 depicts the
three main components of the model.Te frst component is
the embedding module based on BERT+BiLSTM. Tis
module is responsible for generating sample-wise vector
representations of the input datasets, including the epidemic
rumor dataset and historical rumor dataset with labels. Te
second component is the rumor class-wise representations
(“Rumor” and “Nonrumor”) based on the capsule network.
Tis component generates class-wise vector representations
of the historical rumor data. Te third component is the
metric module based on the modifed cosine similarity. Tis
component is responsible for comparing two rumor class-
wise representations with the previous sample-wise vector of
epidemic rumors. When epidemic rumor class-wise vectors
are similar to historical rumor class-wise vectors, their
distance will be closer, and vice versa, the distance between
them will be “pushed.” Te result will be output in accor-
dance with the nearest neighbor principle after constant
iteration and updating.

4.2. Embedding Module Based on BERT+BiLSTM.
Several existing studies have shown that combining models
yields better results for extracting and representing text
features than a single network architecture [67, 68]. Tis
paper embeds the CNFRD model with the BERTmodel for
generating the character-level dynamic feature vector of
rumor text, thereby relieving the lack of a lexicon for
emerging epidemic rumors at the model input stage. Fur-
thermore, the BiLSTM model incorporates both textual
information and sequential features of sentences to extract
semantic features of rumor texts. Our framework combines
the BERT model with the BiLSTM model as shown in
Figure 5, which can handle variable-length sequence data,
allowing for more complex semantic features and accurate
semantic representations. Te embedding process is de-
scribed as follows.

Information that is 
disseminated and 

unverifed on OSNs

Information that 
has been ofcially 
confrmed to be 

false

Rumors

Information that 
has been ofcially 
confrmed to be 

true

Figure 3: Rumor composition on OSN.

Table 2: Notations and explanations.

Notation Explanation
M A post from an online social media platform
ai i-th character in a post
F Prediction function
ef f-dimensional matrix-vector
C Number of classes contained in an episode
K Number of instances in each class that are labeled
Q Number of instances in each class that are unlabelled

xi

Vectorized representation of the i -th character in a
post

Qm Query matrix-vector
Km Key matrix-vector
Vm Value matrix-vector
dk Dimension of a query and key vector
Wi Weight matrices corresponding to the i-th header
W Weight
b Bias value
Ct Storage cell state of BiLSTM
􏽥Ct Temporary cell state of BiLSTM
ht Hidden state of BiLSTM
ft Forgetting gate of BiLSTM
it Memory gate of BiLSTM
ot Output gate of BiLSTM
σ Logistic regression function
HT T hidden states of the whole BiLSTM
HD Historical rumor dataset
ED Epidemic rumor dataset
ht Hidden state
ui Support set vector
ut Query set vector
p Number of neurons in the output capsule
a Number of neurons (vector length) in each capsule
􏽢uj|i Prediction vector in the Capsnet
Wij Transformation matrix in the Capsnet
bij Connection weight in the Capsnet
cij Coupling coefcient in the Capsnet
sj Output of the j -th upper capsule in the Capsnet

vj

General representation of the j -th historical rumor
class

eq Epidemic rumor query sample
vpos A sample of the same category as eq

vneg A sample of a diferent category from eq

International Journal of Intelligent Systems 7



BERT is used as the character vector embedding layer to
achieve the process of creating a vectorized feature repre-
sentation with respect to the pretrained text. First, the
initialization of a text involves splitting it into individual
characters, including the insertions of [CLS] and [SEP]

identifers at the beginning and end of the text, respectively.
Second, each character in the text is encoded sequentially
(starting at 0) to obtain position information. Te character-
level embedding vector and position vector are added as
inputs to the model.

Given an input textM � (a1, a2, . . . , aN) represented by
a sequence of words, our objective is to obtain a vectorized
representation e � (x1, x2, . . . , xN) of the text M based on
the features extracted by the bidirectional transformer en-
coder, the core structure of BERT. Te encoder will take the
input sentence and pass it through the frst sublayer i.e., the
multihead self-attention layer. Tis layer will assist the
encoder focus on the other words in the input sentence while
it is encoding the sentence. Its output is then passed to the
fully connected feed-forward layer. Normalization and re-
sidual connections are added to each sublayer. Te total

output of each sublayer can be calculated using the following
equation:

Outputsublayer � LayerNorm(x + sublayer(x)). (2)

Where sublayer(x) is a function implemented by the
sublayer itself. To facilitate these residual connections, all
sublayers and embedding layers in the model produce
output in do � 512 dimensions.

Te self-attention layer contains three vectors for each
word: the query matrix-vector (Qm), the key matrix-vector
(Km), and the value matrix-vector (Vm). Tese vectors are
derived by multiplying the embedding vector with three
weight matrices. Each of them has a length of 64. Te self-
attention layer uses these vectors to determine the weight of
each word in the input vector and maps the query (Qm) and
the key-value pairs (Km, Vm) to the output vector. Te
output is computed as a weighted sum of values. Each value
is weighted by the compatibility function of the query with
the corresponding key. Te self-attention layer is calculated
as shown in the following equation:

text 1

text 2

text 3

text 4
BE

RT

Embedding Module

Class-wise Vector

Non-
Rumor

Rumor

Capsule Network Module

Sample-wise Vector

Metric Layer

? Query

Input

Output

Rumor

Non-
Rumor

closer
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push

push

LS TM

LS TM

LS TM

LS TM

LS TM
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LS TM
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Embedding module based on BERT+BiLSTM
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u2
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Û2
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w1j

w2j

w3j
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Figure 4: Model structure of the CNFRD.
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Attention Qm, Km, Vm( 􏼁 � softmax
QmK

T
m��

dk

􏽰 Vm􏼠 􏼡, (3)

where the dimension of a query and key vector is dk. To
make attention calculations more comprehensive, we em-
ploy a multihead attention mechanism. First, the input is
linearly mapped several times to generate the query matrix,

key matrix, and value matrix. Second, the matrices are used
to calculate the scaled dot product attention for each input
sentence. Te result of each calculation is referred to as a
head. Besides, the attention matrices obtained frommultiple
operations are stitched together horizontally, which are
compressed into one matrix by multiplying a weight matrix.
Te specifc calculation formulas are represented as follows:

headi � Attention QmW
Qm

i , KmW
Km

i , VmW
Vm

i􏼐 􏼑, (4)

MultiHead Qm, Km, Vm( 􏼁 � Concat head1, head2, . . . , headm( 􏼁W
O

, (5)

Where Qm⊆R(m×dk), Km⊆R(m×dk), Vm⊆R(m×dk), and pa-
rameter m denotes the number of characters. W

Qm

i , W
Km

i ,
and W

Vm

i represent the three weight matrices corresponding
to the i-th header. Te Concat function splices the com-
putation results of multiple headers. WO is the weight matrix
used in the splicing.

Tereafter, the output of the multiheaded attention layer
is fed into a fully connected feed-forward network layer,
which contains multiple activation functions and can be
summarized as follows

OutputFeedFN � dropout RELU WA ∗Attention Qm, Km, Vm + bA( 􏼁( 􏼁( 􏼁WF + bF, (6)
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Figure 5: Framework diagram based on BERT+BiLSTM embedding module.
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where WA and bA are the weights and bias values of the
multiheaded attention layer, respectively. WF and bF are the
weights and bias values of the feed-forward network layer,
respectively.

Character vectorized representations of the BERT layers
are applied as the semantic representation of the rumor data,
which is then input into BiLSTM for feature extraction and
mining. Te BiLSTM model is composed of the input
characters Xt at moment t, the storage cell state Ct, the
temporary cell state 􏽥Ct, the hidden state ht, the forgetting
gate ft, the memory gate it, and output gate ot. BiLSTM
passes valid information to subsequent calculations by
discarding useless information and remembering new in-
formation. Te LSTM cell calculation equations (7)–(14) are
represented as follows:

ft � σ Wf · xt, ht−1􏼂 􏼃 + bf􏼐 􏼑, (7)

it � σ Wi · xt, ht−1􏼂 􏼃 + bi( 􏼁, (8)

􏽥Ct � tanh WC · xt, ht−1􏼂 􏼃 + bC( 􏼁, (9)

Ct � ft ∗Ct−1 + it ∗ 􏽥Ct, (10)

ot � σ Wo · xt, ht−1􏼂 􏼃 + bo( 􏼁, (11)

ht

→
� ot−1 ∗ tanh Ct−1( 􏼁, (12)

⃖ ht � ot+1 ∗ tanh Ct+1( 􏼁, (13)

ht � Concat ht

←
, ht

→
􏼒 􏼓, (14)

where σ is the logistic regression function. W and b represent
the weights and bias values of neurons, respectively. Te
operator [a, b] denotes combining the vectors a and b into a
single vector. Te T hidden states H � (h1), (h2, . . . , hT) of
the BiLSTM model are used as input to a softmax classifer,
which is a process to predict the label y ∈ 0, 1{ }. As a result, a
vector with weight W can be obtained as shown in the
following equation:

W � softmax Ws1tanh Ws2H
T

􏼐 􏼑 + bS􏼐 􏼑, (15)

where Ws1 ∈ Rda×2u and Ws2 ∈ Rda denote the weight ma-
trices, da is a hyper-parameter, u is the hidden state size of
each one-way LSTM, and bS represents the bias value. Te
fnal vector representation e of a single text is a weighted sum
of H, as shown in the following equation:

e � 􏽘
T

t�1
Wt · ht. (16)

4.3. Rumor Class-Wise Representation Based on Capsule
Network. Tis section attempts to obtain an accurate and
appropriate general representation of the historical rumor
class. A learning approach based on the Capsnet model and
dynamic routing algorithms is proposed for generalizing to

unknown popular rumor classes. Te vectorized capsules
can encode spatial information more accurately than tra-
ditional scalarized neurons and can also be used to deter-
mine the probability of the existence of objects. Our purpose
is to determine the semantics of classes that are invariant to
sample-wise noise. Te process is achieved by utilizing
sample representations and class representations as input
and output capsules, respectively. Te direction of a capsule
output vector refects the semantic patterns or classifcations
of a text representation, while the vector length represents
the probability of the text entity. In addition, capsules can
express information about spatial entities, such as the angles
and positions of a text.

Te vector e obtained from the historical rumor dataset
(HD) by performing (16) is used as the support set vector ui.
Te support set data is generated by drawing K samples from
each of the C classes, which is primarily to train the model
parameters. A query set vector ut is constructed using the
rumor dataset (ED) from the epidemic to be detected. Te
query set data consists of several randomly selected data
from the remaining parts of theC class.Te data is applied to
simulate real-world requests and calculate the loss.

Let p be the number of neurons in the output capsule
and a be the number of neurons (vector length) in each
capsule. Ten, the input ui ∈ Ra can be transformed into the
prediction vector 􏽢uji in the following equation:

􏽢uji � Wijui ∈ R
p
, (17)

where Wij ∈ Rp×a is the transformation matrix indicating
the important connections between encoding low-level
capsule vectors (features) and high-level capsules vectors
(features), which can be learned and updated by the back-
propagation algorithm of the neural network.

Subsequently, the dynamic routing mechanism reported
in [23] is applied in our approach. Te mechanism has
focused on replacing the pooling operation of the CNN.
Researchers have been able to adjust the association strength
of the upper and lower capsules by iteratively updating the
coupling coefcient cij. Consequently, the model can cap-
ture the part-whole relationship and predict the similarity of
upper and lower capsules without sacrifcing certain es-
sential features. As shown in Algorithm 1, the basic dynamic
routing scheme is described as follows:

Tis algorithm initially establishes the connection weight
bij � 0 of the i-th capsule to the j-th upper-level capsule.
Coupling coefcients cij, quantifying the connection be-
tween a low-level capsule and its parent capsule, are defned
as probability distributions of the i-th capsule that activates
the j-th capsule. Te coefcients can be formalized as fol-
lows, and we have 􏽐jcij � 1:

cij � softmax bij􏼐 􏼑 �
exp bij􏼐 􏼑

􏽐k exp bij􏼐 􏼑
. (18)

Te output sj of the j-th upper capsule is calculated by
summing the coupling coefcients cij as weights with the
corresponding prediction vectors 􏽢uji, as shown in the fol-
lowing equation:
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sj � 􏽘
i

cij􏽢uji. (19)

Upper and lower capsule weights are updated by the
inner product of 􏽢uji and vj. Tis process increases and
decreases the coupling coefcient between similar capsules
and between unrelated capsules, respectively. As a result,
capsules of similar characteristics are more likely to be
coupled. However, it is necessary to express the existence
probability of the corresponding entity by the vector length
of the capsule output. We construct a nonlinear function
“Squashing” that compresses the length of the output vector
to [0, 1] without modifying the direction. Long and short
vector lengths are compressed asmuch as possible to 0 and 1,
respectively. Te fnal vector output of the capsule after
reaching the set routing times is formalized by the following
equation:

vj � squash sj􏼐 􏼑 �
sj

�����

�����
2

1 + sj

�����

�����
2

sj

sj

�����

�����
. (20)

4.4. Metric Module Based on Modifed Cosine Similarity.
Te BiLSTM + BERT embedding module is used to encode
each query text in the epidemic rumor dataset into a query
vector eq. Once the general representation of the historical
rumor class vj has been obtained, this query vector can be
used to compare with the class-wise representations in order
to determine the particular class of the query text. Two
vectors will be generated and sent to the metric module for
further processing. Te metric module calculates the cor-
relation between the epidemic rumor query sample and the
historical rumor class, i.e., calculate the distance between
each pair (vj, eq). Finally, the module utilizes the nearest
neighbor principle to complete the classifcation. A modifed
cosine similarity function (21) is constructed in the metrics
module for normalizing the data by subtracting amean value
from the cosine similarity in all dimensions, thus correcting
for the error caused by insensitivity to values.

Sim vj, eq􏼐 􏼑 �
􏽐 vj − CR􏼐 􏼑 eq − CR􏼐 􏼑

�����������

􏽐 vj − CR􏼐 􏼑
2

􏽱 �����������

􏽐 eq − CR􏼐 􏼑
2

􏽱 . (21)

Where CR is the mean value. Te metric module returns
a similarity score between 0 and 1. Cosine values closer to 1
indicate greater similarity between the two vectors.

4.5. Objective Function. Cross-entropy loss can explore the
relationship between a single sample and all classes. Besides,
triplet losses can signifcantly simplify and streamline the
training process. A neuron network model can beneft from
the simplicity of metric learning and excellent nonlinear
modeling abilities by using triplet loss. Hence, a combina-
tion of cross-entropy and a triplet loss function is used to
train our model. Model performance can be improved by
combining both of them. Hence, the similarity scores
Sim(vj, eq) should be regressed to the true label yq. Te
similarity between class and query sample matching pairs is
1, while the similarity between unmatched pairs is 0.

Given the number of query sets NQ and the number of
class N, the cross-entropy loss function is defned as follows:

Losscp � −
1
N

􏽘

NQ

q

􏽘

N

i

log
exp Sim eq, vj􏼐 􏼑􏼐 􏼑

􏽐
N
k�1 exp Sim eq, vk􏼐 􏼑􏼐 􏼑

. (22)

Te triplet loss function can be formalized as follows:

Losstl � 􏽘

NQ

q

max Sim eq, vpos􏼐 􏼑 − Sim eq, vneg􏼐 􏼑 + margin, 0􏼐 􏼑.

(23)

Where vpos is a sample of the same category as eq, vneg is a
sample of a diferent category from eq, and margin is a
hyper-parameter that increases (res. decreases) the distance
between samples belonging to diferent (res. same) labels.
Two loss functions are combined during training and the
global loss function can be expressed as follows:

LossGlobal � α × losscp + β × losstl. (24)

5. Experimental Evaluations

Tis section introduces the datasets, baseline methods, and
experimental settings used in our experiments on CNFRD.
We then report experimental results and analysis to identify
rumors. Ablation experiments are performed to analyze the

Procedure ROUTING (􏽢uji, r, l)

for all capsule (HTML translation failed) in layer l and capsule j in layer (l + 1): bij← 0.
forr iterations do
for all capsule i in layer l: ci← softmax (bi)

for all capsule j in layer (l + 1): sj←􏽐icij􏽢uji

for all capsule j in layer (l + 1): vj←squash(sj)

for all capsule j in layer l and capsule j in layer (l+ 1):
bij←bij + 􏽢uji · vj

return vj

ALGORITHM 1: Dynamic routing algorithm.
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efectiveness of each module in the model. Finally, the
complexity and overhead analysis are presented for the
proposed method.

5.1. Datasets. Chinese and English datasets are used to test
the CNFRD model’s performance in detecting rumor pat-
terns. Te relevant statistics are shown in Table 3.

(i) Chinese dataset (DatasetCN): (i)Te historical rumor
dataset was adopted from the Chinese rumor dataset
(https://github.com/thunlp/Chinese_Rumor_Datas
et) provided by Song et al. [69]. We also collect a
large amount of historical rumor data in various
felds and aspects for the supplement. All data are
from the platform of false information reporting on
Sina Weibo. (ii) A CHECKED dataset provided by
Yang et al. [70] is used to build COVID-19 rumor
data. On this basis, the ofcially recognized rumor
samples are collected from the Sina Community
Management Center to form the COVID-19 rumor
corpus required by the experiment. Te data were
obtained from the Chinese social networking plat-
form Weibo.

(ii) English dataset (DatasetEN): (i) Historical rumor
data is drawn from FakeNewsNet dataset (https://
github.com/KaiDMML/FakeNewsNet) proposed by
Shu et al. [71], which is mainly data samples collected
from PolitiFact and GossipCop. In order to complete
the experiment, we select the rumor events sum-
marized on Snope to complement the historical
rumor dataset. (ii) Te COVID-19 rumor epidemic
rumor data were collected using a dataset provided
by Cheng et al. [72], which consist of rumors from
two sources: the news from various news websites
and the data from Twitter. Te veracity status of the
rumors has been determined via fact-checking
websites.

In light of the unique characteristics of epidemic rumors,
we select the rumors from Xinhua (http://www.xinhuanet.
com), People’s Daily Online (http://www.people.com.cn),
CCTV (https://www.cctv.com), and other ofcial websites in
the felds of medicine, infuenza, and pneumonia. In addi-
tion, we resample the data during preprocessing to control
for the uncontrollable quality of user responses. Specifcally,
we removed the user responses that contained fewer words
(less than three words), included more emojis (over 80%),
and possessed a single hyperlink and no other information.
Some posts that contain too much useless information also
require removal.

5.2. BaselineApproaches. Tis study specifes six approaches
to the CNFRD model as comparison baselines from two
perspectives. Experimental results demonstrate that a few-
shot learning framework is efective for detecting rumors.

Te benefts of introducing the Capsnet as a class generator
are also verifed within the learning framework. Te baseline
deep learning architecture employed by previous rumor
detection models is used for the rumor detection task.
Experimental comparison groups divide the baseline model
dataset according to a ratio of 8 : 2, where 80% for training
and 20% for fnal model validation.

(i) SVM-TS [73] proposes a linear SVM classifer that
uses time-series structures to model the variation of
social context features

(ii) GRU [27] means multilayer generalized recurrent
neural network with gates, which trains a rumor
classifer with microblogs modeled as variable time
series.

(iii) CNN [74] is the abbreviation of a convolutional
neural network that is used to categorize and rep-
resent rumor representation by framing related
posts into fxed-length convolutional sequences.

To assess the performance of the few-shot learning
framework used in this paper, we select three representative
few-shot learning methods:

(i) Matching network [75] is a few-shot learning model
using a metric-based attention approach.

(ii) Prototype network [21] is a depth metric-based
approach based on sample averaging as a class
prototype.

(iii) Relation network [22] is a few-shot learning model
in which the distance measure is a neural network
and the class vector is a sample vector from the
support set.

Additionally, we develop several variants of CNFRD to
demonstrate the efectiveness of the model’s components, as
detailed in Section 5.6.

5.3. Experimental Setup. Tis study implements the CNFRD
model experiment using Python 3.6 and Pytorch 1.9.0 deep
learning frameworks. Te bert-base-uncased version re-
leased by Hugging Face [76] is applied as the BERTencoder.
We develop a 2-way 15-shot model following the approach
of Yu et al. [77]. Te specifc experimental parameters are
detailed in Table 4.

5.4.EvaluationMetrics. Teproposed CNFRDmodel will be
evaluated using four standard evaluation metrics, i.e., Ac-
curacy, Precision, Recall, and Macro F1. Macro F1 is utilized
to balance the distribution of rumor posts. Te metric allows
us to analyze the classifer from a wider range and solve the
defects of unbalanced labels. According to the confusion
matrix shown in Table 5. Precision, Recall, Macro F1, and
Accuracy are defned sequentially.Te confusionmatrix [78]
is reproduced from Alejandro Morales-Hernández et al.
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Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1 � 2 ·
Recall · Precision
Recall + Precision

,

MacroF1 � 􏽘
n

c�1
F
1
n

,

Accuracy �
TP + TN

TP + TN + FP + FN
.

(25)

5.5. Results and Analysis. Tis section demonstrates the
efectiveness of the proposed model CNFRD by evaluating it
using two datasets DatasetCN and DatasetEN and per-
forming extensive comparisons with other deep learning and
few-shot models.Teir data details are shown in Table 3.Te
experimental results of the quantitative evaluation are
presented in Tables 6 and 7. Te scores in bold text style
indicate the best results in each evaluation metric. Te
crucially relevant fndings from the results are summarized
as follows.

Overall, the proposed method, CNFRD, outperforms
other baseline algorithms on both real-world benchmark
datasets in terms of Accuracy, Precision, Recall, and Macro

F1. More comprehensive performance improvements show
that our model integrating the few-shot learning method
and capsule network provides efective information that
supports improving the performance of rumor detection.

Table 6 and Figure 6 enumerate the Accuracy, Precision,
Recall, andMacro F1 scores for the proposed model CNFRD
and three deep learning models (SVM-TS, CNN, and GRU)
in DatasetCN and DatasetEN, respectively. Te current
experiment found that the CNFRD model with only 15
support set samples per episode achieves 88.92% accuracy in
the Chinese dataset and 87.07% accuracy in the English
dataset. Te scores have a signifcant 7.1% to 23.7% im-
provement over the three existing classical deep learning
models with fewer epidemic rumor samples.

Te improvement can be attributed to the fact that the
CNFRD model generalizes the class-wise vectors well by
incorporating multiple historical rumor sample vectors
through the prototype network framework. Te vector in-
tegration removes the noise between diferent expressions in
the same category and improves the efciency of the sub-
sequent metric module. Tese results corroborate the ef-
fectiveness of the metric learning framework based on few-
shot learning for rumor detection. Another important ob-
servation is that SVM-TS performs the worst among all
models, indicating that the hand-crafted features are weak
and insufcient to identify rumors. CNN performs better
than SVM-TS since it is supervised and captures the local
features between diferent words. GRU performs signif-
cantly better than SVM-TS and CNN on both datasets since

Table 3: Te statistics of the real-world datasets.

DatasetCN HD ED All

# of rumors 5597 2344 7941
# of non-rumors 7968 3760 11728
Min.Length # of posts 40 31 31
Max.Length # of posts 219 117 219
Ave.Length # of posts 172 146 159
DatasetEN HD ED All

RumorNum 3851 1981 5832
NonRumorNum 5712 3278 8990
Min.Length 36 17 17
Max.Length 166 89 166
Ave.Length 157 122 139

Table 4: Te specifc experimental parameters setting.

Parameter Parameter value Parameter explanation
Lstm_dim 128 Hidden layer dimension of LSTM
Iterations 3 Iterations are used by the routing algorithm
Seed 42 Random seed
Margin_loss_scaling 10−7 Scale margin loss
Dropout 0.1 Drop rate
Adam_epsilon 1 e− 8 Epsilon for adam optimizer
Train_batch_size 1000 Total batch size for training
Eval_batch_size 84 Total batch size for eval
Test_batch_size 84 Total batch size for test
Num_train_epochs 50 Total number of training epochs to perform
Learning_rate 3 e− 6 Te initial learning rate for adam
Max_seq_length 164 Te maximum length of the rumor text sequence

International Journal of Intelligent Systems 13



Table 5: Confusion matrix.
p n

Actual value p′ True positive (TP) False negative (FN) P′
n′ False positive (FP) True negative (TN) N′

P N

Table 6: Te performance of CNFRD with compared deep learning models on two datasets.

Methods DatasetCN

Accuracy Precision Recall Macro F1
SVM-TS [73] 0.6522 0.6616 0.6654 0.6488
CNN [74] 0.7556 0.7648 0.7691 0.7706
GRU [27] 0.8052 0.8369 0.8144 0.7960
CNFRD 0.8892 0.8795 0.8836 0.8862

Methods DatasetEN

Accuracy Precision Recall Macro F1
SVM-TS [73] 0.6420 0.6486 0.6419 0.6481
CNN [74] 0.7424 0.7463 0.7357 0.7495
GRU [27] 0.7996 0.8011 0.8078 0.7952
CNFRD 0.8707 0.8754 0.8620 0.8781

Table 7: Te performance of CNFRD with compared few-shot models on two datasets.

Methods DatasetCN

Accuracy Precision Recall Macro F1
Matching network [75] 0.7956 0.7894 0.7921 0.7996
Prototype network [21] 0.7823 0.7866 0.7873 0.7895
Relation network [22] 0.8169 0.8143 0.8105 0.8096
CNFRD 0.8892 0.8795 0.8836 0.8862

Methods DatasetEN

Accuracy Precision Recall Macro F1
Matching network [75] 0.7905 0.7981 0.7954 0.7968
Prototype network [21] 0.7801 0.7796 0.7756 0.7822
Relation network [22] 0.8002 0.8037 0.8049 0.7946
CNFRD 0.8707 0.8754 0.8620 0.8781
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Figure 6: Continued.
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RNN can implicitly handle variable-length sequences of
posts, whereas CNN requires more data to make decisions.

Table 7 and Figure 7 describe the comparison results
among our established CNFRD model and three few-shot
models: the matching network, the prototype network, and
the relation network. Te three baselines belong to the
distance metric learning model in FSL. Compared with the
existing classical FSL models, the CNFRD improves sig-
nifcantly by 7.0%–10.6% with the same 15 samples from
the support set. Te reason is that the learning and
updating of the baseline models occur in the process of
representing features and measuring distances at the
sample level, while the CNFRD model constructs a class-
level induction module based on the capsule network,
focusing on the class-level representation, and uses capsule
and dynamic routing algorithms to ensure that the CNFRD
is robust to changes in the support set samples. Tis im-
provement validates the efectiveness of introducing the
capsule network as a class generator in the few-shot rumor
detection model.

5.6. Ablation Study. Deep learning experiments commonly
involve ablation experiments as a form of module perfor-
mance analysis. Module combination or removal is used to
verify the infuence of a particular module on the whole
CNFRD model. Tis section implements the ablation ex-
periments on both the Chinese and the English datasets. Te
methods in our experiments can be divided into the fol-
lowing three groups.

(i) CNFRD W/O BERT: A variant of the CNFRD,
which removes the component of BERT that gen-
erates character-level dynamic feature vectors for
rumor texts in the embedding module. Te variant
only applies BiLSTM to model variable-length se-
quence texts.

(ii) CNFRD W/O Capsnet: A variant of the CNFRD
without the capsule network layer that generates
historical rumor class vectors. Te average of all
sample vectors of the same category is used fol-
lowing the idea of the prototype network [21].

(iii) CNFRD W/EuD: A variation of the CNFRD that
uses Euclidean distance to calculate similarity in the
metric module. Euclidean distance is the most
commonly used formula for calculating distance
and measures each dimension’s absolute value.

Te results of Accuracy, Precision, Recall, and Macro F1
for the compared CNFRD variants are shown in Table 8 and
Figure 8.

First, we evaluate the performance of CNFRD and
CNFRD W/O BERT on two datasets. Te variant CNFRD
W/O BERTachieves Accuracy scores of 85.5% and 84.9% on
DatasetCN and DatasetEN, respectively, which sufers lower
accuracy compared to the CNFRD model. Experimental
results demonstrate that the BERT module is conducive to
mining the semantic features of rumor texts and improving
the accuracy of rumor detection. Using BERT to generate
character-level dynamic feature vectors of rumor texts can
efectively solve the problem of the missing lexicon in
emerging epidemic rumors.

Second, we assess the performance of CNFRD and
CNFRD W/O Capsnet. Te complete model CNFRD beats
the variant CNFRDW/O Capsnet by 4.8% onDatasetCN and
4.0% on DatasetEN, demonstrating the necessity and supe-
riority of the capsule network layer. Using the average of all
sample vectors of the same class as the rumor class-wise
vectors results in a signifcant reduction in model perfor-
mance on both datasets. Te capsule network layer is
designed to model the relationship between local and global
information, which allows it to automatically generalize
knowledge learned from historical data to various new
epidemic scenarios.
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Figure 6: Comparison results with three deep learning baseline methods on two datasets. (a) Accuracy. (b) precision. (c) Recall.
(d) Macro F1.
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Tird, we compare the performance of CNFRD and
CNFRD W/EuD. CNFRD performs better than CNFRD
W/EuD, e.g., 2.4% and 0.4% higher than CNFRDW/EuD on

DatasetCN and DatasetEN, respectively. Te modifed cosine
similarity is used in the CNFRD model, which yields better
results than the Euclidean distance for the variant model.
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Figure 7: Comparison results with three few-shot baseline methods on two datasets. (a) Accuracy. (b) Precision. (c) Recall. (d) Macro-F1.

Table 8: Te performance of CNFRD and its variants on two datasets.

Methods DatasetCN

Accuracy Precision Recall Macro F1
CNFRD W/O BERT 0.8550 0.8596 0.8501 0.8527
CNFRD W/O Capsnet 0.8388 0.8367 0.8264 0.8325
CNFRD W/EuD 0.8628 0.8659 0.8616 0.8642
CNFRD 0.8892 0.8795 0.8836 0.8862

Methods DatasetEN

Accuracy Precision Recall Macro F1
CNFRD W/O BERT 0.8499 0.8482 0.8459 0.8506
CNFRD W/O Capsnet 0.8301 0.8298 0.8322 0.8287
CNFRD W/EuD 0.8652 0.8549 0.8589 0.8604
CNFRD 0.8707 0.8754 0.8620 0.8781
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Cosine similarity measures the relative diference between
dimensions, while Euclidean measures the absolute value of
the numerical diference. Cosine similarity is often used
because it tends to give better results.

5.7. Complexity and Overhead Analysis. Based on the
analysis of the dynamic routing algorithm in the capsule
network in Section 4.3, we can conclude that the algorithm
automatically updates the coupling coefcient through
several iterations, according to which the part-whole re-
lationship can be obtained. In this process, we assume that
the number of iterations is r and the number of capsule
network layers is l, indicating the time complexity of this
algorithm is O(rl). Te training time required for each
round is 790 s.

We compared the CNN method in terms of the number
of trainable parameters. Te CNN method involves 35M
parameters since it relies on a large amount of data and
layers containing numerous feature maps to learn and
update. In this case, it is not very efcient. Consequently,
large datasets require many redundant feature detectors.
Conversely, the capsule network encloses 8M parameters,
only a quarter of the CNN baseline.Te reason for this is that
the Capsnet is more generalizable and theoretically is able to
use fewer parameters and obtain better results. Although
capsule network parameters have been signifcantly reduced
compared with the baseline standard CNN, the number of
parameters of the capsule layer is still relatively large. Tis
fact will lead to the problem of a slow training process. In the
future, more novel and efcient routing algorithms should
be designed for optimization.
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Figure 8: Te comparison results of CNFRD and its variants on two datasets. (a) Accuracy. (b) Precision. (c) Recall. (d) Macro-F1.
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 . Conclusion and Future Work

COVID-19 exhibited many rumors combined with nu-
merous facts, disrupting social order. It is crucial to mine
and analyses these texts in order to prevent and control
epidemics. Traditional rumor detection approaches are
unsuitable for current severe epidemic scenarios owing to
their defects of being time-consuming and inefcient.
Terefore, we propose a few-shot learning rumor detection
model based on capsule networks (CNFRDs), which utilizes
a metric learning framework and the capsule network to
detect rumors of posts during unexpected epidemic events.

Te experimental analysis demonstrates that: (1) the
model CNFRD proposed in this paper can efectively im-
prove the rumor detection efect in the case of less epidemic
rumor data. Te experimental scores are much better than
other models in several indexes of Accuracy, Precision,
Recall, and Macro F1, achieving an accuracy rate of 88.92%
in the Chinese dataset and 87.07% in the English dataset.Te
CNFRD rumor detection model is more accurate than the
three existing deep learning classical models by 7.1% to
23.7%, proving its efectiveness; (2) leveraging capsule
network neural layer can signifcantly improve the detection
accuracy of rumors; (3) modifed cosine similarity can
produce better results than Euclidean distance in rumor
detection of few-shot learning.

During the COVID-19 epidemic, numerous rumors
have been incorporated with countless pieces of informa-
tion. Public anxiety is continuously increasing as social
networks spread, adversely impacting the management of
epidemics, the implementation of national policies, and
society’s stability. Te insights into model construction
gained from this study may be of assistance to rumor de-
tection on OSN with a small amount of epidemic data. Te
focused technologies can be applied to build rumor detec-
tion on Facebook in a chrome environment or an automatic
rumor analytical system on the Sina Weibo platform, which
we are committed to doing. From the model’s perspective,
future work is dedicated to introducing diferent modal
information for rumor detection, such as adding image
information based on text content to make the received
feature expression more comprehensive. Tese research
programs will improve the accuracy of the rumor detection
algorithm.
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