
Research Article
Knowledge Graph-Enhanced Intelligent Tutoring System
Based on Exercise Representativeness and Informativeness

Linqing Li1 and Zhifeng Wang 1,2

1CCNU Wollongong Joint Institute, Central China Normal University, Luoyu Road, Wuhan 430079, China
2Faculty of Artifcial Intelligence in Education, Central China Normal University, Luoyu Road, Wuhan 430079, China

Correspondence should be addressed to Zhifeng Wang; zfwang@ccnu.edu.cn

Received 15 July 2023; Revised 23 September 2023; Accepted 3 October 2023; Published 16 October 2023

Academic Editor: Vasudevan Rajamohan

Copyright © 2023 Linqing Li and Zhifeng Wang. Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

In the realm of online tutoring intelligent systems, e-learners are exposed to a substantial volume of learning content. Te
extraction and organization of exercises and skills hold signifcant importance in establishing clear learning objectives and
providing appropriate exercise recommendations. Presently, knowledge graph-based recommendation algorithms have garnered
considerable attention among researchers. However, these algorithms solely consider knowledge graphs with single relationships
and do not efectively model exercise-rich features, such as exercise representativeness and informativeness. Consequently, this
paper proposes a framework, namely, the Knowledge Graph Importance-Exercise Representativeness and Informativeness
Framework, to address these two issues. Te framework consists of four intricate components and a novel cognitive diagnosis
model called the Neural Attentive Cognitive Diagnosis model to recommend the proper exercises. Tese components encompass
the informativeness component, exercise representation component, knowledge importance component, and exercise repre-
sentativeness component. Te informativeness component evaluates the informational value of each exercise and identifes the
candidate exercise set (EC) that exhibits the highest exercise informativeness. Moreover, the exercise representation component
utilizes a graph neural network to process student records.Te output of the graph neural network serves as the input for exercise-
level attention and skill-level attention, ultimately generating exercise embeddings and skill embeddings. Furthermore, the skill
embeddings are employed as input for the knowledge importance component. Tis component transforms a one-dimensional
knowledge graph into a multidimensional one through four class relations and calculates skill importance weights based on
novelty and popularity. Subsequently, the exercise representativeness component incorporates exercise weight knowledge
coverage to select exercises from the candidate exercise set for the tested exercise set. Lastly, the cognitive diagnosis model
leverages exercise representation and skill importance weights to predict student performance on the test set and estimate their
knowledge state. To evaluate the efectiveness of our selection strategy, extensive experiments were conducted on two types of
publicly available educational datasets. Te experimental results demonstrate that our framework can recommend appropriate
exercises to students, leading to improved student performance.

1. Introduction

Online education has emerged as a signifcant supplementary
learning strategy for students [1, 2]. Many students rely on
online exercise recommendations to support their learning.
With the vast amount of educational materials available, the
challenge lies in recommending appropriate exercises for
efective learning [3–6]. Exercises play a crucial role in per-
sonalized educational services by serving as a powerful tool to

assess students’ mastery of concepts [7]. However, given the
abundance of exercise resources, it is nearly impossible for
students to complete them all within a limited time. Tere-
fore, assisting students in fnding suitable exercises becomes
a signifcant problem. An exercise recommendation system
has been proposed to address this issue by leveraging students’
historical answer sequences [8–10].

Knowledge graphs (KGs), also known as cognitive maps,
provide graphical representations where concepts or words
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are organized into nodes and connected by vectors repre-
senting relationships. Te application of knowledge graphs
to learn the order of skills has shown promising results (e.g.,
[11–14]).Te arrangement of concepts in a knowledge graph
signifcantly impacts learning ability [15–18].

Te cognitive diagnosis model functions as an efective
method to discover the knowledge state of students by
analyzing the past interactions of students. As illustrated in
Figure 1, the student frstly picks up some exercises (e.g., e1,
e2, and e3).Ten, the response of the student in each exercise
can be obtained. Finally, the cognitive diagnosis model
analyzes the response of students to estimate the student
knowledge state on each concept.

Researchers have recognized that exercise and skill
features in knowledge graphs greatly infuence the quality of
learning when recommending exercises [19, 20]. Various
methods have been developed to learn the features of
knowledge graphs and recommend appropriate exercises,
resulting in improved student performance [21–24]. Tese
methods efectively explore skill and exercise features to
enhance learning efciency. Additionally, high-quality ex-
ercises contribute to learners’ comprehension of the learning
material. Consequently, the research community strives to
create a high-quality exercise set to enhance e-learners’
performance. Previous research [11, 25] applied KGs to
consider the dependencies of learning objects in exercise
recommendations. However, these works only focused on
basic relationships to establish links between KGs, without
further investigating exercise features during the recom-
mendation process. As a result, these methods fall short of
meeting the requirements of modern e-learning.

Tis paper presents an innovative framework called
Knowledge Graph Importance-Exercise Informativeness
and Representativeness (KI-EIR) to address diverse learning
needs based on KGs. To recommend exercises with high
learning quality, the KI-EIR framework combines multidi-
mensional KGs with exercise features to defne the rec-
ommendation goal and enhance exercise quality.TeKI-EIR
framework consists of four innovative components and
a novel cognitive diagnosis model called the Neural At-
tentive Cognitive Diagnosis (NACD) model, which facili-
tates exercise recommendation to achieve the
recommendation goal. Specifcally, the NACD model esti-
mates the student knowledge state by analyzing the past
interaction of students. Ten, according to the cognitive
diagnosis results, diferent types of students can be correctly
distinguished. Finally, the intelligent tutoring systems rec-
ommend the proper exercises to students and improve their
knowledge profciency. Te four components are the in-
formativeness component, exercise representation compo-
nent, knowledge importance component, and exercise
representativeness component. Te recommendation goal
involves recommending exercises with high informativeness
and representativeness.

Specifcally, the informativeness component aims to
select exercises with high informativeness from the untested
exercise set (EU) to the candidate exercise set (EC). Te
exercise representation component incorporates a graph

neural network with two types of attention mechanisms to
generate exercise and skill embeddings. Te knowledge
importance component utilizes an innovative knowledge
point extraction algorithm that incorporates skill embed-
dings to extract knowledge points based on the multidi-
mensional KG. Five skill features of these knowledge points
are discussed to generate skill importance weights. Sub-
sequently, the exercise representativeness component selects
exercises with high knowledge coverage from the candidate
exercise set (EC) to the tested exercise set (ET) to achieve
representativeness objectives. Finally, the NACD model
predicts student performance on the tested exercise set and
estimates their current knowledge state.

Te main contributions of this paper can be summarized
as follows:

(1) We propose a novel exercise recommendation
method, KI-EIR, which selects exercises with high
informativeness and representativeness. By in-
corporating the structural information of knowledge
concepts, KI-EIR recommends exercises to students,
thereby improving their overall cognitive level
during the recommendation process.

(2) We design four innovative components and a novel
cognitive diagnosis model, NACD, including the
informativeness component, exercise representation
component, knowledge importance component, and
exercise representativeness component. Te in-
formativeness component estimates the in-
formativeness of each exercise and generates the
candidate exercise set. Tis exercise set serves as
input to the exercise representativeness component,
which selects exercises with high knowledge cover-
age based on the knowledge importance component.
Te knowledge importance component incorporates
a multidimensional KG and a knowledge point ex-
traction algorithm with fve skill features to generate
skill importance weights. Finally, the cognitive di-
agnosis model predicts student performance and
estimates their current knowledge state based on
exercise and skill relations.

(3) We evaluate the KI-EIR framework on two public
educational datasets, including Assistment 2009-
2010 and Eedi2020, using the AUC (informative
metric) and knowledge coverage rate (KCR). Te
experimental results demonstrate that KI-EIR
outperforms other methods such as RAND
and EM.

Te rest of the paper is structured as follows. Section 2
provides an overview of related works on cognitive diagnosis
models, relation modeling, and exercise recommendation.
Section 3 presents important terminologies and defnes the
goal and problem statement of this study. Section 4 describes
the methods proposed in this paper. Section 5 presents the
experimental evaluation of our framework using two dif-
ferent metrics. Section 6 concludes the paper and discusses
future research directions.
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2. Related Work

2.1. Cognitive Diagnosis Model. Cognitive diagnosis plays
a crucial role in various real-world scenarios, including
games [26], medical diagnosis [27], and especially education
[28]. Te primary objective of cognitive diagnosis is to
discover the latent trait characteristics of learners based on
their testing records.Tese discovered characteristic features
have been applied in tasks such as resource recommendation
[29] and performance prediction [30]. Early approaches to
cognitive diagnosis mainly depended on psychological
evaluation [31].Te twomost traditional cognitive diagnosis
models, namely, the Item Response Teory (IRT) [32] and
the Deterministic Input, Noisy And Gate (DINA) model
[33], model the response generated by a learner answering
an item as the interaction between the learner’s trait features
and the item. Ackerman [34] extended the characteristic
features into a multidimensional space by proposing the
Multidimensional Item Response Teory (MIRT). In recent
years, deep learning has been incorporated into cognitive
diagnostics by several researchers [35, 36]. Wang et al. [30]
introduced NeuralCD, which utilizes neural networks to
autonomously learn the interaction function. However,
these cognitive diagnosis models overlook the deep relations
between exercises, skills, and students when estimating
students’ knowledge state.

2.2. RelationModeling. Based on psychological research, the
relationship between exercises and skills has been exten-
sively explored in numerous studies that measure students’
knowledge levels (e.g., [37, 38]). Many researchers employ
Q-matrices to model the relationship between exercises and
skills, where exercises related to the same knowledge concept
are considered connected in the Q-matrix. Additionally,
researchers investigate the relationship between two exer-
cises or skills based on exercise embeddings (e.g., [39, 40]).
Semantic similarity scores of exercises are computed using
prior interactions to model the signifcance of these in-
teractions. However, these relation modeling methods do
not consider the heterogeneous interactions between stu-
dents, exercises, and skills. Terefore, this paper in-
corporates multiple dimension knowledge graphs (KGs) and
Graph Convolutional Networks (GCNs) to establish exercise
and skill relations and delve into exercise features such as
informativeness and representativeness to recommend the
proper exercises to students.

2.3. Exercise Recommendation. Traditional recommendation
systems employ collaborative fltering, which can be catego-
rized into nearest-neighbor collaborative fltering and model-
based collaborative fltering. Nearest-neighbor collaborative
fltering includes user-based collaborative fltering [41] and
item-based collaborative fltering [42]. Model-based collabo-
rative fltering involves mining hidden or explicit features to
mitigate data sparsity and achieve good scalability [43]. When
applying traditional recommendation methods to exercise
recommendation in the educational feld, students are treated
as users and exercises as items. Tus, nearest-neighbor col-
laborative fltering can be further classifed as exercise-based
and student-based. Considering the impact of multiple di-
mensional knowledge graphs, recent research has proposed
knowledge graph-based recommendationmethods for exercise
recommendations (e.g., [21, 25]).

Recent exercise recommendation methods that leverage
knowledge graphs help mitigate misunderstandings in learning
content descriptions. Inspired by this idea, Wan and Niu [44]
introduced a learner-oriented exercise recommendation
method based on knowledge concepts, represented as nodes,
and the relationships between them as edges in knowledge
graphs. Ouf et al. [45] developed exercise recommendation
methods by incorporating knowledge graphs with semantic
web to merge personalized concepts. To organize learning
resources in a sequential manner, Shmelev et al. [46] proposed
a method that integrates evolutionary methods and knowledge
graph technology. Chu et al. [47] created an e-learning system
based on a conceptual map that can generate learning paths
using the connections in the concept map. Recognizing the
need for diverse learning paths in diferent settings, Zhu et al.
[25] presented a method for recommending learning paths
using prebuilt learning scenarios. Tey developed an approach
that requires the defnition of starting and ending nodes to
construct learning paths. However, all of them ignore to discuss
the rich exercise features contained in the KG. Terefore, the
KI-EIR model is proposed to incorporate the multiple di-
mension KG with the exercise features including the repre-
sentativeness and informativeness to recommend the exercises
to meet specifc students’ needs.

3. Preliminaries

Tis section is divided into three parts.Te frst part presents
the problem addressed in this paper. Te second part
provides defnitions for several terminologies used
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Figure 1: Toy example of cognitive diagnosis. Te student frstly chose three exercises to test. Ten, according to the test results, the
cognitive diagnosis model estimates the student profciency on each knowledge concept.
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throughout the paper, including exercise informativeness,
exercise representativeness, and heterogeneous interactions.
Te third part outlines the goals of the paper. Some im-
portant mathematical notations in the paper are summa-
rized in Table 1.

3.1. Problem Defnition. Exercise recommendation aims to
recommend exercises that enhance students’ knowledge
profciency.Te problem of this paper is how to recommend
appropriate exercises that meet the specifc requirements of
each student. In this paper, twomeasurements are defned to
evaluate exercise quality: exercise representativeness and
exercise informativeness. Tus, the specifc problem
addressed in this paper is how to recommend exercises with
high representativeness and informativeness from a large
pool of exercises. To solve this problem, we propose the
Knowledge Graph Importance-Exercise Informativeness
and Representativeness (KI-EIR) framework, which com-
prises four components and a cognitive diagnosis model.
Specifcally, the informativeness component selects exercises
with high informativeness from the untested exercise set
(EU) to the candidate exercise set (EC). Te exercise rep-
resentation component and the knowledge importance
component are designed to generate skill and exercise
embeddings, as well as skill importance weights. Te outputs
of the exercise representation component and the knowledge
importance component serve as input to the exercise rep-
resentativeness component, which selects exercises with
high representativeness from EC to the tested exercise set
(ET). Ten, the Neural Attentive Cognitive Diagnosis
(NACD) model predicts students’ performance on ET and
diagnoses their current knowledge state. Finally, according
to the diferent student knowledge, diferent exercises are
recommended to students to improve their knowledge
profciency.

3.2. Terminologies

Defnition 1 (informativeness). In general, a valid exercise is
expected to reduce the level of uncertainty in an examinee’s
knowledge state. Tus, the informativeness of an exercise
can be defned as the amount of information that the un-
derlying cognitive diagnosis model (M) can acquire from the
exercise to update the estimate of knowledge states. Selecting
the most informative exercises acts as an efective approach
to achieve the informativeness goal. After the student
completes the test, the performance of the student withM on
the entire tested exercise set is predicted, and the perfor-
mance is evaluated by using a metric such as the Area Under
the Curve (AUC), denoted as Inf(S).

Defnition 2 (representativeness). If a set of exercises ach-
ieves a certain knowledge coverage rate, it is considered as
representative. Te knowledge coverage rate functions as an
evaluation metric to measure representativeness. Selecting
a group of exercises with the highest coverage of knowledge
concepts is essential to achieve the representativeness ob-
jective. Te coverage, Cov(S), can be computed as the

percentage of knowledge concepts covered by the tested
exercise set, ET, after the test.

Defnition 3 (heterogeneous interaction). When answering
exercises, there exist various interactions among students,
exercises, and skills. Heterogeneous interaction, denoted as
HI� (V; E), consists of an object set, V, and a link set, E. Te
object types in V include students, exercises, and skills. E is
a collection of relational types in the form E � (rA, rC), where
rA represents the relation it answers and rC represents the
relation it contains. Figure 2 provides a toy example illus-
trating this defnition.

3.3. Goals. Te goal of this paper is to recommend exercises
with high representativeness and informativeness to im-
prove student performance in subsequent interactions. In-
formativeness is measured by using the Area Under the
Curve (AUC), while representativeness is measured by the
knowledge coverage rate when predicting the corresponding
exercises.

4. Proposed Method

In this section, we present our proposed framework called
Knowledge Graph Importance-Exercise Informativeness
and Representativeness (KI-EIR). Te framework aims to
model exercise features and skill features to generate ex-
ercises based on their informativeness and representative-
ness. KI-EIR consists of four components: the
informativeness component, the exercise representation
component, the exercise representativeness component, and
the knowledge importance component.Te overall structure
and components of KI-EIR are depicted in Figure 3. In order
to efciently run the KI-EIR framework, we train this
framework based on two ideas. Te frst involves integrated
training and unifed optimization for all components. Te
second is exchanging space for time. We pretrain the ex-
ercise representation component to obtain the skill em-
bedding and exercise embedding instead of running the
exercise representation component in each epoch.

Te KI-EIR framework operates as follows. Given a user
ei ∈ E, the framework models exercise features and skill
features to generate exercises that are both informative and
representative. At each step t, KI-EIR selects one exercise

Table 1: Important mathematical notations.

Notations Descriptions
KC Te knowledge concept
KG Te knowledge graph
P Te learning paths in the knowledge graph
Ne Te total number of exercises
K Te total number of skills
EU Te untested exercise set
EC Te candidate exercise set
ET Te tested exercise set
Level (KC) Te level of KC
Pn Response matrix
􏽢E Dissimilarity matrix
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from the untested exercise set EU to be added to the tested
exercise set ET. Te framework can be divided into four
components:

Informativeness component: Tis component is re-
sponsible for selecting a candidate exercise set EC from
EU based on informativeness. Te selection is per-
formed using a score function called Model Parameter
Change (MPC). MPC estimates the user’s knowledge

states by observing their answers and quantifes the
extent to which an exercise alters the diagnosis. Te
top-K highly informative exercises are selected to
form EC.
Exercise representation component: In this compo-
nent, the framework extracts information on the het-
erogeneous interactions between users, exercises, and
skills using a graph neural network. Te exercise

Student1
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Knowledge4

Figure 2: Toy example illustrating the heterogeneous interaction between students, exercises, and skills.
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Figure 3: Te overall framework of the KI-EIR selection strategy. Te framework consists of four components: the informativeness
component, the exercise representation component, the exercise representativeness component, and the knowledge importance component.
Te informativeness component selects high-informativeness exercises to form the candidate exercise set EC. Te exercise representation
component extracts exercise and skill embeddings through a graph neural network. Te exercise representativeness component selects an
exercise with high representativeness to maximize the marginal gain. Te knowledge importance component assesses the relevance of
knowledge concepts. Te NACD model predicts student performance based on the exercise embedding. Te optimization tricks of this
framework are integrated training and unifed optimization and exchanging space for time in the exercise representation component.
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representation component generates the exercise em-
bedding e∗ and skill embedding s∗. Tese embeddings
serve as inputs for the subsequent components.
Exercise representativeness component: Te repre-
sentativeness component selects an exercise with high
representativeness from EC to maximize the marginal
gain. Te selection process takes into account the ex-
ercise embedding e∗ obtained from the exercise rep-
resentation component.
Knowledge importance component: To enhance the se-
lection process, the knowledge importance component
assesses the relevance of knowledge concepts. It explores
the relevance of knowledge concepts using the knowledge
point extraction algorithm and incorporates fve skill
features to generate the skill importance weight.

Finally, the NACD model predicts student performance
and estimates their state based on the exercise embedding e∗.

4.1. Informativeness Component. Te informativeness
component is the frst step of the KI-EIR framework, where
we select a candidate exercise set EC consisting of top-K
high-informativeness exercises. To measure the in-
formativeness of an exercise, we propose a score function
called Model Parameter Change (MPC).

MPC leverages the information contained in an exercise
by estimating the user’s knowledge states after answering the
exercise. Te parameter change in the abstract cognitive
diagnosis model (CDM), denoted by θ in M, represents the
knowledge states in KI-EIR. Te amount of change in the
CDM parameters refects the amount of information
gathered from the exercise. If the θ parameters change
signifcantly, the exercise is considered more informative;
otherwise, it provides little information. According to the
diferent cognitive diagnosis results, the KI-EIR framework
can recommend diferent types of exercises to meet the
specifc students’ requirements.

Te MPC function calculates the probability of correctly
answering an exercise, which can be predicted by the cog-
nitive diagnosis model M. Let ∆M � |θ(R∪ rij) − θ(R)|

represent the parameter change in our model when adding
the record rij � < ei, qj, aij > . Here, θ(Ri) represents the
parameters obtained from the current interaction Ri of
student ei, and θ(Ri ∪ ri,j) represents the parameters after
adding the interaction. For each exercise ej, the MPC
function is defned as follows:

MPC qj􏼐 􏼑 � Eaij ∼ p∆M 〈ei, qj, ai,j〉􏼐 􏼑,

p � M ei, qj

􏼌􏼌􏼌􏼌􏼌θ Ri􏼒 ( 􏼁􏼓.
(1)

∆M(rij) is approximated by the gradient caused by rij.
Tis approach is particularly efective for models trained
using gradient-based methods, such as neural models.

Based on the MPC score function, we select exercises
from the untested exercise set to form the candidate exercise
set EC. We calculate theMPC for each exercise and select the
top-K exercises with the highest informativeness.

At the same time, this component also provides the
KI-EIR framework with exercise informativeness in-
terpretability, which means that the KI-EIR framework just
needs to select the exercise with high informativeness and
representativeness to recommend exercises.

4.2. Exercise Representation Component. Te exercise rep-
resentation component is the second step of the KI-EIR
framework, where we extract exercise embedding (e∗) and
skill embedding (s∗) by considering the heterogeneous
interactions between students, exercises, and skills.

We employ the Graph Convolutional Network (GCN)
model to generate embedding representations of exercises
and skills, capturing their static relationships. Before
applying the GCN model, we defne the neighbors of
exercises and skills based on three meta-relationships:
exercise-student-exercise (eSe), exercise-skill-exercise
(eKe), and skill-exercise-skill (kEk). In the eSe and eKe
relationships, the exercise neighbors are exercises an-
swered by the same student or covering the same skill. In
the kEk relationship, the skill neighbors are skills con-
tained in the same exercise. To propagate information in
the GCN, we use two matrices: the exercise relation matrix
(RE) and the skill relation matrix (RS), which capture the
high-order information. Ten, we apply the GCN model
to generate the hidden embedding representations of
exercises (􏽢e) and skills (􏽢s).

Each convolutional layer in the GCN model updates the
nodes based on their own state and the state of their nearest
neighbors. Let nodei denote the state of an exercise or skill
and Node(i) denote a group of nodes representing the
neighbors of nodei. Te exercise at the l-th layer can be
computed as follows:

nodeıi � RELU 􏽘
j∈i∪Node(i)

w
ı
inode

ı− 1
j + b

ı
i

⎛⎝ ⎞⎠, (2)

where wı and bı represent the weight matrix and bias of the
GCN layer, respectively, and RELU( ) denotes the activation
function used in the GCN model.

Te hidden embedding representations obtained from
the GCN model capture the static relationships between
exercises and skills. However, they do not consider the
similarity among exercises and skills when generating their
embeddings. To incorporate the deep semantics of exercises
and skills, we use exercise-level attention and skill-level
attention mechanisms. Tese attention mechanisms learn
the semantic relationships between students and exercises,
generating the fnal embedding representations e∗ and s∗.
Te formulation for e∗ is as follows:

αE � softmax
􏽢eW

Q
􏼐 􏼑 􏽢eW

K
􏼐 􏼑
���
dK

􏽰⎛⎝ ⎞⎠,

βE � δaαE + 1 − δa( 􏼁R
E
,

e
∗

� βE􏽢eW
v
,

(3)
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where RE is the exercise relation matrix,
���
dK

􏽰
is the scaling

factor, and WK, WQ, and WV are projection matrices.
Te process for obtaining s∗ is similar to that of e∗. Te

diference lies in using the hidden embedding representation
of skills as input to the attention mechanism, and the skill
relation matrix is used instead of the exercise relation matrix
when calculating βE.

At the same time, the connection between students,
exercises, and skills is demonstrated by the heteroge-
neous graph. Te information encompassed in the het-
erogeneous graph is subsequently extracted using
a graph neural network, which produces the matching
skill embedding and exercise embedding. As a result, the
KI-EIR framework enables interpretation of the learning
interactions.

4.3. Knowledge Importance Component. After the procedure
of selecting exercises from the untested exercise set to the
candidate exercise set, the knowledge importance compo-
nent aims to compute the knowledge importance weight WK

as input for the next selection procedure: the representa-
tiveness component. Previous studies [48] have shown that
organizing educational resources into diferent classes helps
students understand learning profles and enables them to
logically organize and recall knowledge. Terefore, in our
knowledge graph, we separate knowledge concepts into
diferent classes to learn the weight of knowledge concepts
(KCs). Tere also exists some incompleteness or outdated
information in the knowledge graph, which results in the
suboptimal recommendation results. Terefore, we also
invite two domain experts to correct and validate the in-
formation in the knowledge graph to reduce the impact of
the data problem.

We categorize learning objects into three classes:

(1) Subject knowledge: this class contains KCs at the
subject level, such as “math,” “physics,” and “bi-
ology,” supporting basic knowledge areas like “Ra-
tio,” “Geometry,” and “Standard Form.”

(2) Basic knowledge: It is the core of the framework.Tis
class includes specifc knowledge felds such as
“Proportion” and “Negative Numbers” that are es-
sential for solving specifc tasks.

(3) Task: Tis class encompasses practical educational
problems like “Factorising into a Single Bracket” and
“Expanding Single Brackets.” Te task level is the
bottom level of our knowledge graph framework.

Figure 4 presents a visual representation of the
multidimensional KG framework we employ in our pa-
per. Each class in this framework consists of a hierarchy
and associated learning object instances. Te learning
objects represent meta-learning resources that are in-
corporated into the hierarchy and connected by semantic
relationships, while the hierarchy refects the knowledge
structure of the current class. We establish various
relationships, dividing them into intraclass relationships
and interclass interactions, to illustrate the semantic
connections between learning objects. Intraclass

relationships link learning objects within a class, while
interclass relationships provide links between educa-
tional resources from diferent classes (see Table 2). Our
knowledge graph expands the accessibility of learning
objects across classes and strengthens connections be-
tween cross-class learning objects. Tis graph of
knowledge showcases how learned information can be
practically applied, deepening e-learners’ understanding
of the studied information and helping them comprehend
how theoretical knowledge can be used in practical
scenarios.

4.3.1. Knowledge Point Path Extraction Algorithm. To de-
termine the relevance of KCs, we explore all possible
learning paths through the target learning object and the
learning need of the e-learner. We have designed the
knowledge point path extraction algorithm, which is based
on the multidimensional knowledge graph, to accomplish
this task. Te algorithm consists of two phases.

Te frst phase involves calculating the relationship
constraints φ based on the learning need. Te getRelation()
function is used to determine the relationship constraints
φ � (α, β, c . . .) to meet the specifc students’ requirements.

In the second phase of the algorithm, a learning path is
constructed using the relationship restrictions. Starting with
the target learning item, the algorithm generates the learning
path by searching for the next learning object associated with
a relationship that satisfes the constraints. Te associated
learning object serves as a continuation of the search. Te
initial learning object of the current learning route is the
chosen target learning object. If the current learning item has
no related learning objects, the path will consist of only one
KC. Te algorithm performs a greedy search starting from
the target learning object.

For a detailed description of the algorithm, refer to
Algorithm 1.

4.3.2. Knowledge Importance Weight Extraction Algorithm.
Te knowledge importance weight extraction algorithm
aims to extract the weights of KCs based on fve skill features.
In previous work on quantifying algorithms [49], the feature
set F of KCs was proposed to select important KCs, in-
cluding the level (f1), frequency (f2), connection (f3),
similarity (f4), and difculty (f5) of the corresponding
KCs.

(1) Te level feature (f1) is designed to extract the level
of a KC. By applying the knowledge point path
extraction algorithm (KPE), which transforms the
one-dimensional knowledge graph into a multidi-
mensional one, the levels of KCs in all related
learning paths can be extracted. For example, if the
output of the KPE is “A-B-C,” where the levels of A,
B, and C are 0, 1, and 2, respectively, the diferent
knowledge levels of KCs can be extracted based on
diferent learning paths. Te level of the particular
KC within all learning paths that encompass this KC
can be defned as follows:

International Journal of Intelligent Systems 7



f1(KC) �
􏽐

NC

i�0Level(KC)i

NC

, (4)

where NC is the number of learning paths that
contain the KC.

(2) Te frequency feature (f2) focuses on extracting the
frequency of a KC in all learning paths. A greedy
algorithm is used to search for the frequency of the
KC across all learning paths.Te frequency of the KC
can be defned as follows:

f2(KC) �
NC

N
, (5)

where N indicates the total number of
learning paths.

(3) Te connection feature (f3) considers the connec-
tions between KCs. When KCs occur in the same
learning path, they are considered connected. For
example, in a learning path “A-B-C,” skill A is
connected to skills B and C. Te connectivity can be
calculated as follows:

Math

Geometry

Measurement

Time

Number

Arithmetric

Place of value

Subject Knowledge Math

Geometry

SubClass

Number
Basic Knowledge

Task

Time

Measurement Arithmetric

Place of value

Pre-knowledge Pre-knowledge

Implement

ApplyToBasicApplyToBasic

Implement

Implement

Implement

Level 0

Level 1

Level 2

Figure 4: One-dimensional KG framework used in previous studies (left). Multidimensional KG framework employed in our paper (right).
Dotted lines represent links between classes, solid lines denote interactions within classes, and nodes of various colors represent learning
items in diferent classes. Tis transformation process is assisted by two domain experts in our university.

Table 2: Designed relationships in the knowledge graph.

Knowledge relationship Type Description
Subclass Intraclass Indicates that the current LO possesses a subclass
Implement Interclass Indicates that the current LO can implement subsequent LO

Preknowledge Intraclass Indicates that prior knowledge exists that should be learned before the current LO
(basic knowledge)

ApplyToBasic Interclass Indicates that the current LO can be applied in the target LO

Input: Students’ historical response dataset: D � s1, s2, . . . sN,
si � (ei, si, ti); Te knowledge level graph G;

Output: Te all possible learning paths: P.
While fndAllPaths (KCu) do
R� getRelations (KCu) (fnd the relations connected with KCu)
if r | r ∈ R, r ∈ ⊘{ } then
P.addPath(p); Add the new path into the path set

else while all r ∈ R do
list(KCu) � getConnectObject (KCu) (obtain the connected objects of KCu with r)
p.addElement (list(KCu)) (put the element in the learning path)
Recursively apply fndAllPaths (KCu);

end
end

ALGORITHM 1: Knowledge point path extraction algorithm.
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f3(KC) �
|ConnectSet(KC)|

K
, (6)

where ConnectSet represents the list of connected
KCs and K is the total number of KCs.

(4) Te similarity feature (f4) is used to explore the
similarity between each skill. It utilizes the skill
representations (s∗) and calculates the dot product
to measure the similarity between skills:

f4(KC) �
s
∗
i · s
∗
j

s
∗
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 s
∗
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (7)

(5) Te difculty feature (f5) leverages students’ in-
teractions to indicate the difculty of skills. It models
the cognitive difculty of skills based on students’
behavior when they attempt exercises containing the
same skill at diferent timestamps. Te cognitive
difculty of a skill set for each student (Si) at
timestamp t is represented by πSi,KC,t:

πSi,KC,t �

As �� 0􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌0: t

|Q|0: t

∗ 4􏼢 􏼣, if Nv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌0: t
≥ 5,

5, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

where As � 0 represents the set of exercises where
the student answered incorrectly for the exercises
containing the KC.Te cognitive difculty of the KC
is divided into fve levels if a learner has performed
fewer than fve attempts to answer the exercise. Te
average cognitive difculty for diferent learners on
the KC is defned as the difculty feature of the KC:

f5(KC) �
􏽐

NS

i�0􏽐
NT

j�0πSi,KC,tj

NS × NT

, (9)

where NS is the number of students and NT is the
time consumption.
In this paper, we consider the novelty and popularity
of KCs. To satisfy diferent learning preferences, we
apply a weighted method (W) to combine the fve
skill features using equation (12). Each weight (w) in
our learning preference options corresponds to
a certain feature (fi). Te weight distribution details
are as follows.

(6) Novelty: When considering the novelty of exercises,
we set w1 � 0.5, w2 � 0, w3 � 0, w4 � 0, and
w5 � 0.5. We consider the level and difculty of skills
to represent the inherent novelty of exercises.

(7) Popularity: When considering the popularity of
exercises, we set w1 � 0, w2 � 0.6, w3 � 0.1, w4 � 0.3,
and w5 � 0. We consider the frequency, connection,
and similarity of skills to model the popularity of
skills.

W � 􏽘
5

i�0
Wi × fi(KC). (10)

Te weighted method calculates the weight of novelty
(Wnov) and popularity (Wpop) for each KC.

Finally, by combining novelty and popularity, the skill
importance weight (WK) is obtained. Te formulation is as
follows:

Wskill � Wnov + Wpop,

WK � Tanh Wskill( 􏼁,
(11)

where tanh � (ez − e− z)/(ez + e− z).
Te knowledge importance weight extraction algorithm

allows us to determine the weights of KCs based on their skill
features, incorporating novelty and popularity consider-
ations. Tese weights play a crucial role in assessing the
importance of KCs within the learning context.

As a result, we further discuss the relationship between
skills, which contributes to develop the next exercise factor
in the cognitive diagnosis model and representativeness
evaluation metrics.

At the same time, the interpretability of the knowledge
importance component can be discussed from two aspects.
Te frst aspect is domain knowledge interpretability. As the
mentioned above, two experts in this feld from our uni-
versity have labeled the knowledge graph to update any
inaccurate or missing information. Te second aspect is the
skills importance interpretability. We delve more into the
fve qualities of skills: level, frequency, connection, simi-
larity, and difculty. Tese fve metrics are interpretable in
the knowledge importance component. Terefore, we be-
lieve that the knowledge importance component is also
interpretable by incorporating the knowledge graph in-
terpretability with skills interpretability.

4.4. Exercise Representativeness Component. After collecting
a candidate set EC of highly informative exercises and
obtaining skill importance weights and exercise embeddings,
this section focuses on designing the exercise representa-
tiveness component. Te goal is to select exercises from EC

into the tested exercise set ET that exhibit high represen-
tativeness. To assess the informativeness of exercises, a novel
scoring function is proposed to evaluate the knowledge
coverage of ET. An approach is then devised to gradually add
more exercises to ET until it achieves the highest
coverage score.

Te knowledge coverage of the tested exercise set ET can
be estimated by checking whether the corresponding KCs
exist in EC. Terefore, a straightforward knowledge coverage
function, denoted as SKC, is designed as follows:

Cov KC, Qc( 􏼁 � 1when∃KC ∈ QC,

SKC Qc( 􏼁 �
􏽐

K
i�0Cov KC, Qc( 􏼁

|K|
,

(12)
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where Cov(KC, QC) � 1 indicates that the KC is involved in
EC. However, SKC has two obvious faws. Firstly, it con-
siders all KCs equally and fails to distinguish the importance
of each KC. Secondly, the value of Cov is binary and does not
refect the number of exercises. For example, if the math quiz
focuses on “Fractions” rather than “Real Numbers,” it is
more appropriate to select more fractions-related problems
rather than simply covering both topics equally. Choosing
nine exercises about “Real Numbers” and one exercise about
“Fractions” should be equivalent to choosing fve exercises
from each.

To address these faws, the exercise weight knowledge
coverage function (EWKC) is proposed to calculate the
knowledge coverage of the tested exercise set ET. Specifcally,
the EWKC function combines the number of exercises to
generate the knowledge coverage of EC. Moreover, to ac-
count for the importance of exercises and KCs, skill im-
portance weights obtained from the knowledge importance
component are incorporated.Te EWKC function is defned
as follows:

cnt KC, QT( 􏼁 � 􏽘
q∈QC

1 (q,KC) ∈ QT􏼂 􏼃,

ECov KC, QT( 􏼁 �
cnt KC, QT( 􏼁􏼁

1 + e
− cnt KC,QT( ( ))

,

EWKC QT( 􏼁 �
􏽐k∈KWkECov k, QT( 􏼁

􏽐k∈KWk

,

(13)

where WK represents the exercise weight for the concept k,
which is discussed in the knowledge importance component.
Te ECov function counts the occurrence of a KC in ET and
applies a sigmoid function to ensure the coverage value lies
within the range of 0 and 1. Finally, the EWKC function
calculates the weighted average knowledge coverage over all
KCs, with weights determined by the importance of the
corresponding skills.

However, the EWKC function only considers the
impact of skills and ignores the infuence of exercises. To
better defne the representativeness of exercises, the re-
sponse matrix (Pn) and dissimilarity matrix (􏽢E) are
introduced.

4.4.1. Response Matrix. Te response matrix Pn of size |S| ×

Ne is designed, where each element is defned as follows:

Pn(i, j) �
a

i
j, if j≤Ne,

0, otherwise.

⎧⎨

⎩ (14)

Te matrix Pn stores the probability of students an-
swering the next exercises correctly. |S| represents the
number of students, |C| represents the number of exercises
done by each student, and Ne represents the total number of
exercises. If an exercise was not done by a student, the
corresponding columns are flled with zeros. Tese columns
correspond to the Ne − |C| hypothetical exercises that stu-
dents cannot answer correctly and will be replaced by other
exercises in the future.

4.4.2. Dissimilarity Matrix. To consider exercise represen-
tativeness, the dissimilarity between exercises, denoted as 􏽢E,
is defned as follows:

􏽢Eij � 1 −

􏽢e
∗
i · 􏽢e
∗
j

􏽢e
∗
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽢e
∗
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (15)

where 􏽢e∗ represents the exercise representation based on the
exercise representation component.

Te fnal knowledge coverage combines skill features and
exercise features to measure the representativeness of ex-
ercises. It is defned as follows:

Rij � α1 􏽘
KC∈QT

EWKC(KC) + α2Pn(i, j) + α3􏽢Eij, (16)

where α1, α2, and α3 are hyperparameters in the model. Te
representativeness of exercises is evaluated based on the
weighted sum of the knowledge coverage of KCs in ET, the
probabilities stored in the response matrix Pn, and the
dissimilarity matrix 􏽢E.

Te exercise representativeness component aims to se-
lect exercises from the candidate set EC into the tested
exercise set ET with high representativeness. Te knowledge
coverage of ET is evaluated using the EWKC function, which
incorporates skill importance weights and exercise numbers.
Te response matrix Pn and dissimilarity matrix 􏽢E are in-
troduced to consider exercise features and representative-
ness. Te fnal knowledge coverage is calculated by
combining skill and exercise features. Te hyperparameters
α1, α2, and α3 control the relative importance of these
features in measuring exercise representativeness.

Tis component also provides the KI-EIR framework
with another aspect of exercises’ representativeness in-
terpretability. It means that the KI-EIR model can evaluate
the quality of exercise based on informativeness metric and
representativeness metric. Ten, according to the quality of
exercises, diferent exercises are recommended to diferent
types of students.

4.5. Cognitive Diagnosis Model. Tis section introduces
a novel cognitive diagnosis model, NACD, within the
KI-EIR framework. Te NACD model aims to estimate the
knowledge state of students and make predictions on the
tested exercise set. To achieve accurate diagnosis, the NACD
model incorporates student factor modeling and exercise
factor modeling. Te student factor modeling focuses on
capturing students’ behavior during exercise training, spe-
cifcally their slipping behavior and guessing behavior.
Additionally, the exercise factor is modeled based on the
output e∗ generated by the exercise representation com-
ponent. Te exercise factor aims to explore the relationship
between exercises and skills and utilizes the exercise-skill
relation matrix as input for a relative-distance attention
mechanism to generate the exercise factor representation.

4.5.1. Exercise Factor. To model the relationship between
exercises and skills, an exercise-skill relation matrix Q is
constructed to map exercises to skills. In order to consider
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the relationship between the skills, the skill importance
weight: WK, obtained from the knowledge importance
component, is considered to generate the exercise-skill re-
lation matrix. Specifcally, when an exercise ei contains
a knowledge point k, the corresponding position will be
replaced by WK, which considers the popularity and novelty
of skills. Based on the exercise-skill relation matrix, the
knowledge point vector of exercise e can be obtained as
follows:

K
V

� x
e

× Q
T
, (17)

where Q ∈ RNe×K and xe ∈ 0, 1Ne×1 represents the one-hot
representation of exercises. Te exercise embedding, com-
posed of the corresponding KV values, is then used as input
for the relative distance mechanism. Te relative distance
between input sequences, represented by xi and
xj � (x1, x2, · · · , xn− 1), is captured using edge vectors aV

i,j

and aK
i,j. To prevent unbounded values, the edge vectors are

clipped using the function clip(x, k) � max(− k, min(k, x)),
where k represents the maximum absolute value. Te as-
sociated relative position representations for WK and WV

are defned as WK � (Wk
− k, · · · , WK

k ) and
WV � (WV

− k, · · · , WV
k ). Finally, the relative position attention

mechanism outputs the exercise factor representation FE.
Te following equations describe the process:

a
k
i,j � W

k
clip(j − i, k),

a
V
i,j � W

V
clip(j − i, k).

(18)

Te edge vectors are then utilized as input for the at-
tention mechanism. Te attention weights ai,j are calculated
based on the relative distances ei,j, which are computed as

ai,j �
exp ei,j􏼐 􏼑

􏽐
n
i�1exp ei,k􏼐 􏼑

,

ei,j �
xiW

Q
xjW

k
􏼐 􏼑

T
+ xiW

Q
a

K
i,j􏼐 􏼑

T

���
dFE

􏽰 ,

F
E
i � 􏽘

n

j�1
aij xjW

V
􏼐 􏼑.

(19)

In the above equations, WQ, WK, and WV represent the
query, key, and value matrices, respectively, and dFE denotes
the dimension of FE.

4.5.2. Student Factor. Te student factor, denoted as FS,
models the representation of students based on their
knowledge profciency vectors in diagnosing their states.Te
formulation for the student representation is as follows:

H
S

� sigmoid x
s

× A( 􏼁, (20)

where xS ∈ 0, 1S×1 represents the one-hot encoding of stu-
dents and A is a trainable matrix within the framework.

Next, we introduce two factors related to student be-
havior: the slipping factor and the guessing factor. Te

slipping factor captures situations where a student attempts
to complete an exercise but provides an incorrect answer due
to careless mistakes.Te guessing factor represents instances
when a student may guess an answer because they have not
fully mastered the corresponding skills.Te formulations for
the slipping factor and the guessing factor are as follows:

H
Slipping

� sigmoid x
e

× B( 􏼁,

H
Guessing

� sigmoid x
e

× C( 􏼁,
(21)

where B and C are trainable matrices.
To generate the student factor representation FS, we

incorporate HS, HSlipping, and HGuessing as inputs to a two-
layer linear network. Te input for the linear network is
defned as follows:

X � Q × H
S

− H
Slipping

􏼐 􏼑 × H
Guessing

. (22)

Subsequently, X serves as the input for the linear
network:

f1 � σ W1 × X + b1( 􏼁,

F
S

� σ W2 × f1 + b2( 􏼁,
(23)

where σ( ) represents the sigmoid activation function.

4.5.3. Student Performance Prediction. To predict student
performance on a tested exercise set, ET, we combine the
student factor FS and the exercise factor FE. Te formulation
for this prediction is as follows:

p � sigmoid Ws × F
S

+ We × F
E

+ bp􏼐 􏼑, (24)

where Ws and We are weighted matrices, bp is the bias
vector, and p represents the likelihood that the student will
answer the subsequent interaction exercise, denoted as eNe+1,
correctly.

5. Experiments

In this section, we conduct experiments using two public
educational datasets: the Assistment dataset and the Eedi
dataset to investigate the performance of our selection
strategy: KI-EIR. Te experiments are organized into fve
aspects. First, we compare the novel cognitive diagnosis
model, NACD, with baseline models in terms of AUC and
ACC matrices to validate the efectiveness of the NACD
model. Second, we compare the performance of our selec-
tion strategies with the random strategy and EM strategy
using the informativeness metric. Te experimental results
demonstrate that our strategy outperforms other selection
strategies. Tird, we discuss the performance of our strat-
egies compared to other strategies using the representa-
tiveness metric. Next, we present the visualization of the
recommendation process of the KI-EIR strategy, EM
strategy, and random strategy using heatmaps to highlight
the excellent performance of the KI-EIR strategy. Finally, we
explore the key components of the KI-EIR method further
on the Eedi dataset.
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5.1. Dataset Descriptions. We use two datasets in this paper:
the Assistment (ASSIST) dataset and the Eedi dataset. Te
Assistment dataset is generated by collecting information
from the Assistment Online Tutoring Systems. It is an open-
source dataset for researchers to perform cognitive diagnosis
tasks. Te experiments in this paper are conducted on the
problem bodies of this dataset.

Te Eedi2020 dataset is obtained from the NeuralIPS
platform, which collected 1,380,000 records from 4918 stu-
dents. Each student participated in an average of 280
workouts. For this study, we use problems 3 and 4 from the
NeuralIPS dataset to compare the performance of our model.

Te statistical information of the Assistment and
Eedi2020 datasets is shown in Table 3.

5.2.BaselinesandSelectionStrategies. To evaluate the KI-EIR
method, we test it based on four standard cognitive diagnosis
models: IRT, MIRT, NCDM, and KaNCDM. Te details of
these models are as follows:

(1) IRT [50]: Tis is the most popular CDM in com-
puterized adaptive learning. IRT and conventional
approaches focus on developing and applying
multiitem scales to assess “latent variables” (hypo-
thetical constructs).

(2) MIRT [51]: MIRT is a multidimensional extension of
IRT that demonstrates its potential for estimating
several characteristics of ability. Te IRT-based
methods have also been expanded to
accommodate MIRT.

(3) NCDM [30]: Tis cognitive diagnosis model is the
most standard model in the educational data mining
feld. Te NCDMmodel employs neural networks to
learn the complex relationships of exercises in order
to produce accurate and understandable diagnosis
results.

(4) KaNCDM [52]: Tis framework is further developed
based on NCDM to estimate the current knowledge
state of students. Te KaNCDM improves upon
NCDM in terms of feasibility, generality, and ex-
tensibility to make predictions. Extensibility is fur-
ther discussed from two aspects: content-based
extension and knowledge-association-based
extension.

We also apply two selection strategies to compare the
performance of our selection strategy. Te details of these
selection strategies are as follows:

(1) Random strategy (RM): Tis strategy serves as the
baseline for the selection strategies. It randomly
selects exercises from the exercise set without con-
sidering the overall performance.

(2) Expectimax strategy [53] (EM): Expectimax is a tree-
based, brute-force MDP search algorithm that de-
termines the expected utility of each action. It as-
sumes that the agent will always choose the option
that maximizes utility and that the environment will
generate a subsequent state using a stochastic process

after an action has been taken. Specifcally, we treat
the exercises as the state and the knowledge concept
importance as reward to recommend the exercises to
students.

However, after observing the volume of datasets and the
overall structure of the KI-EIR framework referring to
Figure 3, we can fnd that the KI-EIR framework concerns
about two types of networks including the graph neural
network in the exercise representation component and fully
connected network in the cognitive diagnosis model. Te
Eedi datasets possesses a large volume of data containing
138W student records. Terefore, in order to efciently run
the KI-EIR framework in the intelligent tutoring system, the
following optimization tricks for this framework are in-
troduced. Te frst trick is based on the idea of exchanging
space for time. We pretrain exercise representation com-
ponent to store the exercise embedding and skill embedding
rather than running this component in each epoch when we
train the KI-EIR framework. Te second trick involves in-
tegrated training and unifed optimization for all
components.

Te framework settings for the KI-EIR framework are
described in this part, as illustrated in Table 4.

5.3. Results and Discussion. In this paper, we evaluate the
prediction task of the cognitive diagnosis model based on
whether an exercise was successfully answered in the next
interaction. We use the Area Under the Curve (AUC) and
Accuracy (ACC) metrics to measure students’ performance
in making predictions. A higher AUC or ACC value in-
dicates better cognitive diagnosis performance, while a value
of 0.5 suggests random selection. Te cross-entropy loss
function is used.

A binary value represents the efectiveness of exercise
recommendation. We measure the performance of our se-
lection strategy with the metric of informativeness metric
and coverage metric. Te informativeness metric (Inf(s)) is
used for measuring the informativeness of the selection
strategy in the exercise recommendation. Te AUCmetric is
adopted to indicate the informativeness of the selection
strategy referring to the following formula:

Inf(s) � AUC M ei, qj

􏼌􏼌􏼌􏼌Θ􏼐 􏼑 ei

􏼌􏼌􏼌􏼌 ∈ E, qj ∈ Q􏼐 􏼑. (25)

Te coverage metric (Cov(s)) is accepted to measure the
representativeness of the selection strategy. Cov(s) is com-
puted based on the percentage of knowledge concepts
covered by the strategy-selected exercises.

Cov(s) �
1

|K|
􏽘
k∈K

1 k ∈ Qc􏼂 􏼃. (26)

5.3.1. Student Performance Prediction. Table 5 presents
a comparison of the results of baseline models with the
Neural Attentive Cognitive Diagnosis (NACD) model. Te
NACD model outperforms all baseline models in terms of
AUC and ACC on both the ASSIST and Eedi datasets. Te
MIRTmodel demonstrates better performance than the IRT
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model by extending it into the multidimensional space to
predict students’ performance. Te NCDM model utilizes
neural networks to further improve predictions and estimate
the current state of students. Te KaNCDMmodel enhances
the NCDM model in terms of feasibility, generality, and
extensibility, resulting in improved performance. Te
NACD-FE and NACD-FS models analyze the importance of
exercise and student factors in predicting student perfor-
mance. Te results indicate that the student factor is more
infuential than the exercise factor, and the NACD model,
which comprehensively considers both factors, outperforms
all models.

In order to discuss the performance deeply, the train-test
curve of the NACD model is introduced to measure the
performance. Te details are as follows. As illustrated in
Figure 5, the vertical dimension means the AUC of the
current NACD model in the corresponding epoch and the
horizontal dimension presents the epoch of current training
or testing process. We can observe that the performance of
this model is relatively stable on both the training set and the
test set. On the training set, the accuracy of the model re-
mains around 84.5% and 80.3% on ASSIST and Eedi, re-
spectively. On the test set, the model’s accuracy fuctuated
around 77.2% and 77.5%, respectively. According to the
performance of train set and testing set, we can also draw

a conclusion that the NACDmodel does not have overftting
problems.

5.3.2. Informativeness Comparison. In this part, we focus on
comparing the diferent informativeness performance of
strategies using the AUC metric (equation (25)). Figures 6 and
7 present the results at the middle (step t=10) and fnal (step
t=20) stages of the tests. We compare the KI-EIR strategy with
the EM strategy and random strategy by applying diferent
cognitive diagnosis models: NACD, IRT, and MIRT.

Te random strategy performs the worst among all
strategies on the Eedi dataset and provides the baseline
accuracy for the experiment. Te EM strategy, which utilizes
aMarkov decision process, outperforms the random strategy
on the Eedi dataset by considering the impact of in-
teractions between exercises and students. However, the
EM strategy performs worse than the IRT model on the
ASSISTdataset due to the large number of exercises, which
leads to inaccurate predictions when each exercise is
treated as a state. Te KI-EIR strategy, which incorporates
exercise and skill features from the knowledge graph,
outperforms all models on both datasets, indicating its
efectiveness in achieving the informativeness goal. Te
specifc reasons are as follows. Te frst is that two in-
novative exercise evaluation metrics are designed including
the representativeness and informativeness. By analyzing
two exercise metrics, the quality of exercises is correctly
modeled to recommend the proper exercises to students.
Te second is that the KCs in the knowledge map are
comprehensively explored to generate the skill importance
weight. Te last is that the KI-EIR strategy enhances the
recommendation system by making the process more
fexible without requiring modifcations to the general
methodology. Terefore, the KI-EIR framework out-
performs other selection strategies on both datasets.

5.3.3. Representativeness Comparison. Te representative-
ness comparison focuses on exploring the performance of
diferent selection strategies in terms of the coverage metric.
As illustrated in Figures 8–10, the EM strategy performs
better than the random strategy because it considers the
impact of behavior when selecting exercises on the Eedi
dataset. However, the EM strategy performs worse than the
random strategy on the ASSIST dataset due to the fact that
there exist too many states to result in the inaccurate pre-
diction of Markov decision process.

Compared with previous two selection strategies, the
KI-EIR clearly measures the quality of the exercises by
defning two exercise quality metrics such as the repre-
sentative and informativeness metrics. Tis framework
also considers the correlation between KCs in the mul-
tiple dimension knowledge graph to recommend the
related exercises. Terefore, the KI-EIR framework
combines the exercises’ quality metrics with the KCs to
recommend the exercises and shows signifcant im-
provements in coverage metric compared with other
strategies, reaching close to 0.8 and 1 on Eedi and AS-
SIST, respectively.

Table 3: Statistics of the Assistment and Eedi datasets.

Statistic ASSIST Eedi2020
Number of records 267415 1382726
Number of students 2493 4918
Number of exercises 17671 948
Avg record/student 107.2 280

Table 4: Te framework setting for the KI-EIR framework.

ASSIST Eedi2020
Attention embedding size 200 200
Top-K 5 5
Dropout rate 0.2 0.2
Learning rate 0.002 0.002
Number of epochs 100 100
α1 0.7 0.7
α2 0.15 0.15
α3 0.15 0.15

Table 5: Comparison of results of baseline models with the Neural
Attentive Cognitive Diagnosis (NACD) model.

ASSIST Eedi2020
AUC ACC AUC ACC

IRT 0.652 0.618 0.672 0.618
MIRT 0.666 0.645 0.673 0.621
NCDM 0.751 0.728 0.720 0.660
KaNCDM 0.768 0.728 0.773 0.705
NACD-FE 0.769 0.733 0.751 0.703
NACD-FS 0.656 0.636 0.773 0.705
NACD 0.772 0.735 0.775 0.707
NACD outperforms all baseline models in terms of AUC and ACC.
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5.3.4. Visualization of Selection Strategies. In this section, we
validate the performance of the selection strategies, in-
cluding the KI-EIR strategy, EM strategy, and random
strategy, in recommending exercises to improve student
performance on the Eedi dataset. Heatmap is used to vi-
sualize the evolution of student performance, as measured
by the AUC metric.

Te heatmap in Figure 11 depicts the diferences in
performance based on diferent selection strategies (KI-EIR,

EM, and random) by observing the color change. Te
vertical dimension represents the selection strategies (KI-
EIR, EM, and random), while the horizontal dimension
represents the diferent testing phases from 0 to 19.Te color
of the heatmap represents the performance of students when
recommended with appropriate exercises, with stronger
colors indicating a greater impact of the selection strategies.

According to Figure 11, the random strategy performs
worse than the other selection strategies and is treated as the

Train-Test Curve on ASSIST

0.65

0.7

0.75

0.8

0.85

0.9

2 3 4 5 6 7 8 9 10 11 12 13 14 151

Training AUC
Testing AUC

Train-Test Curve on Eedi

0.65

0.7

0.75

0.8

0.85

0.9

2 3 4 5 6 7 8 9 10 11 12 13 14 151

Training AUC
Testing AUC

Figure 5: Te train-test curve of NACD model on ASSIST and Eedi in terms of AUC metric.
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baseline of three selection strategies. Te EM strategy, which
considers the exercises’ states and applies the Markov de-
cision process to recommend exercises, outperforms the
random strategy in all testing phases. However, the EM
selection strategy ignores the exercises and skill features.
Terefore, the KI-EIR framework further discusses the ex-
ercises’ features by introducing two innovative quality
metrics including representativeness and informativeness.
Tis framework also deeply explores the relation between
diferent KCs in KGs to assist in the recommendation of the

intelligent tutoring system. As a result, the KI-EIR strategy
achieves the best student performance among the selection
strategies.

Overall, the results and discussions demonstrate the
efectiveness and superiority of the proposed KI-EIR strategy
in cognitive diagnosis and exercise recommendation. Te
KI-EIR strategy outperforms baseline models and other
selection strategies in terms of informativeness and repre-
sentativeness. It leverages exercise and skill features, along
with the knowledge graph, to provide accurate and
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Figure 8: IRT on Eedi2020 and Assistment.
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informative exercise recommendations for students. Te
visualization of the selection strategies further supports the
outstanding performance of the KI-EIR strategy. Tese
fndings contribute to the improvement of cognitive di-
agnosis models and the enhancement of recommendation
systems in educational settings.

5.3.5. Ablation Experiments. Tis section aims to identify
the key components of the KI-EIR model through a series of
ablation experiments. Four variations of the KI-EIR model
are considered, each incorporating one or more compo-
nents. Specifcally, “IF,” “ER,” and “KI” indicate that the
KI-EIR framework only contains the informativeness
component, exercise representativeness component, and
knowledge importance component, respectively. “IF +KI”
or “ER+KI” indicates that the KI-EIR framework only
contains the informativeness component and knowledge
importance component or exercise representativeness
component and knowledge importance component,
respectively.

Te conclusions drawn from the experiments are as
follows. Firstly, the individual components of in-
formativeness, exercise representativeness, and knowl-
edge importance do not yield satisfactory outcomes when
used alone. Te performance gradually improves as more
components are incorporated into the KI-EIR method.
Secondly, when the exercise representativeness compo-
nent (ER) is involved in the KI-EIR framework, the
performance becomes better than IF, increasing to 65.6%
and 67.2%. Terefore, the exercise representation com-
ponent (ER) is more important than the informativeness
component (IF) according to the experimental results in
this section. Tirdly, since the knowledge importance
component (KI) provides the skill weight for ER, when the
ER component is removed, the KI component is also
removed. Consequently, the inclusion of the KI compo-
nent leads to greater performance improvement com-
pared to the IF component.

Table 6 presents the results of the ablation study of the
KI-EIR model based on the IRT model on the Eedi and
ASSIST datasets.
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Figure 11: Heatmap illustrating the performance of selection strategies on the Eedi2020 dataset.

Table 6: Ablation study of the KI-EIR model based on the IRT model on two datasets.

Method Eedi ASSIST
Informativeness component (IF) 0.654 0.670
Exercise representativeness component (ER) 0.656 0.672
Informativeness component (IF) + knowledge importance component (ER) 0.661 0.676
Exercise representativeness component (ER) + knowledge importance
component (KI) 0.662 0.675

KI-EIR 0.672 0.679
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Figure 12: Te time consumption comparison on Eedi and ASSIST.
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Te results in Table 6 demonstrate that the KI-EIRmodel
outperforms the ablated versions in terms of AUC on both
the Eedi and ASSIST datasets. Te inclusion of all compo-
nents in the KI-EIR model leads to the best performance.
Te ablation study confrms the importance of the in-
formativeness, exercise representativeness, and knowledge
importance components in the KI-EIR model, with their
combined efect resulting in improved performance.

In order validate the performance of these tricks for
these key components in the KI-EIR framework, we test the
time consumption of recommending exercises for a student.
Te details are shown in Figure 12.

Te conclusions drawn from the experiments are as
follows. Firstly, the response time of KI-EIR, EM, and RM
strategies is all below 1 s compared with the maximum user-
tolerable page loading time: 2 s. It means that the optimi-
zation tricks are proved as efcient to reduce the complexity
of the KI-EIR framework. Secondly, three selection strategies
spend more time on the ASSIST dataset than on the Eedi
dataset due to the fact that the exercise number of the
ASSIST dataset is much larger than the Eedi dataset.

6. Conclusion and Future Work

In this paper, we proposed a comprehensive framework, the
KI-EIR (Knowledge Graph-Enhanced Exercise Item Rec-
ommendation) model, to address the challenge of providing
informative and representative exercises in cognitive di-
agnosis tasks. Te KI-EIR model consists of four key
components: informativeness, exercise representation,
knowledge importance, and exercise representativeness. We
can also observe that the KI-EIR possesses two types of
scalability. Te frst scalability is the model scalability. We
can use IRT or MIRT to recommend the exercises though
these cognitive diagnosis models do not provide excellent
performance referring to the experiments: the in-
formativeness comparison and representativeness compar-
ison. Te second scalability is the dataset scalability. We
compare the large dataset: Eedi2020, with the small dataset:
ASSIST, to validate our performance. Te results indicate
that our framework is extensible in both two types of
datasets.

Te informativeness component estimates the in-
formativeness of each exercise and selects exercises with high
informativeness from the untested exercise set to the can-
didate exercise set. Te exercise representation component
utilizes the Graph Convolutional Network (GCN) model and
two types of relation attention mechanisms to generate skill
embeddings and exercise embeddings. Te knowledge im-
portance component applies the knowledge point extraction
path algorithm and knowledge importance weighted algo-
rithm to calculate the skill importance weight. Finally, the
exercise representativeness algorithm combines the skill
importance weight, exercise weight, knowledge coverage,
response matrix, and dissimilarity matrix to select exercises
from the candidate exercise set into the tested exercise set with
high representativeness. Te NACD model is then employed
to accurately estimate the state of students based on the se-
lected exercises. Te recommendation process is also

interpretable. Te four aspects of interpretability of the
KI-EIR framework can be discussed. Te frst aspect is the
domain knowledge interpretability. Te knowledge graph is
labeled by the two domain experts in our university to correct
these outdated or incompleteness information in Section 4.3.
Te domain knowledge in the validated knowledge graph is
inherently interpretable because we can easily observe the
specifc knowledge concepts and the relationship between
them. Te second aspect is exercise informativeness and
representativeness interpretability. In order to measure the
quality of exercises and make the recommendation process
interpretable, two metrics are proposed to measure the ex-
ercises including the informativeness and representativeness
in Section 4.1 and Section 4.4. Terefore, the exercise rec-
ommendation process of KI-EIR is interpretable because the
KI-EIR framework just needs to select the exercises with high
informativeness and representativeness. Te third aspect is
the learning interaction interpretability. Te heterogeneous
graph in Section 4.2 provides the insight of the relationship
between students, exercises, and skills. Ten, the graph neural
network is applied to extract the information contained in the
heterogeneous graph and generate the corresponding skill
embedding and exercise embedding. Terefore, the modeling
of the learning interactions is interpretable in the KI-EIR
framework. Te fnal aspect is the skill importance in-
terpretability. We further explore the fve properties of skills
in Section 4.3.2 including the level, frequency, connection,
similarity, and difculty. Tese fve properties of skills are
interpretable. As a result, the KI-EIR, which can demonstrate
interpretability from four aspects, can provide the in-
terpretable and transparent recommendations to students.

Te KI-EIR model demonstrates promising results in
improving cognitive diagnosis and exercise recommen-
dation in educational settings. By leveraging the power of
knowledge graphs and incorporating multiple compo-
nents, our framework provides accurate and informative
exercise recommendations for students, thereby en-
hancing their learning experience and academic perfor-
mance. Te proposed framework opens up new avenues
for research and development in the feld of educational
data mining and cognitive diagnosis. However, the KI-EIR
framework still possesses some limitations to recommend
the exercises to students. Te frst limitation is that some
metrics are crucial for the recommendation system, but it
is hard for the KI-EIR framework to consider these
metrics in current stage such as the user satisfaction, user
engagement, and long-term learning outcomes. Te
reason is as follows. Te frst is that these metrics require
a large number of real users involved after the platform is
put into practice. Te second is that data of other rec-
ommendation systems cannot be directly referenced be-
cause diferent platforms possess diferent user
satisfaction, user engagement, and long-term learning
outcomes so that other recommendation system datasets
cannot be referenced directly. Te second limitation is
that some nuanced factors are valuable for KI-EIR, but
these factors are hard to be quantifed based on the
datasets such as nuanced pedagogical methods for dif-
ferent teachers and individual learning styles.
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In future research, we suggest exploring the application
of reinforcement learning techniques such as Deep Q-
Network (DQN) to further improve the selection of exer-
cises with high representativeness and informativeness. Tis
approach can help reduce the time required for the selection
phase and enhance the efciency and efectiveness of the
cognitive diagnosis process. At the same time, we also need
to further discuss the optimization methods of our in-
telligent tutoring system to reduce the time consumption of
the recommending process. Finally, we will put the KI-EIR
framework into practice and obtain some valuable metrics
such as user satisfaction, engagement, and long-term
learning resources to further improve our framework.
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