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In the era of advancement in information technology and the smart healthcare industry 5.0, the diagnosis of human diseases is still
a challenging task. Te accurate prediction of human diseases, especially deadly cancer diseases in the smart healthcare industry
5.0, is of utmost importance for human wellbeing. In recent years, the global Internet of Medical Tings (IoMT) industry has
evolved at a dizzying pace, from a small wristwatch to a big aircraft. With this advancement in the healthcare industry, there also
rises the issue of data privacy. To ensure the privacy of patients’ data and fast data transmission, federated deep extreme learning
entangled with the edge computing approach is considered in this proposed intelligent system for the diagnosis of lung disease.
Federated deep extreme machine learning is applied for the prediction of lung disease in the proposed intelligent system.
Furthermore, to strengthen the proposed model, a fused weighted deep extreme machine learning methodology is adopted for
better prediction of lung disease. Te MATLAB 2020a tool is used for simulation and results. Te proposed fused weighted
federated deep extreme machine learning model is used for the validation of the best prediction of cancer disease in the smart
healthcare industry 5.0. Te result of the proposed fused weighted federated deep extreme machine learning approach achieved
97.2%, which is better than the state-of-the-art published methods.

1. Introduction

Automated systems for human disease classifcation are
becoming increasingly important in the feld of healthcare
for several reasons, including automated systems can pro-
vide more accurate and consistent disease classifcations
compared to manual classifcation by healthcare pro-
fessionals. Tis is because these systems can analyze vast
amounts of patient data and identify patterns that may be

missed by humans. It can help in the faster diagnosis of
diseases, which is critical for conditions that require im-
mediate treatment. Early detection is key to successful
treatment of many diseases, and automated systems can help
detect diseases at an early stage when treatment is most
efective. Automated systems can help healthcare pro-
fessionals make more informed decisions about patient care,
leading to improved patient outcomes. Automated disease
classifcation systems can be cost-efective in the long term,
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as they can reduce the need for repeated tests and consul-
tations, which can be expensive for patients and healthcare
providers. Te importance of automated disease classifca-
tion systems lies in their ability to improve accuracy, speed,
and efciency in healthcare, ultimately leading to better
patient outcomes.

Cancer is the second-largest leading cause of mortality
worldwide. In 2020, more than 19.2 million new cancer cases
were reported worldwide, with 9.95 million fatalities [1],
numbering nearly one in every six expiries of a human being
[2]. Te human body is made up of billions of cells, which
develop and multiply to generate new cells in response to the
body’s needs through a process known as cell division.When
cells reach a specifc age or number prone to harming the
body, it is natural for them to die and be replaced with new
ones. If this procedure fails, harmful cells begin to grow and
replicate, leading to tumor growth. Tese tumors could be
cancerous or noncancerous [3]. Cancer can afect every
human body and any of the organs; while colon, lungs, liver,
prostate, stomach, and skin cancer are the most commonly
aficting types. Globally, 4.14 million new cases of lung and
colon cancer were diagnosed in 2020, with 2.7 million
mortalities [4]. A smart healthcare system is typically
connected to the internet of medical things (IoMT), allowing
you to use and control several smart devices, each of which
plays an important role in your and your family’s healthcare.
An IoMT-based intelligent prediction [5] system for breast
cancer is present empowered by deep learning. Prediction of
diabetes and energy consumption with fused machine
learning [6–8] techniques is also adopted for the prediction
of human diseases in previous studies.

Heart disease prediction [9] with the help of machine
learning is studied for the wellbeing of humans.

Citizens’ lifestyles can be made easy and safe by smart
healthcare system solutions that are more open and secure. It
not only provides useful tools, such as habit tracking and
even safety tests, which have prompted customers and
system developers to do extensive research [10], but it also
demands handling important issues, such as data privacy,
security, and data access. Federated learning for privacy
solutions [11, 12], especially in the healthcare sector are
focused in this study. In this study, we deeply studied the
workings of FL and their contribution towards
healthcare data.

Federated learning is a machine learning technique that
allows multiple parties to collaboratively train a shared
model while keeping their data locally stored and private.
Tis technique has several advantages when it comes to
healthcare data, such as FL allows healthcare organizations
to share data without actually sharing it. In other words, the
data remain on the local servers of each organization, and
only the trained model parameters are shared. Tis helps to
protect sensitive patient data, which is essential in health-
care. FL allows for a larger and more diverse set of data to be
used in the training process. Tis can help improve the
accuracy and generalizability of the model. Additionally,
because data are being collected frommultiple sources, there
is less risk of bias or skewed data that can occur when relying
on a single source. FL can be more cost-efective than

traditional centralized learning methods since it avoids the
need for data to be transferred to a central location for
training.Tis can be particularly advantageous in healthcare,
where large amounts of data need to be processed and
analyzed. FL encourages collaboration between healthcare
organizations, researchers, and other stakeholders. Tis can
help to promote knowledge sharing, faster innovation, and
ultimately better patient outcomes. Overall, the main ad-
vantage of federated learning in healthcare dataset is its
ability to facilitate collaboration while maintaining data
privacy and security. Tis technique can help to improve the
quality of healthcare data analysis and ultimately lead to
better patient outcomes. An advancement in FL from FL to
split learning (SL) [13] is presented for overcoming privacy
issues. Te permutation of a small dataset [14] of patients in
diferent hospitals makes a well-trained model achieve the
global objective of better evaluation and classifcation. Re-
source efciency management [15] in FL is also considered.
Handling heterogeneity in data can be a signifcant challenge
in data analysis, as it can complicate the process of iden-
tifying meaningful patterns, relationships, or insights in the
data. Efective strategies for dealing with heterogeneity in-
clude data preprocessing, data normalization, data in-
tegration, and using appropriate statistical or machine
learning techniques. In other words, when a dataset is
heterogeneous, it contains data that are not uniform or
consistent across all its dimensions. For example, a dataset
could be heterogeneous if it contains data in diferent
languages, data of diferent types (e.g., numerical, categor-
ical), data with diferent levels of granularity (e.g., daily,
monthly), or data from diferent sources or formats.

IoMT stands for “Internet of Medical Tings,” which
refers to a system of interconnected medical devices, soft-
ware applications, and health systems that collect and share
data over the Internet. IoMT has the potential to revolu-
tionize healthcare by improving patient outcomes, reducing
costs, and increasing efciency. In healthcare, IoMT can be
used in a variety of ways, including remote patient moni-
toring, telemedicine, predictive analytics, and real-time asset
tracking. For example, wearable devices such as smart-
watches and ftness trackers can collect and transmit patient
data to healthcare providers in real-time, allowing them to
monitor vital signs and detect potential health problems
before they become serious. Edge computing [16] is used for
data collection at each node of smart healthcare hospitals,
while fog computing [17] is used for connecting the all-edge
nodes and data transmission between these nodes. Another
signifcant difculty, at this vantage point, is keeping data
safe from unauthorized persons. Lung cancer detection is
profuse [18] clustering with transfer learning (TL) is also
used. Diferent image classifcation-trained models are being
used for disease identifcation. Automated lung cancer de-
tection [19] with CTimages and histopathology [20] with the
help of neural networks (NN) and ensemble classifer
techniques has been adopted in recent study.

In the healthcare industry 5.0, IoMTplayed a vital role in
data collection and its transfer through wireless transmission
from diferent places using diferent devices and sensors. In
this way, healthcare data can be compromised by any means.
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But the healthcare industry 5.0 demands high security and
privacy of patients’ data. To overcome this issue, diferent
approaches have been resorted to, but still, the problem is
unsettled. In this article, we have considered how patients’
data security and privacy can be handled using the FL ap-
proach with edge computing.

FL is a framework that has lately acquired popularity as
a result of its high level of assurance for learning with
fragmented and sensitive data. It demands and allows the
training of a shared global model utilizing a central server
while keeping the information in the appropriate organi-
zation, rather than merging the collected data from diverse
sources or relying on the traditional discovery strategy rather
than the replication. FL is a robust ML model which works
efciently by combining training data from several sources
to create a global model without exchanging datasets di-
rectly. Tere are many advanced machine learning models
for the classifcation of human diseases and their prognosis.
In FL, machine learning models are applied to the local
datasets of each hospital for strengthening data privacy and
security, especially to ensure the integrity of the data. Tis
ensures that patient privacy is maintained between sites. Te
model is trained by dispersing itself across remote cen-
tralized data centers, such as health facilities or other
medical organizations, preserving data localization at these
locations. No data from any contributor is exchanged or
transferred during the training process. Instead of providing
data to a single server, such as in traditional deep learning,
the server maintains a globally common architecture that is
shared by all institutions. After that, each organization
creates its own patient-based data model. Following that,
each center sends data to the server using the model’s
inaccuracy gradient. Te central server compiles all par-
ticipants’ feedback and adjusts the global model based on
predetermined parameters. Te predefned criteria allow the
model to judge the excellence of the response and, as a result,
only include information that adds value. As a result,
feedback from centers that report unfavorable or typical
results may be overlooked. Tis approach is continued until
the global model is learned in a single round of FL.Te entire
design of FL is shown in Figure 1.

Edge computing is the process of physically bringing
computational capacity closer to the source of data, which is
mainly an IoT device or sensor. Edge computing is named
after the way computational power is sent to the network or
device’s edge, allowing faster data processing, higher
bandwidth, and data sovereignty. Edge computing lowers
the need for huge volumes of data to travel between servers,
the cloud, and devices or edge locations to be processed by
processing data at the network’s edge. Tis is especially
relevant for current applications, such as data science and
artifcial intelligence. Edge computing’s [16] purpose is to
bring data sources and devices closer to each other, reducing
processing time and distance, which increases application
and device performance. Sensors are valuable instruments
for evaluating smart healthcare systems, ecosystems, and
customers. Terefore, the IoMT collects data from them.
Sensors, interaction, and smart healthcare are three sorts of
devices that ft within this category. Sensors collect data,

which is then processed by computers. Te IoMT network
system includes closed-circuit devices, wearables, and other
items that make up the edge layer. Overall, IoMT has the
potential to transform healthcare by improving patient care,
reducing costs, and increasing efciency. As technology
continues to evolve, we can expect to see more widespread
adoption of IoMT in the coming years. By capturing and
storing data, information is acquired and processed from
these nodes on the edge nodes by applying artifcial neural
networks (ANN) and their variants.

Artifcial neural networks (ANNs) are increasingly being
used in healthcare for a variety of applications, including
ANNs can be trained on large datasets of medical images or
other patient data to accurately identify disease or condi-
tions. For example, ANNs have been used to diagnose breast
cancer from mammograms, predict the likelihood of a pa-
tient having a heart attack, or detect skin cancer from images
of moles. ANNs can be used to predict the progression of
a disease or assess the risk of complications. For instance,
ANNs have been used to predict the risk of postoperative
complications or the likelihood of a patient developing
complications from diabetes. ANNs can help in the devel-
opment of new drugs by predicting the efcacy and toxicity
of potential drug candidates. ANNs have been used to
predict the toxicity of new drugs on the liver, the efec-
tiveness of cancer drugs, and drug-drug interactions. ANNs
can be used to analyze EHRs to identify patterns and predict
outcomes. For instance, ANNs can be used to predict which
patients are at risk of readmission, or to identify patients
who may beneft from preventative interventions.

Overall, ANNs have great potential to improve health-
care by providing accurate and efcient diagnosis, pre-
diction, and personalized treatment.

Te main objective of the proposed fused weighted
model is to highlight the strengths, and weaknesses of
diferent varients of ANN on the same healthcare dataset.
Fusion of ML models refers to the process of combining
multiple machine learning models to improve overall per-
formance or accuracy. Tere are several ways to perform
model fusion, depending on the nature of the problem and
the types of models being used. In our proposed FL
methodology, we considered the weights of each model for
fusion. Te deep extreme machine learning approach is
mainly used in this problem for deep analysis of healthcare
datasets for accurate prediction of disease. To get the
maximum advantage of diferent ML models, the proposed
fused weighted federated deep extreme learning approach
combines the weights of the LM and BR models. In this way,
we developed a new generalized model which has the po-
tential to achieve better accuracy in a heterogeneous envi-
ronment compared to individual ML models. Te current
approach is not considered in traditional ML methods for
disease prediction in the healthcare industry 5.0.

Te novelty and contribution of this research are as
follows:

(i) To ensure the privacy and security of patient data, as
well as the secure automated healthcare system, is
considered in this research.
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(ii) To resolve the issue of delayed data transmission while
transmitting data entangled with IoMTto the cloud, it
is normally difcult to meet real-time scenarios.

(iii) Te fused weighted federated deep extrememachine
learning (FDEML) model is utilized for disease
prediction in this research.

(iv) Te proposed fused weighted FDEML model pro-
vides a better solution for accurate disease identi-
fcation and treatment.

(v) Te proposed fused weighted FDEML model also
provides a better opportunity for the selection of the
best prediction ML model.

Hospital A Hospital B Hospital C Hospital N
Data acquisition Layer

Preprocessing Layer

Local Model Local Model Local Model Local Model

Global Model

IoMT Raw Data Preprocessing

Disease Found
?

No

Yes

Hospital X

Identified the Lung Disease

Discard
Import Trained

FWFDEML
 generalized
model for
prediction

Public Cloud
Trained FWFDEML

Generalize Model

Validation Layer

IoMT IoMT IoMT IoMT

Application Layer

Figure 1: Proposed the fused WFDEML model.
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Finally, simulation results have shown that the FL for the
classifcation of lung disease in e-healthcare monitoring
systems will prove better accuracy with the privacy of
patients’ data.

Te following is a breakdown of the paper’s structure:
Section 2 highlights the latest research on lung cancer
discovery and monitoring as reported in the literature. Te
research methods, feature extraction, feature selection, and
proposed fused weighted FDEML model are all covered in
Section 3; the dataset selection, preprocessing, data fusion
(augmentation), and results and discussion are presented in
Section 4; and the conclusion and future work are discussed
in Section 5. References are given in Section 6.

2. Related Works

According to a recent study, cloud-based medical records
have several disadvantages. Most of which are connected to
healthcare-related data from multiple sources. Tese are
taken and analyzed from various databases that are available
anywhere. Furthermore, no infrastructure exist that stores
all the healthcare-related data in a cloud-like environment,
such as lab tests, imaging, or a patient’s prescriptions in
visits, and makes it secure to access from anywhere. Many
medical-related departments now use computer systems and
software to store data on a system rather than a manual
system. In this way, doctor minimizing the human labor
necessary to obtain data manually as well as the time and
efort needed to do so. Users, on the other hand, are still
unable to obtain data online from their homes; they must
physically visit the place, which takes time. Te tasks and
responsibilities of smart houses are increasingly evolving as
a result of recent developments in information and com-
munication technology (ICT), and the Internet of things. A
smart healthcare system is a home that collects and sends
information in real-time. It might use smart technology to
ofer automated services and information from several
medical devices, including a smartwatch, diabetes monitor,
blood pressure monitor, and electrocardiograph machine
and many more.

Systems that make use of these new technologies are
incorporated into the health-based interactive system of
computers and the community without user intervention
[21]. Consumers may be able to regulate the use of various
medical equipment to track and manage their health
depending on their settings and the confguration of the
smart healthcare network to ensure the full advantages of
health product design is achieved. Te IoMT and smart
living are becoming important gadgets in the healthcare
system. Te smart healthcare network structure is made up
of several tiny embedded computers that are linked together
and connected to a range of IoMT devices [22] over an
Internet. Wired networking services have been phased out in
favor of wireless networking services [23]. Data has been
a main source of intelligence in recent decades, and smart
applications for real-world concerns such as wireless net-
working, bioinformatics, agriculture, and fnance [24] have
opened up new opportunities. Tese systems are data-driven
and incorporate user-friendly insights that help people

perform their tasks more efciently. Tis generates
knowledge, customizes consumer perceptions, enhances
customer interactions, boosts operational efciency, and
necessitates the use of developing technology. Several so-
phisticated technologies make people’s lives easier [25]. A
light deep model for pulmonary nodule detection [26] is
presented for mobile devices. Large amounts of data are
stored in such systems, and the preservation of this con-
stantly changing material in archives raises security con-
cerns. Analysis of disease gene relation with machine
learning techniques is adopted for disease gene analysis [27].
Skin lesion classifcation [28] for humans is presented in this
study for skin-related problem identifcation.

In the image classifcation dataset, from MNIST, the
precision-weighted FL [29] algorithm is considered. Attack
detection [30] via FL in the medical-physical system is
presented in this study. Automated e-healthcare monitoring
systems were proposed. Te study proposes attack on FL
through an IoT [31], an intrusion detection system. In this
study, a multivariate dataset was considered. A game-based
deep reinforcement learning [32] for energy-efcient
computation is proposed in this study. In this study, data
segmentation and time division are considered for reducing
the computational cost. In the approach, asynchronous
transmission for real-time data are considered properly and
efciently.

Te FL via deep knowledge tracing [33] framework is
proposed in this study. In this study, data security has been
considered intelligently. But a major drawback of this study
is that students’ secrecy has not been considered. Te FL of
predictive models in electronic health records (EHR) [34]
proposed a decentralized optimization framework for pre-
diction in hospitalization. In this research, the author
contributes to the convergence rate and communication cost
reduction.Temajor drawback was no simulation result and
was extracted via FL. A dynamic fusion-based FL for
COVID-19 discovery [35] was proposed. Te image-based
dataset was considered for the identifcation of COVID-19
patients by using the fusion-based FL approach. Te eval-
uation parameters showed a good result. Te major draw-
back of this proposed medical image analysis is that it does
not protect the privacy of patients’ data. A personalized FL
[36] for IoT applications based on a cloud-edge framework
was proposed. A FL approach for privacy-preserving [37] in
trafc fow was presented in this study. In this study, the FL
algorithm was designed to predict the fow of trafc. In this
approach, a good way was given for reducing the overhead
communication costs. Te major faw of this study is that no
numerical simulations for privacy were shown.Te FedGRU
algorithm was used for simulation and result evaluation.
Privacy preservation of misbehavior detection [38] via the
Internet for vehicles using FL. Te FL scheme for collision
avoidance [39] for trafc was proposed in this research. In
this approach, transfer reinforcement learning agents’
knowledge can be given in trial time. A comprehensive study
has been made for brain tumor diagnosis via deep and FL
methodologies [40]. A thorough review has been made of all
aspects of brain tumor research, including their approaches,
datasets, and classifers.
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An optimal DL-based fusion model [41] is presented in
this study for image classifcation in biomedical sciences.
SIFT-based handcrafted features of the image dataset and
inception v4-based deep features are fused in this approach
for better classifcation of cancer disease. Feature selection
and segmentation [42] in MRI images for the diagnosis of
brain tumors are presented. Lung cancer disease detection
[43] is presented in this study. Transfer learning and class-
selective image processing techniques are applied for better
accuracy of lung disease detection.

Te lightweight encryption [44, 45] techniques are
adopted in healthcare for better security of patient data.
Diferent ML algorithms entangled with IoTdevices [46–48]
are applied to secure the data in smart healthcare systems as
well as in smart grids. Te encryption techniques help a lot
with data securing in IoTdevices.Te article presents a novel
method for predicting hydrogen storage in dibenzyltoluene
via weighted federated machine learning [49], which allows
the use of distributed data without compromising privacy.
Te authors demonstrate the efectiveness of the method by
comparing it with other machine learning approaches and
experimental data. Te results show that the proposed
method can accurately predict the hydrogen storage capacity
of dibenzyltoluene, which has important implications for the
development of sustainable energy storage technologies.

3. Proposed Work

Te proposed fused weighted FDEML for the prediction of
lung cancer disease in a smart healthcare system is pre-
sented.Te proposed model is shown in Figure 1.Te phases
of the proposed fused weighted FDEML model to predict
lung cancer in patients using a smart healthcare system are
as follows: Te proposed model as shown in Figure 1 is
divided into multiple phases: a (1) acquisition layer for the
collection of patients’ data, (2) preprocessing of raw data, (3)
training and retraining of each local model, (4) a private
edge-cloud layer for storing the fused weighted FDEML
model, (5) a public cloud layer, and (6) fnally the validation
layer. Te patient’s data is collected in the acquisition layer
through IoMT devices. After collecting the data via IoMT
devices, the data needs to be preprocessed to remove noisy
data. After preprocessing the data, it is divided for training
and validation in the FDEML phase.

Te global model exchanges the average weights of its
model with all local models of each hospital for the pre-
diction and training of the local model, as shown in Figure 1.
Tis exercise continues until the required criteria are met.
After reaching the required threshold of the model, the
model weights are sent to the private edge cloud for further
optimization, as shown in Figure 1 of the proposed fused
weighted FDEMLmodel for the prediction of lung disease in
smart healthcare 5.0. As shown in Figure 1, a private edge
cloud is deployed for training and retraining each local
model for making one global fused weighted FDEMLmodel.

Te hospitals are labeled with names like Hospital A,
with the data of all the patients surrounding that hospital,
same in Hospital B, Hospital C, and up to Hospital N. In
Figure 1, a global fused weighted FDEML model is stored in

private edge clouds for predicting lung disease with diferent
FDEML models for achieving better accuracy in a hetero-
geneous environment.

Te fow chart of the proposed methods is shown in
Figure 2. Te hierarchy of proposed methods is divided into
the following phases; (1) data collection, (2) preprocessing,
(3) data distribution, (4) FDEML phase, (5) fusing the LM
Model and BR Model, (6) testing and validation, and (7)
disease classifcation. In phase 4, the FDEML approach is
adopted separately for both models. In phase 5, the weights
of these models, i.e., (the LM model and BR model), were
extracted through FDEML being fused. Te weights of these
models are combined with the ratio of accuracy achieved
individually. In the end, the fused weighted FDEMLmodel is
applied for disease classifcation.

Te mathematical model of the proposed fused weighted
FDEML is as follows: -an artifcial neural network (ANN) is
fed the dataset once it has been collected from the various
networks. Te input layer, hidden layer, and output layer are
the three layers on which ANN operates. Te main func-
tioning mechanism and mathematical model of an ANN are
as follows: where [a1, a2, a3, . . ., an] denotes the input
features, “i”, “j,” and “k” denotes the element indices in each
layer, and the circle within the layer denotes the neuron. Bias
is introduced to each layer, which is indicated by the
numbers b1 and b2. Te ui,j variable displays the weights
between the input and hidden layers, while the vj,k variable
displays the weights between the hidden layer and the
output layer.

Te total number of elements is n in the input layer,m in
the hidden layer, and p in the output layer, which essentially
yields the dimensions of each layer.

We are trying to get the output from each neuron in the
hidden and output layers. Te output at each neuron of the
hidden layer can be calculated using equation (1) [49], in
which Oh

cli
j represents the output of ith client cli of jth hidden

neuron

oh
cli
j �

1

1 + e
− 􏽐

m

i�1u
cli
j,i

fi+b1􏼐 􏼑
1≤ j≤m. (1)

Similarly, as in equation (1) [49], oo
cli
k represents the

output at the output layer at the kth neuron

oo
cli
k �

1

1 + e
− 􏽐

m

j�1v
cli
j,i

oh
cli
j

+b2􏼐 􏼑
1≤ k≤p. (2)

Te diference between the actual output and the esti-
mated output is called error. Tis error can be calculated in
equation (3), which Errcli represents the ith client cli error,
ao

cli
k represents the actual output, and oo

cli
k represents the

estimated output at the output layer.

Errcli �
1
2

􏽘

p

k�1
ao

cli
k − oo

cli
k􏼐 􏼑

2
. (3)

Now we disseminate in the back direction to fnd the
weight updating, which resulted in a change in the weights.
Te weight-updating process starts from the output layer
and goes back to the input layer via the hidden layer. Te
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change in weights between the output layer and hidden layer
is given in equation (4), where ∆Vcli represents the change in
weights of ith client at the output layer

∆V
cli ∝ −

zErrcli

zV
cli

. (4)

Similarly, the change in weights between the hidden
layers and to input layer can be defned using equation (5),
which ∆Ucli represents the change in weights ith client at
hidden layer

∆U
cli ∝ −

zErrcli

zU
cli

. (5)

From equations (4) and (5), the relation of change in
weights can be converted into equations (6) and (7) as
follows:

∆v
cli
j,k � − const

zErrcli

zv
cli
j,k

, (6)

∆u
cli
i,j � − const

zErrcli

zu
cli
i,j

. (7)

Using chain rule

∆v
cli
j,k � − const

zErrcli

zoo
cli
k

×
zoo

cli
k

zv
cli
j,k

. (8)

After taking the partial derivate and applying the chain
rule, equation (8) can be derived to equation (9) as given
below.

∆v
cli
j,k � const ao

cli
k − oo

cli
k􏼐 􏼑oo

cli
k 1 − oo

cli
k􏼐 􏼑∗ oh

cli
j . (9)

Equation (8) can be reduced in the form of equation (9)
by replacing the constant factor, given in equation (9). In
equation (10) ∆v

cli
j,k, represent the change in the weights

between the output to the hidden layer and c
cli
k represents the

constant factor of equation (11).

∆v
cli
j,k � constccli

k oh
cli
j , (10)

c
cli
k � ao

cli
k − oo

cli
k􏼐 􏼑oo

cli
k 1 − oo

cli
k􏼐 􏼑. (11)

Te weights can be updated using equation (11), in
which the next weight v

cli
j,k(t + 1) is updated using the

current weight value v
cli
j,k(t) and the change in the weight

∆v
cli
j,k, and a learning rate factor λ

v
cli
j,k(t + 1) � v

cli
j,k(t) + λ∆v

cli
j,k. (12)

From equation (7), the change in weights of the hidden
to input layer can be derived as follows:

Using the chain rule, the change in hidden to input
weights can be defned as follows: Equation (13), ∆u

cli
i,j

represents the change in weights of jth element of hidden
layer to the ith element in the input layer for the ith client cli.

∆u
cli
i,j � − const

zErrcli

zoo
cli
k

×
zoo

cli
k

zoh
cli
j

×
zoh

cli
j

zu
cli
i,j

. (13)

By using the chain rule and also taking the derivate,
equation (13) can be stated in form of.

∆u
cli
i,j � const 􏽘

k

ao
cli
k − oo

cli
k􏼐 􏼑 × oo

cli
k 1 − oo

cli
k􏼐 􏼑∗ v

cli
j,k

⎡⎣ ⎤⎦

× oh
cli
j × 1 − oh

cli
j􏼐 􏼑 × fi.

(14)

Equation (14) can be compact to replace the constant
factor stated in equation (11)

Start

Data Collection via
IoMT Devices

Preprocessing of
Raw Data

Data distribution for
training and testing

Federated deep extreme machine
learning phase

Fusion of weights w.r.t to the accuracy of both models

LM Model BR Model

Fused Weighted Federated deep extreme machine
learning model for Testing and Validation

Disease Classification

Figure 2: Flowchart of proposed FWFDEML model.
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∆u
cli
i,j � const 􏽘

k

c
cli
k ∗ v

cli
j,k

⎡⎣ ⎤⎦ × oh
cli
j × 1 − oh

cli
j􏼐 􏼑 × fi. (15)

Equation (15) can also reduce to

∆u
cli
i,j � constβcli

j × fi. (16)

By replacing constant factor with

βcli
j � 􏽘

k

c
cli
k ∗ v

cli
j,k

⎡⎣ ⎤⎦ × oh
cli
j × 1 − oh

cli
j􏼐 􏼑. (17)

Te weights can be updated in the hidden to input layer
by following equation (17) [49] as did in equation (12):

u
cli
i,j(t + 1) � u

cli
i,j(t) + λ∆u

cli
i,j. (18)

Equations (12) and (18), λ is the learning rate for weight
updation. From equations (12) and (18) [49], we will get the
optimum weights, these weights will use to aggregate at the
federated server or global model.

Algorithm 1 shows the pseudo code of proposed FDEML
model, which execute the ith client.

3.1. Transfer of Weights. Tese weights are then transferred
to the cloud or federated server. To secure this system, these
weights can be encrypted and then transmitted. In this study,
the encrypting of the weights is not used and it is left as an
additional entity that can be added as per application
requirements.

3.2. Federated Server. Each client is transmitting its opti-
mum weight (Ucli

IH, V
cli
HO) to the federated server. In our case,

the clients are trained by (1) Levenberg− Marquardt (LM)
and (2) Bayesian regularization (BR). Te optimized weights
of the LM algorithm and BR algorithm are given in equa-
tions (19) and (20), respectively

U
cli
IH(LM) �

u11 . . . u1cn

⋮ ⋱ ⋮

urm1 · · · urmcn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d1∗ d2

, (19)

U
cli
IH(BR) �

u11 . . . u1cn

⋮ ⋱ ⋮
urm1 · · · urmcn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

d3∗d4

. (20)

Te combined optimal weights for federated server for
input to hidden layer can be stated using equation (21), in
which Uk

IH(FS), represents the aggregated weights of all
locally trained clients

U
k
IH(FS) � U

cli
IH(LM) + U

cli
IH(BR). (21)

Tis aggregation faces an issue with the addition
property of the matrix, because the addition of the matrix to
the dimensions should be consistent. It is very clear from
equation (21), that all locally trained matrices cannot be
added, since they do not have the same dimensions. To cope

with this issue, the dimensions of all the concerned matrices
should be the same. For this, we will concatenate a zero
matrix with each matrix where it is required.

For this, using equation (22), we will fnd the maximum
length of rows from all locally trained clients

Maxr− IH � Max q1, q3( 􏼁. (22)

Similarly, we will fnd the maximum length of columns
from all locally trained clients using

Maxc− IH � Max q2, q4( 􏼁. (23)

To embed the zero matrices with each optimum weight
matrix, the following procedure will be used. In this pro-
cedure, equations (26)–(28), ZMLM and ZMBR represents
the zeros matrix for the LM and BR algorithms, respectively,
this will generate a matrix of zeros. Tese zero matrices will
be horizontally concatenated with each locally trained model
weight

ZMIH− LM � zeros Maxr− IH,Maxc− IH − q2( 􏼁,

ZMIH− BR � zeros Maxr− IH,Maxc− IH − q4( 􏼁.
(24)

Te horizontal concatenation is given below in equations
(26) and (27)

UIH− LM � horcat ZMLM, uIH(LM)( 􏼁, (25)

UIH− BR � horcat ZMBR, uIH(BR)( 􏼁. (26)

In equations (26) and (27), WLM and WBR have the same
dimension, now these matrices can be aggregated to each
other. To obtain the federated server or global model, we will
use equation (28)

UIH− FS � 2UIH− LM + 0.5UIH− BR. (27)

3.2.1. Optimal Weights of Hidden-Output Layer. Same as
input to the hidden layer, the optimal weights of hidden to
output layer for the LM and BR algorithms can be stated
using equation (29) and (30)

V
cli
HO(LM) �

v11 . . . v1cn

⋮ ⋱ ⋮

vrm1 · · · vrmcn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d7∗d8

, (28)

V
cli
HO(BR) �

v11 . . . v1cn

⋮ ⋱ ⋮
vrm1 · · · vrmcn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

d9∗ d10

, (29)

Maxr− HO � max d7, d9( 􏼁,

Maxc− HO � max d8, d10( 􏼁,

ZMHO− LM � zeros Maxr− HO,Maxc− HO − d2( 􏼁,

ZMHO− BR � zeros Maxr− HO,Maxc− HO − d4( 􏼁,

VHO− LM � horcat ZMHO− LM, vHO(LM)( 􏼁,

VHO− BR � horcat ZMHO− BR, vHO(BR)( 􏼁,

(30)
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VHO− FS � 2VHO− LM + 0.5VHO− BR. (31)

In equation (37), VHO− FS represent the fused weights of
the hidden to the output layer. Te local trained clients are
given diferent scaling factors based on their performance.

Algorithm 2 shows the pseudocode of proposed FDEML
model, which execute on the server side.

3.3. Dataset. In this study, we used the lung cancer dataset
[50], which consists of 309 cases with 15 features of lung
cancer disease. Te features of the lung cancer datasets are
shown in Table 1. Te feature characteristics, determining
unit, and ranges of features are demonstrated in Table 1. In
this dataset, we used the augmentation process by adding
231 records for dataset equalization in both cases. For a small
dataset with nominal values, a FDEML model cannot be
used. As a result, all the nominal input is converted to
numeric values for the proper working of the proposed
model, which is shown in Table 1.

Te research was carried out to determine the perfor-
mance of the proposed fused weighted FDEML model in
diagnosing lung cancer disease. Te data were initially ac-
quired from sensors and sent to the raw database using
IoMT. Similarly, data collected from patients via lab results,
queries, observations, and medical history was translated
from an unstructured to a structured format for additional
preprocessing.Te preprocessing module examined the fnal
dataset for further processing after gathering features from
IoMT-based sensors.

Furthermore, the lung cancer dataset is then utilized for
training the proposed prediction fused weighted FDEML
model for the prediction of lung cancer disease. For eval-
uation purposes, we trained the proposed fused weighted
FDEML model with two diferent variants of ANN. After
training the proposed fused weighted FDEML models, we

combined the weights of each model as shown in the
equation. Te dataset was randomly divided into 80% and
20%, respectively for training and testing the proposed fused
weighted FDEML model for the prediction of lung disease.

3.4. Performance Evaluation. To determine the DEML
model’s overall efciency, various evaluation metrics are
applied, as given in equations (32–37).Te accuracymeasure
can be used to show the overall predicting capabilities of the
ML models and the proposed fused weighted DEML model
[51]. True positive (TP) and true negative (TN) determine
the competence of the suggested classifer to predict the
absence and presence of lung cancer disease in the confusion
matrix. Te total number of false predictions in the sug-
gested model is identifed by false-negative (FN) and false-
positive (FP). Te sensitivity and success of the lung cancer
disease model are calculated discretely using the recall and
accuracy metrics. For prediction accuracy, the function
measure (FM) metric is used. All the mathematical formulae
of the abovementioned performance metrics of the proposed
DEML models are as follows:

Accuracy (Acc) �
TP + TN

TP + TN + FP + FN
, (32)

Misclassif ication  rate �
FP + FN

TP + TN + FP + FN
, (33)

Precision (Pre) �
TP

TP + FP
, (34)

Sensitivity �
TP

TP + FN
, (35)

Specificity �
TN

(TN + FP)
, (36)

Client Training Algorithm (t, U
cli
IH, V

cli
HO)

(1) Start
(2) Split the local data into minibatches of size Bs
(3) Initialize both layers i.e., input layer and hidden layer weights (Ucli

IH, V
cli
HO),

Errcli � 0 and number of epochs t� 0
(4) For every minibatch (Bs)
(i) Do the feed forward phase to
(a) Calculate oh

cli
j using equation (1)

(b) Calculate estimated output oo
cli
k using equation (2)

(ii) Calculate the error value of (Errcli ) using equation (3)
(iii) Back propagation for weight updating
(a) Calculate the ∆v

cli
j,k using equation (10)

(b) Calculate the ∆u
cli
i,j using equation (16)

(c) Update the weights vc
j,k(t + 1) using equation (12)

(d) Update the weights uc
i,j(t + 1) using equation (18)

(5) If the stopping criteria do not meet, then
(a) Go to step 4
(b) Else, go to step 6
(6) Return optimum weights (Ucli

IH, V
cli
HO ) to federated server

(7) Stop

ALGORITHM 1: Client training.
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Negative Prediction Value �
TN

(TN + FP)
. (37)

Te training option and parameters used in the Lev-
enberg− Marquardt optimization, Bayesian regularization
backpropagation, and the proposed fused weighted FDEML
model are presented in Table 2.

4. Results and Discussion

Tis section presents the proposed fused weighted FDEML
model results and assessment with diferent classifers, re-
spectively. Te ML models used for lung cancer disease
prediction are divided into three (3) parts as follows: pre-
diction of lung cancer disease with Levenberg

− Marquardt optimization, Bayesian regularization
backpropagation, and the proposed fused weighted FDEML
models. Te MATLAB 2020 tool is used for simulation and
results. Te results of the individual DEML models are as
follows: the confusion matrix of the LM model’s perfor-
mance at the training level is shown in Table 3 validation in

Table 4. Tables 3 and 4 also summarize’ the accuracy and
miss rate at the training and validation phase.

Te LM algorithm has been applied to an augmented
dataset of 538 records; additionally, this data has been di-
vided into training and groups of 80% (430 samples) and
20% (108 samples) for training and validation. Diferent
metrics, including accuracy, miss rate, precision, sensitivity,
specifcity, and negative predictive value (NPV) are utilized
to produce various statistical measurements used for
comparison as well as performance. Te formulae in
equation (11) through equation (16) are used to calculate
these parameters. Te LM model predicts output as one (1)
and zero (0). Te value one (1) indicates that a health issue
has been discovered, whereas zero (0) indicates that no
health issue has been discovered.

During the training phase, Table 3 illustrates the LM
model’s prediction for lung cancer illness. Te 430 samples
are used in training, and these samples are further divided
into 210, 220 positive, and negative samples, respectively. It
is determined that 207 samples are truly positive, which are
being closely followed, and no healthcare issues have been
observed. Only three (03) records are incorrectly projected
as negatives, signaling a healthcare issue. A total of 220
samples are chosen in the same way, with negative results
indicating the presence of a healthcare condition. Te
presence of a healthcare issue is indicated by the fact that 211
samples are processed appropriately forecast as negative.
Even though a healthcare issue exists, nine (9) samples are
wrongly forecasted as positive, indicating the absence of
a healthcare issue.

Federated server algorithm
(1) Start
(2) Initialize weights (UIH− FS, VHO− FS)
(3) For each cycle Do

for each client Do
[Ucli

IH, V
cli
HO]�Client (t, U

cli
IH, V

cli
HO)

End
End

(4) Calculate VHO− FS using equation (37)
(5) Calculate UIH− FS using equation (28)
(6) Prediction of unknown data samples
(a) for i�No. of Samples
(i) Calculate ohFS

j � 1/1 + e− (􏽐
n

i�1uFS
IH,i,j

fi+b1)1≤ j≤m

(ii) Calculate ooFS
k � 1/1 + e− (􏽐

m

j�1vFS
HO,j,k
∗ ohc

j+b2)1≤ k≤p

(iii) Calculate the error ErrFS � 1/2􏽐
p

k�1(aoFS
k − ooFS

k )2

(7) Stop

ALGORITHM 2: Federated server algorithm.

Table 1: Features information about lung cancer disease.

Sr.# Attribute Unit Ranges
1 Gender M/F 0, 1
2 Age Year 01–120
3 Smoking Yes (1), no (2) 1, 2
4 Yellow_fngers Yes (1), no (2) 1, 2
5 Anxiety Yes (1), no (2) 1, 2
6 Peer_pressure Yes (1), no (2) 1, 2
7 Chronic disease Yes (1), no (2) 1, 2
8 Fatigue Yes (1), no (2) 1, 2
9 Allergy Yes (1), no (2) 1, 2
10 Wheezing Yes (1), no (2) 1, 2
11 Alcohol consuming Yes (1), no (2) 1, 2
12 Coughing Yes (1), no (2) 1, 2
13 Shortness of breath Yes (1), no (2) 1, 2
14 Swallowing difculty Yes (1), no (2) 1, 2
15 Chest pain Yes (1), no (2) 1, 2
16 Diagnosis result Positive (1), negative (0) 0, 1

Table 2: Training options and parameters.

Unit Initial value Stopped value Target value
Epoch 0 15 1000
Elapsed time — 00:00:04 —
Performance 337 5.3 0
Gradient 1.72E+ 03 62.2 1E − 7
Mu 0.001 0.001 1E+ 10
Validation checks 0 6 6
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In the validation phase, Table 4 illustrates the LM model
prediction for lung cancer illness. 108 samples are used in
validation, divided into 50, 58 positive, and negative sam-
ples, respectively. It has been determined that 47 samples are
truly positive, which are being closely followed, and no
healthcare issues have been observed. Only three (03) re-
cords are incorrectly projected as negatives, signaling
a healthcare issue. A total of 58 samples are chosen in the
same way, with negative results indicating the presence of
a healthcare condition. Te presence of a healthcare issue is
indicated by the fact that 52 samples are appropriately
forecasted as negative. Even though a healthcare issue exists,
six (6) samples are wrongly forecasted as positive, indicating
the absence of a healthcare issue.

Similarly, the BRmodel’s performance in the training and
validation phases for the diagnosis of lung cancer disease is
shown in Tables 5 and 6, respectively. During the training
phase of the proposed fused weighted FDEML-based lung
cancer disease prediction system, performance is mentioned
in Table 7. Table 7 illustrates the proposed fused weighted
FDEML model prediction for lung cancer disease. Te 430
samples are used in training and are divided into 221, 209
positive, and negative samples, respectively. It has been de-
termined that 209 samples are truly positive, which are being
closely followed, and no healthcare issues have been observed.
Only twelve (12) records are incorrectly projected as nega-
tives, signaling a healthcare issue. A total of 209 samples are
chosen in the same way, with negative results indicating the
presence of a healthcare condition. Te presence of
a healthcare issue is indicated by the fact that 202 samples are
appropriately forecasted as negative. Even though a health-
care issue exists, seven (7) samples is wrongly forecasted as
positive, indicating the absence of a healthcare issue.

In the validation phase, Table 8 illustrates the proposed
fused weighted FDEML-based lung cancer disease pre-
diction system’s performance. 108 samples are used in
validation, divided into 51, 57 positive, and negative samples,
respectively. It has been determined that 50 samples are truly
positive, which are being closely followed and no healthcare
issues have been observed. Only one (1) record was in-
correctly projected as negatives, signaling a healthcare issue.

A total of 57 samples are chosen in the same way, with
negative results indicating the presence of a healthcare
condition. Te presence of a healthcare issue is indicated by
the fact that 54 samples are appropriately forecasted as
negative. Even though a healthcare issue exists, three (3)
samples are wrongly forecasted as positive, indicating the
absence of a healthcare issue.

Table 9 shows the proposed fused weighted FDEML
model’s performance in terms of sensitivity, specifcity,
accuracy, miss rate, and negative prediction value and
precision during the training and validation phases. Te
model during training gives 94.6%, 96.7%, 95.6%, 94.4%,
96.8, and 4.40% sensitivity, specifcity, accuracy, negative
prediction value, precision, and miss rate, respectively. And
during validation, the model gives 98%, 94.7%, 96.3%,
98.2%, 94.3%, and 3.70% sensitivity, specifcity, accuracy,
negative prediction value, precision, and miss rate, re-
spectively. Te comparison with other related work done is
shown in Table 10. Te overall performance of the proposed
fused weighted FDEML model for the diagnosis of lung
cancer disease is shown in Figure 3. Te LM model achieved
93.50% accuracy in the given dataset for predicting lung
cancer disease. Te miss rate of the LM model is 6.50%. Te

Table 3: Training of LM model during diagnosis of lung cancer
disease.

Training results

Inputs

Total no. of samples (430) Results (outputs)
Expected output Predictive +ve Predictive –ve

210 +ve 207 3
220 –ve 9 211

Table 4: Validation of the LM model during the diagnosis of lung
cancer disease.

Validation results

Inputs

Total no. of samples (108) Results (outputs)
Expected output Predictive +ve Predictive –ve

50 +ve 47 3
58 –ve 6 52

Table 5: Training of the BR model during the diagnosis of lung
cancer disease.

Training results

Inputs

Total no. of samples (430) Results (outputs)
Expected output Predictive +ve Predictive –ve

219 +ve 215 4
211 –ve 1 210

Table 6: Validation of the BR model during the diagnosis of lung
cancer disease.

Validation results

Inputs

Total no. of samples (108) Results (outputs)
Expected output Predictive +ve Predictive –ve

64 +ve 49 15
44 –ve 4 40

Table 7: Training of the proposed fused weighted FDEML model
during diagnosis of lung cancer.

Training results

Inputs

Total no. of samples (430) Results (outputs)
Expected output Predictive +ve Predictive –ve

221 +ve 207 12
209 –ve 7 202

Table 8: Validation of the proposed fused weighted FDEML
Model.

Validation results

Inputs

Total no. of samples (108) Results (outputs)
Expected output Predictive +ve Predictive –ve

51 +ve 50 1
57 –ve 3 54
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BR model achieved 82.40% accuracy while predicting lung
cancer disease, which is less than the accuracy of the LM
model on the same dataset. Te miss rate of the BR model is
17.60%, which is much higher than the LM model for ac-
curate prediction of lung cancer disease as shown in Fig-
ure 3. Te proposed fused weighted FDEMLmodel achieved
96.30% accuracy, which is much higher than both of the ML
models abovementioned. Te miss rate of the proposed
fused weighted FDEML model is 3.70%, which is very less as
compared to the LM and BRmodels, as shown graphically in
Figure 3. Due to the abovementioned facts, the proposed
fused weighted model is the better choice for the prediction
of lung cancer disease in the healthcare system.

5. Conclusions

Lung cancer disease is a life-threatening disease that afects
many parts of the human body. A proposed fused weighted
federated deep extreme machine learning model is pro-
vided for the rapid and accurate prediction of lung cancer
disease without jeopardizing patients’ privacy. For a faster
response and higher accuracy rate, a federated DEML
approach is applied. Furthermore, the weights of FDEML
models are combined to make a new generalized model for
better prediction of human disease. Te proposed fused
weighted FDEML model accurately predicted whether the
patient was sufering from lung cancer disease or not.
MATLAB 2020a is used to simulate the proposed fused-
weighted FDEML model. Te accuracy of the LM model
and BR model at the validation level was achieved at 93.5%
and 82.4%, respectively. Te result of the proposed fused-
weighted FDEML model achieved 96.3% which is better
than the state-of-the-art methods used before for the
prediction of cancer disease in the smart healthcare
industry 5.0.

Te proposed fused weighted model is limited to the
lung cancer disease dataset. In this proposedmodel, only two
models, i.e., the LM and BR are considered. In the future,
a new generalized model can be generated by utilizing the
better results of other models. Further, on the image dataset,
this approach can also be applied to achieving a better
classifcation of human diseases.
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Table 9: Overall performance of proposed smart federated learning global model with others.

Evaluation metric
LM model BR model Proposed model

Training (%) Validation (%) Training (%) Validation (%) Training (%) Validation (%)
Sensitivity 98.6 96 98.2 76.6 94.6 98
Specifcity 95.9 91 99.5 90.9 96.7 94.7
Accuracy 97.2 93.5 98.8 82.4 95.6 96.3
Negative predictive value 98.6 96.4 98.1 72.7 94.4 98.2
Precision 95.8 90.6 99.5 92.5 96.8 94.3
Miss rate 2.80 6.50 1.20 17.60 4.40 3.70

Table 10: Accuracy comparison with literature works for the lung
cancer disease prediction.

Authors Accuracy
Shakeel et al. [52] 96.2%
Mangal et al. [53] 96%
Carvalho flho et al. [54] 92.63
Bukhari et al. [55] 93.91%
Babu et al. [56] 85.30%
Proposed fused weighted FDEML model 96.30%
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Figure 3: Overall accuracy chart of proposed model with others.
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