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Multiparty delegated quantum computation (MDQC) allows multiple clients with limited quantum capability to jointly complete
a quantum computational task with the aid of an untrusted quantum server. But in existingMDQC protocols, the verifability that
clients should verify whether the server executed the protocol correctly and gave correct results was not handled.Terefore, in this
paper, we improve a typical MDQC protocol to enable clients to verify the correctness of computation by inserting trap qubits and
develop a novel method to enforce clients to send qubits honestly while avoiding the positions of trap qubits being leaked to the
server. Te security and verifability of the improved MDQC protocol are also analyzed. In addition, a specifc example of the
proposed verifable MDQC protocol is given and simulated on IBM’s quantum platform.

1. Introduction

Quantum computation has some advantages over classical
computation. For example, Shor’s algorithm [1] and Grover’s
algorithm [2] can solve corresponding difcult problems
faster than the best classical counterparts. Now, it has been
applied to many felds, such as blockchains [3, 4], genetic
algorithms [5, 6], block ciphers [7, 8], and homomorphic
encryption computation [9, 10]. However, due to technical
limitations and expensive costs, it is likely that when quantum
computers can be built, only a few institutions possess them
and other users need to remotely access them. For classical
computation, users can store data or perform calculations
with the help of servers through cloud [11, 12]. Similarly, users
can also use quantum computers remotely via delegated
quantum computation (DQC). In such a situation, users
usually want to keep their data private during the process of
delegation. Blind quantum computation (BQC) can provide
a solution, which is a typical type of DQC that allows a client
with limited quantum capability to delegate its computation to
a quantum server while still keeping the input, output, and
algorithm private.

Te frst BQC protocol was proposed by employing the
circuit model where the client needs the ability to implement
the SWAP gate and own quantum memory [13]. Ten,
Arrighi and Salvail proposed a BQC protocol which requires
the client to prepare and measure multiqubit entangled
states and is not universal [14]. In 2009, Broadbent et al.
proposed the frst universal BQC protocol [15], namely, the
famous BFK protocol, in which the client only needs to
prepare single qubits. In 2013, Morimae and Fujii proposed
a BQC protocol for the client who is only able to perform
quantum measurements [16], also known as the MF pro-
tocol. In addition, in order to make the client as classical as
possible, some multiserver BQC protocols were proposed
[17, 18]. However, the client cannot check correctness of the
results in these BQC protocols. Terefore, various verifable
BQC protocols have been proposed [19–26]. For example,
Fitzsimons and Kashef proposed a universal verifable BQC
protocol, called the FK protocol, where the client can detect
any malicious behavior of the server with high probability by
using trap qubits [19]. Hayashi and Morimae solved the
verifcation problem for the measurement-only BQC by the
stabilizer test [24]. Kashef and Wallden proposed an
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optimised resource construction method for verifable
universal BQC protocol [25], where the overhead is linear in
the size of the computation. In addition, some BQC pro-
tocols also have been put forward by combining other
properties, such as BQC with identity authentication
[27, 28], device-independence BQC [29–31], and blind
oracular quantum computation [32].

But the abovementioned BQC protocols did not take
into account the case of multiple clients working together to
complete quantum computation. In the network environ-
ment, some clients may be required to jointly handle
a quantum computational task. Ten, secure multiparty
quantum computation is necessary in which several players
collaboratively compute a joint task on their private data,
and they want to keep their own data private. Te concept of
secure multiparty computation was frst proposed by Yao
[33] and then extended to multiparty quantum computation
by Crépeau et al. [34]. It was proved that the computation is
secure as long as the number of malicious participants is less
than n/6, where n is the total number of participants. In [35],
the protocol can tolerate any ⌊(n − 1)/2⌋ cheaters among n

players. Tereafter, various secure multiparty quantum
computation protocols have been proposed [36–39].

In 2017, Kashef and Pappa proposed a multiparty dele-
gated quantum computation (MDQC) protocol [40] based on
the BFK protocol [15]. It allows multiple clients to delegate
quantum computation to a powerful quantum server and keep
the private data hidden from a dishonest server and a coalition
of dishonest clients. But in the MDQC protocol, clients can be
tricked by servers since verifability is not considered. Actually,
in the quantum cloud environment, verifability which means
that the client should be able to know whether the quantum
server behaves honestly and verify the correctness of results is
very important. It can get clients to trust quantum cloud servers
and quantum cloud more and ensure that clients cannot be
fooled by servers. Especially in the case of multiple parties, each
client should be able to fairly verify the correctness of their
results. In this paper, we solve the problem in the MDQC
protocol [40] where dummy qubits to be used may cause the
leakage of positions of trap qubits and propose a verifable
MDQC protocol in which clients can verify the correctness of
results with high probability.

Tis paper is organized as follows: Section 2 introduces the
model of measurement-based quantum computation (MBQC)
and the dotted triple graph DT (G). In Section 3, a typical
MDQC protocol is reviewed. Section 4 proposes a verifable
MDQCprotocol.Te analysis about the security and verifability
of the proposed protocol is carried out in Section 5. Section 6
compares the proposed protocol with other similar BQC pro-
tocols. An example of the verifable MDQC protocol for three
clients is given and simulated on IBM’s quantum platform in
Section 7. Te last section makes a conclusion of this paper.

2. Preliminaries

In this section, we give a brief introduction to the MBQC
model [41] that has the same computational power as the
quantum circuit model [42] and the DT (G) state as a typical
quantum resource state.

2.1. Te MBQC Model. Te MBQC model which is derived
from the gate teleportation principle is often used to realize
DQC [41]. In the MBQC model, the computation is
implemented by creating a highly entangled quantum state,
such as a cluster state [43] or a brickwork state [15], and then
performing single-qubit measurements on the qubits in that
state. Tis particular entangled state is called the graph state
since it can be represented by a graph. Te vertices of the
graph represent qubits, and the edges represent CZ gates
applied to the corresponding vertices.

More specifcally, the MBQCmodel is defned by a graph
G (V and E) with the vertex set V, the edge set E, the input
set I⊆V, the output set O⊆V, the set Ic � V/I for noninput
vertices, a sequence of measurement angles ϕi􏼈 􏼉 for non-
output vertices in the set Oc � V\O, and a fow function
f: Oc⟶ Ic. During calculation, these measurement angles
ϕi need to be updated depending on themeasurement results
of previously measured qubits due to the probabilistic nature
of the measurement. Te fow function f determines the
dependency structure and measurement order of qubits
[44], such that a qubit i is X-dependent on the qubit f− 1(i)

and Z-dependent on the qubit j in which i ∈ NG(f(j)),
where NG(k) represents the set of neighbours of the vertex k

in the graph G. Te X- and Z-dependency sets of the qubit i

are expressed as Di
X and Di

Z, respectively. During the ex-
ecution of the MBQC model, the updated measurement
angle of the qubit i is ϕi

′ � (−1)si
Xϕi + si

Zπ, where
si

X � ⊕ j∈Di
X
sj, si

Z � ⊕ j∈Di
Z
sj, and sj represents the mea-

surement result of the qubit j. After measuring all non-
output qubits inOc, the result of the computation is obtained
by applying the Pauli correction Zsi

Z Xsi
X on each output

qubit i in O.

2.2.TeDT (G) State. In 2017, Kashef andWallden used the
DT (G) construction to simplify the required resources for
verifcation [25]. In the protocol to be proposed, the DT (G)
state is used as the graph state of the MBQC model so that
clients can verify the correctness of the calculated results. DT
(G) is briefy introduced as follows.

DT (G) is constructed from a base graph G that has
vertices v ∈ V and edges e ∈ E. Each vertex vi in the graph G
is replaced with a set of three vertices
Pvi

� pvi
(1), pvi

(2), pvi
(3)􏽮 􏽯 called primary vertices, and

each edge e(vi, vj) that connects the vertices vi and vj is
replaced with a set of nine edges E(vi,vj) that connect each of
the vertices in Pvi

with each of the vertices in Pvj
. Te

resulting graph after performing the previous steps on the
graph G is called the triple graph T (G). Te operation of
replacing each edge in a graph G with a new vertex con-
nected to the two vertices originally joined by that edge is
defned as the dotting operation, and the result graph of this
operation on a graph G is called the dotted base graph D (G).
Te dotting operation is then performed on the graph T (G)
to obtain the dotted triple graph DT (G), and the new
vertices are called added vertices. Te whole process of
generating DT (G) used for quantum computation is shown
in Figure 1.
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DT (G) is then reduced to three copies of D (G) by using
break operation. One of three dotted base graphs is ran-
domly selected for the computation, and the other two
copies used as traps are called the trap subgraph. Te break
operation on a vertex v is equivalent to the operation which
removes the vertex v and any adjacent edges to v. It can be
carried out by using dummy qubits in a graph state. Te
dummy qubit represents a qubit in the state |0〉 or |1〉; thus, it
does not entangle with other qubits in the graph state. Te
process for choosing which vertices used for traps in DT (G)
to form certain subgraph is called trap-coloring. Tis is
carried out by frst choosing randomly for each primary set
Pvi

in DT (G) one white, one green, and one black vertices.
Ten, the added vertices that connect primary vertices of
diferent colors are colored in red and that the added vertices
that connect primary vertices of the same color are also
colored in that color. After performing break operations on
all red vertices, three copies of D (G) are obtained. Figure 2
illustrates the trap-coloring of DT (G) and three subgraphs
of DT (G). Note that, in DT (G), trap qubits in states |+θ〉

should be included for verifcation. If the measurement
angles of some trap qubits are wrong, the client can de-
termine whether the server is honest according to the
measurement results of these trap qubits. In addition, it is
also necessary to add dummy qubits |0〉 or |1〉 to separate
trap qubits from computation qubits and other trap qubits in
the graph state so as to avoid entanglement among these
qubits and infuence on the measurement results of them. As
shown in Figure 2(a), the red vertices are dummy qubits used
to separate trap qubits and computation qubits. In
Figure 2(b), assuming that the white subgraph is a trap
subgraph and the circle vertices are trap qubits, the square
vertices are dummy qubits and are used to isolate trap
qubits. Especially, the trap qubits in DT (G) cannot all be the
primary vertices (circular vertices) of the graph; otherwise,
the server may perform malicious operations only on the
added vertices (square vertices) instead of circular vertices,
and the client may not be able to detect malicious behavior
through trap qubits. Terefore, in two trap subgraphs, if the
primary vertices of one subgraph are used as trap qubits,
then the other subgraph should use the added vertices as trap
qubits.

3. The Review of the MDQC Protocol

Te MDQC protocol proposed by Kashef and Pappa [40] is
briefy reviewed in this section. In this protocol, n clients
C1, C2, . . . , Cn delegate a quantum computational task to
a powerful but untrusted quantum server and still keep their
inputs, outputs, and the performed computation secret. For
simplicity, this protocol only considers the case where each
client has one input qubit and one output qubit, and it assumes
that these clients have secure access to classical multiparty
computation that is secure against a dishonest majority [45, 46].

Te protocol is divided into the state preparation phase
and the computation phase. In the state preparation phase,
in order to provide security against dishonest participants
without the need for quantum communication among cli-
ents, a process named “remote state preparation” is pro-
posed. Te process has two diferent algorithms for input
qubits in I and noninput/nonoutput qubits in Oc/I. For
input qubits, a client sends an encrypted input qubit to the
server and other clients send qubits in states
|+θ〉 � 1/

�
2

√
(|0〉 + eiθ|1〉) to the server, where θ is a rotated

angle. Ten, the server performs Algorithm 1 on these
qubits. For noninput/nonoutput qubits, all clients send
qubits in states |+θ〉 to the server who will perform Algo-
rithm 2 related to them. Te steps of Algorithms 1 and 2 are
given as follows:

By using the method for remote state preparation, clients
can remotely prepare quantum states that are encrypted by
all clients without quantum communication with each other.
However, it is possible that some clients send qubits at
a diferent rotate angle instead of the expected angle and that
it will result in an incorrect quantum state. Terefore, Al-
gorithm 3 is proposed to enforce clients to honestly send
qubits. In addition, Algorithm 3 requires clients to secretly
share their classical angle values via verifable secret sharing
(VSS) schemes [47–49], which can be viewed as a classical
secure multiparty computation method. Te steps of Al-
gorithm 3 are given as follows:

Te previous three algorithms can ensure that clients
successfully prepare quantum states during the state prep-
aration phase, and the subsequent steps are to entangle these
qubits to form a graph state and measure these qubits to

(a) (b)

(c) (d)

Figure 1: (a) A base graph G. (b) A dotted base graph D (G). (c) A triple graph T (G), where all primary vertices are denoted as circles. (d) A
dotted triple graph DT (G), where all added vertices are denoted as squares.
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(a) (b)

Figure 2: (a) Trap-coloring of DT (G). (b) Tree copies of D (G). Te green subgraph is used for computations. In the white subgraph, the
circle vertices are trap qubits and the square vertices are dummy qubits. In the black subgraph, the square vertices are trap qubits and the
circle vertices are dummy qubits.
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Figure 3: Te circuit used for remote state preparation of the quantum input. Te resulting state of this circuit is Xαi Z(θi)|Ci〉, where
θi � θi

i + 􏽐
n
t�1,t≠i(−1)⊕

n
k�1bk

i +αiθt
i .

A1: Te server receives the encrypted input Xαi Z(θi
i)|Ci〉 from the client Ci and n − 1 qubits |+θj

i

〉 from other clients
Cj(1≤ j≤ n, j≠ i). It also stores the qubit sent by the client Ck in the quantum register Sk, where 1≤ k≤ n.

A2: For k � 1, . . . , n − 1
(1) Te server performs the CNOTgate on Sk ⊗ Sk+1. Note that if k + 1 � i and i≠ n, the server performs the CNOTgate on Sk ⊗ Sk+2.
(2) Te server measures the qubit in Sk to get the outcome bk

i .
A3: Te server performs the CNOTgate on Sn ⊗ Si for i≠ n and on Sn−1 ⊗ Si for i � n. Ten, it measures the qubit in Sn (or Sn−1) to
get the outcome bn

i (or bn−1
i ).

A4: Te server gets the qubit Xαi Z(θi)|Ci〉 that all clients encrypt together and the outcome vector bi � (b1i , . . . , bn
i ), where

θi � θi
i + 􏽐

n
t�1,t≠i(−1)⊕

n
k�1bn

k�1+αiθt
i . Tis process is shown in Figure 3.

ALGORITHM 1: Remote state preparation of the quantum input.

B1:Te server receives n qubits |+θk
i
〉 from clients Ck (1≤ k≤ n).Ten, it stores each qubit received from the client Ck in the quantum

register Sk.
B2: For k � 1, . . . , n − 1, the server applies the CNOT gate on Sk ⊗ Sk+1 and measures the qubit in Sk to get the outcome bk

i .

B3:Te server gets a noninput/nonoutput qubit |+θi
〉 and the outcome vector bi � (b1i , . . . , bn

i ), where θi � θn
i + 􏽐

n−1
t�1 (−1)⊕

n−1
k�t

bk
i θt

i . Tis
process is shown in Figure 4.

ALGORITHM 2: Remote state preparation of noninput/nonoutput qubits.

4 International Journal of Intelligent Systems



complete the task in the computation phase. Te specifc
steps of the MDQC protocol are given as follows.

3.1. Te State Preparation Phase

D1: For each input qubit i ∈ I

(1) Te client Ci that holds an input qubit sends the
encrypted quantum input Xαi Z(θi

i)|Ci〉 to the
server and shares the values of αi and θi

i with other
clients via a VSS scheme, where αi ∈ 0, 1{ } and
θi

i ∈ lπ/4|l � 0, 1, . . . , 7{ }.
(2) Other clients Cj(1≤ j≤ n, j≠ i) perform Algo-

rithm 3. If these n − 1 clients pass the test, the server
has n − 1 qubits |+θj

i

〉. Te server performs Algo-
rithm 1 on the input qubit Xαi Z(θi

i)|Ci〉 and n − 1
qubits |+θj

i

〉.
(3) Te server gets the outcome vector bi and the qubit

Xαi Z(θi)|Ci〉 and then announces the vector bi to
all clients, where θi � θi

i + 􏽐
n
t�1,t≠i(−1)⊕

n
k�t

bk
i +αiθt

i .

D2: For each nonoutput/noninput qubit i ∈ Oc/I

(1) All clients perform Algorithm 3. If all clients pass
the test, the server has n qubits |+θj

k

〉(1≤ j≤ n).
(2) After running Algorithm 2 on n qubits, the server

obtains the qubit |+θi
〉 and the outcome vector bi,

where θi � θn
i + 􏽐

n−1
t�1 (−1)⊕

n−1
k�t

bk
i θt

i . Ten, it an-
nounces the vector bi to all clients.

D3: For each output qubit, the server prepares a qubit
|+〉.
D4: Te server creates an entangled brickwork state by
applying CZ gates on corresponding qubits.

3.2. Te Computation Phase

D5: For each nonoutput qubit i ∈ Oc

(1) Each client Ck(1≤ k≤ n) chooses random
rk

i ∈ 0, 1{ } and shares the value rk
i with other clients

via a VSS scheme. Ten, by using classical multi-
party computation, clients compute the measure-
ment angle δi � ϕi

′ + πri + θi of the qubit i and send
it to the server, where ri � ⊕ n

k�1r
k
i ,

ϕi
′ � (−1)αi+si

Xϕi + si
Zπ + αf−1(i)π is the updated

measurement angle, and αi � 0 if i is
a noninput qubit.

(2) Te server receives the measurement angle δi and
measures the qubit i on the basis |+δi

〉, |−δi
〉􏽮 􏽯.

Ten, the server transmits the measurement result
ti to all clients.

(3) Te clients compute the actual measurement result
si � ti ⊕ ri.

D6: For each output qubit i ∈ O, the server sends the
output qubit i to the corresponding client Ci. Ten, all
clients jointly compute the value of si

X and si
Z and send

them to the client Ci. Ten, Ci applies Zsi
Z Xsi

X on the
output qubit i to get the actual quantum output.

4. The Proposed Verifiable MDQC Protocol

In this section, we construct a verifable MDQC protocol
based on the reviewedMDQC protocol. In the protocol to be
presented, clients can not only delegate the quantum
computational task to the server while keeping their data
private but also verify the correctness of the results by using
DT (G) states and inserting trap qubits.

In the reviewed MDQC protocol, it is not possible to
directly use trap qubits and dummy qubits due to the fol-
lowing facts: In Algorithm 3, in order to enforce the clients
to send qubits honestly, the server needs to measure the
qubits sent by clients on XY-plane bases. If the dummy qubit
is used, the server should measure these dummy qubits on
the Z basis. Diferent measurement bases for dummy qubits
and nondummy qubits leak their positions to the server.
From the positions of dummy qubits, the server can deduce
the positions of trap qubits. Terefore, it is difcult for
clients to detect whether the server behaves maliciously by
measuring the trap qubits in the reviewed MDQC protocol.

.

.

.

.

.

.

.

.

.

S1 :

S2 :

S3 :

Sn−1 :

Sn :

bin−1

bi1

bi2

θi1

θi3

θin−1

θin θi

θi2

bi3

Figure 4: Remote state preparation for noninput/nonoutput quantum qubits. Te resulting state of this circuit is | +θi
〉, where

θi � θn
i + 􏽐

n−1
t�1 (−1)⊕

n−1
k�t

bk
i θt

i .
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Tus, we propose Algorithm 4 where clients should send
qubits honestly while ensuring that the positions of dummy
qubits and trap qubits are not leaked. Te specifc steps of
Algorithm 4 are given as follows:

In Algorithm 4, the client needs to send 2m + 2 qubits to
the server. Te server randomly chooses m pairs of qubits
from 2m + 2 qubits and verifes the correctness of each pair
of qubits with a new method. Two cases of this method are
shown in Figures 5 and 6, respectively. In the case of
nondummy qubits, we suppose a pair of qubits is in states
|+θ1+α1π〉 and |+θ2+α2π〉, where α ∈ 0, 1{ }. Te CNOT gate is
applied to the two qubits to entangle them, and the mea-
surement result s1 is obtained by measuring the target qubit
on the Z basis. According to the value of s1, the measurement
angle θ2 + (−1)s1θ1 of the control qubit is calculated. Te
result s2 is obtained by measuring the control qubit on the
basis | ± θ2+(− 1)s1 θ1〉. If s2 � α1 ⊕ α2, the pair of nondummy
qubits are correct with high probability. In the case of
dummy qubits, we suppose a pair of qubits is in states |α1〉
and |α2〉, where α1, α2 ∈ 0, 1{ }. Te server applies the CNOT
gate to two qubits and measures the target qubit on the Z
basis to get the result s1. If s1 � α1 ⊕ α2, the pair of dummy
qubits is correct with high probability. In addition, in order
to be consistent with the operations of nondummy qubits, in
the case of dummy qubits, control qubits also need to be
measured on XY-plane bases. Furthermore, in the case of
dummy qubits, if the states of 2m + 2 qubits are completely
diferent from what the client promises, i.e., the client
originally promises to send |0〉 (or |1〉) but actually sends |1〉

(or |0〉), then the given method cannot detect errors. Te
server can avoid this case by randomly measuring one of the
two remaining qubits on the Z basis. If the measurement
result of the qubit measured on the Z basis is correct as
expected and m pairs of qubits pass the test, the state of the
remaining qubit is real with high probability. In this way,
Algorithm 4 can avoid the positions of dummy qubits and
trap qubits being leaked and enforce clients to send qubits
honestly.

Based on Algorithm 4, we propose a verifable MDQC
protocol. In the protocol to be proposed, we use the DT (G)
state as the resources state. Te protocol consists of two
phases, namely, the state preparation phase and the com-
putation phase. In the state preparation phase, all clients
generate the dotted triple graph DT (G) according to the
base graph G and choose a kind of trap-coloring. Since the
input qubits and noninput qubits are handled diferently in
the process of remote state preparation, the server knows
where input qubits are and each client should send three

input qubits to the server, namely, one real input qubit, one
trap-input qubit, and one dummy-input qubit. Te client is
able to know if the server is correctly performing the
measurement of the input qubit via the measurement result
of the trap-input qubit. In the computation phase, clients
update the measurement angles of nonoutput qubits by
using classical multiparty computation and send these
measurement angles to the server. Ten, clients can de-
termine whether the server performed the measurements
correctly based on the measurement results of trap qubits.
After measuring all nonoutput qubits, the server returns
three output qubits to each client, including one trap-output
qubit, one dummy-output qubit, and one real output qubit.
Each client can know if the server honestly returns the
results by measuring the trap-output qubit. Te specifc
verifable MDQC protocol is described in Protocol 1.

5. Security Analysis and Verifiability

In this section, we analyze the security of Algorithm 4 and
the proposed verifable MDQC protocol if there is a dis-
honest server and a coalition of dishonest clients and the
verifability of the proposed protocol. Te proposed MDQC
protocol is considered to be secure if it is blind which means
that the input, output, and even the algorithm of honest
clients cannot be learned by quantum servers and the input
and output of each client cannot be known by other
malicious clients. For the verifability of the proposed
protocol, the probability that clients accept the incorrect
result calculated by the server is analyzed.

Theorem 1. In Algorithm 4, if the server is malicious, it
cannot know the positions of trap qubits and the state of
qubits.

Proof. In Algorithm 4, clients send 2m + 2 qubits in states
|0〉, |1〉{ } or 2m + 2 qubits in states |+θi

〉 to the server. Te
state of the qubit that the server received from clients is

ρ �
1
10

􏽘

θi∈ πl/4{ }
7
l�0

+θi
〉〈+θi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 +|1〉〈1|| +|0〉〈0|

�
1
10

|+〉〈+| . . . + |+7π/4〉〈+7π/4| + |0〉〈0| +|1〉〈1||( 􏼁

�
I

2
.

(1)

C1: Te client Ck sends m qubits |+θj

k

〉(1≤ j≤m) to the server and shares the angle values θj

k
with other clients via a classical VSS

scheme.
C2: Te server randomly chooses m − 1 qubits from m qubits sent by the client Ck and requests the shared angle values of
m − 1 qubits from all clients.
C3: Te server reconstructs these angle values of m − 1 qubits and measures m − 1 qubits in corresponding basis. If all results of the
measurements are correct as expected, then the remaining qubit is correct with high probability.

ALGORITHM 3: Te specifc steps for enforcing clients to send qubits honestly.
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It is a maximally mixed state so that the server cannot
know the state of each qubit sent by clients.

Because 〈0|+θ〉≠ 0 and 〈1|+θ〉≠ 0, |0〉, |1〉{ } and |+θ〉 are
not orthogonal. According to the indistinguishability of
nonorthogonal states, the server cannot distinguish dummy
qubits from nondummy qubits based on the state of the
qubits. In addition, the operation process in Algorithm 4 for

making clients to send dummy qubits or nondummy qubits
honestly is the same for the server, since it always measures
the target qubit on the Z basis and measures the control
qubit on the XY-plane basis for each pair of qubit. So the
server cannot distinguish between dummy qubits and
nondummy qubits, and hence, the server does not know

For nondummy qubits
E1: Te client Ck sends 2m + 2 qubits |φj

k〉 � 1/
�
2

√
(|0〉 + (− 1)aj eiθj

k1〉) (1≤ j≤ 2m + 2) to the server and shares the values of θj

k and aj

with other clients by using a VSS scheme.
E2: Te server randomly chooses 2m qubits from 2m + 2 qubits sent by the client and then divides 2m qubits into m pairs

(|φq1
k 〉, |φp1

k 〉), . . . , (|φqm

k 〉, |φpm

k 〉)􏽮 􏽯.
E3: For each pair of qubits (|φql

k 〉, |φpl

k 〉)

(1) Te server applies the CNOTgate to these two qubits.Ten, the server measures the target qubit |φql

k 〉 on the Z basis and sends the
measurement result bql

and the indexes ql, pl of two qubits to all clients.
(2) Te clients send the shared values of θql

k and θpl

k to the server. Ten, the server reconstructs the angle values θql

k and θpl

k and
computes the measurement angle δpl

k � θpl

k + (−1)
bqlθql

k of the control qubit. Te server measures the control qubit |φpl

k 〉 on the

basis |+δpl
k

〉, |− δpl

k 〉􏼚 􏼛 and sends the measurement result bpl
to all clients.

(3) Te clients determine whether the result bpl
is correct. If bpl

� αpl
⊕αql

, the result is correct with high probability, so the states of
two qubits also are correct with high probability.Algorithm 4: Te specifc steps used to enforce clients to send qubits honestly
while ensuring that the positions of trap qubits and dummy qubits in the graph state are not leaked to the server.

E4:Te server randomly chooses one of the remaining two qubits andmeasures the qubit on the Z basis to get the result bz. Ten, it sends
bz and the index z to all clients.

E5: If the quantum states of m pairs of qubits selected by the server in step E2 are all considered to be correct in step E3, then the
remaining qubits are also correct with high probability.

For dummy qubits
E1: Te client Ck sends 2m + 2 qubits|φj

k〉 � |aj〉(aj ∈ 0, 1{ }, 1≤ j≤ 2m + 2) to the server. Ten, it randomly chooses 2m + 2 arbitrary
angle values θj

k􏽮 􏽯
2m+2
j�1 and shares the values of aj and θj

k with other clients by using a VSS scheme.
E2: Te server randomly chooses 2m qubits from the qubits sent by the client and then divides 2m qubits into m pairs

(|φq1
k 〉, |φp1

k 〉), . . . , (|φqm

k 〉, |φpm

k 〉)􏽮 􏽯.
E3: For each pair of qubits (|φql

k 〉, |φpl

k 〉)

(1) Te server applies the CNOTgate to these two qubits.Ten, the server measures the target qubit |φql

k 〉 on the Z basis and sends the
result bql

and the indexes ql, pl to all clients.
(2) Te clients send the shared values of θql

k and θpl

k to the server. Ten, the server reconstructs the values and computes the
measurement angle δpl

k . It measures the control qubit |φpl

k 〉 on the basis |+δpl
k

〉, |−δpl
k

〉􏼚 􏼛 and sends the measurement result bpl
to all

clients.
(3) Te clients determine whether the result bql

is correct. If bql
� αpl
⊕αql

, the result is considered to be right with high probability, so
the states of two qubits also are correct with high probability.

E4:Te server randomly chooses one of the remaining two qubits andmeasures the qubit on the Z basis to get the result bz. Ten, it sends
bz and the index z to all clients.

E5: If the quantum states of m pairs of qubits selected by the server in step E2 are all considered to be correct in step E3 and bz � αz, then
the remaining qubits are also correct with high probability.

Z s1

s2

θ2+ (–1)s1θ1

θ2+α2π

θ1+α1π

Figure 5: Verifying the correctness of a pair of nondummy qubits.
Aftermeasuring the target qubit, the result s1 is obtained, and the state of
control qubits is |+θ2+α2π+(− 1)s1(θ1+α1π)〉. Ten, the control qubit is
measured on the basis |± θ2+(− 1)s1 θ1〉 to get the result s2 � α1⊕ α2.

Z s1

s2

|α1

|α2

θ

Figure 6: Verifying the correctness of a pair of dummy qubits. Te
target qubit is measured on the Z basis, and the control qubit is
measured on the basis |± θ〉 where θ is any angle. Te measurement
result of the target qubit is s1 � α1⊕ α2.
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which are dummy qubits and also cannot deduce the po-
sitions of trap qubits. □

Theorem 2. Te proposed MDQC protocol is secure against
a malicious server and against a coalition of malicious clients.

Proof. If the protocol is secure against a malicious server and
against a coalition of malicious clients, each client’s input and
output information is not leaked to other participants and the
server also does not know which algorithm is being performed.

Since the input qubit of each client is encrypted with the
quantum one-time pad and the server does not know the
encryption key, the malicious server cannot obtain the input
information of clients. Similarly, the output qubit is also
encrypted by the quantum one-time pad Xsi

X Zsi
Z . Since the

encryption keys si
X, si

Z are related to previous actual mea-
surement outcomes si � ti ⊕ ri where the server does not
know ri, the keys si

X, si
Z are unknown to the server. So the

server also cannot obtain the output information of clients.
In the state preparation phase, the quantum state for

each noninput qubit received by the server is
1
8

􏽘

θi∈ πl/4{ }7l�0

+θi
〉〈+θi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 �
I

2
, (2)

if the qubit is not a dummy qubit or
1
2

(|0〉〈0| + |1〉〈1|) �
I

2
, (3)

if the qubit is a dummy qubit. Hence, the qubits obtained by
the server are always in maximum mixed states, and the
server does not know the states of these qubits it received.
Furthermore, during Algorithms 1 and 2, the server only
knows the measurement result bk

i and does not know the
angle θk

i of these qubits. Due to
θi � θi

i + 􏽐
n
t�1,t≠i(−1)⊕

n−1
k�t

bk
i +αiθt

i in Algorithm 1 and θi � θn
i +

􏽐
n−1
t�1 (−1)⊕

n−1
k�t

bk
i θt

i in Algorithm 2, the server ultimately
cannot learn the states of the qubits used in calculation.

In addition, another kind of information that the server
receives from clients is the measurement angles of the qubits in
the graph state. In the MBQC model, the actual measurement
angle of a nonoutput qubit in the graph state should be ϕ′(i)

after correcting, but in the protocol, the measurement angle
sent by the clients to the server is δi � ϕ′(i) + πri+

θi + 􏽐j∈Di
djπ. Obviously, the measurement angles δi are re-

lated to ri � ⊕ n
k�1r

k
i , θi, and dj. However, rk

i is randomly
chosen by each client, θi is composed of θk

i randomly chosen by
each client, and dj represents the state of the adjacent dummy

Input: Each client has three input qubits, one real input qubit, one trap-input qubit, and one dummy-input qubit.
Output: Each client has three output qubits, one real output qubit, one trap-output qubit, and one dummy-output qubit.
Te state preparation phase
(1) Te clients generate the dotted triple graph DT (G) in terms of a base graph G and choose a kind of trap-coloring of DT (G).Ten,

DT (G) is sent to the server.
For each input qubit i ∈ I

(1) Te client Ci that holds an input qubit sends the encrypted quantum input Xαi Z(θi
i) | Ci〉 to the server and shares the values of αi

and θi
i with other clients. If i is a trap qubit, | Ci〉 � | +〉, and if i is a dummy qubit, | Ci〉 � | 0〉 or | 1〉.

(2) Other n − 1 clients run Algorithm 4. If n − 1 clients pass the test, the server has n − 1 qubits.
(3) Te server performs Algorithm 1 to get the outcome vector bi and an input qubit Xαi Z(θi) | Ci〉 that are encrypted by all clients.

Ten, it announces the outcome vector bi.
For each noninput qubit i ∈ Ic

(1) All clients run Algorithm 4. If all clients pass the test, the server has n qubits.
(2) Te server performs Algorithm 2 similar to the reviewed MDQC protocol to get the outcome vector bi. If i is a nondummy qubit,

the server gets the resulting state | +θi
〉. If i is a dummy qubit, the resulting state is | di〉, where di ∈ 0, 1{ }. Ten, the server

announces the outcome vector bi.
Graph state: the server entangles these qubits generated during the state preparation phase to form a DT (G) state.
Te computation phase
For each nonoutput qubit i ∈ Oc

(1) Each client Ck(1≤ k≤ n) randomly chooses rk
i ∈ 0, 1{ } and shares the value with other clients via a VSS scheme. Ten, by using

classical multiparty computation, the clients compute the measurement angle δi � ϕi
′ + πri + θi + 􏽐j∈Di

djπ of the qubit i and send
it to the server, where ri � ⊕nk�1r

k
i , ϕi
′ is the updated measurement angle in MBQC, and Di is the set of dummy qubits that are

neighbours of the qubit i. If i is a trap qubit, ϕi
′ � 0.

(2) Te server measures the qubit i on the basis |+δi
〉, |−δi

〉􏽮 􏽯 and sends the measurement result ti to all clients.Ten, the clients get the
actual measurement result si � ti⊕ri.

(3) If qubit i is a trap qubit, the clients check whether the measurement result ti is right. If ti ≠ ri, the clients reject it and terminate the
protocol.
For each output qubit i ∈ O

(1) Te server sends the output qubit i to the corresponding client Ci.
(2) If qubit i is a trap-output qubit, all clients compute the measurement angle θi for the trap qubit by using classical multiparty

computation. Ten, Ci measures the qubit on the basis |+θi
〉, |−θi

〉􏽮 􏽯 and determines whether the measurement result is correct.
(3) If qubit i is a real output qubit, all clients compute the values of si

Z, si
X, and θi and send them to Ci. Te client Ci applies

Zsi
Z Xsi

X Z(−θi) to the qubit i and gets the actual quantum output.

PROTOCOL 1: Te verifable MDQC protocol.
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qubit, and they are unknown to the server.Terefore, the server
cannot derive the actual measurement angle ϕ′(i) from the
measurement angle δi which implies that the server cannot
know the real computation which the client performed.

Ten, we analyze the case of coalition of malicious clients in
the proposed MDQC protocol. Clients never receive any
quantum information from other clients, and the only in-
formation they know is the shared values about the rotation
angles θ of quantum states |+θ〉 and partial information related
to the encryption keys of quantum inputs shared by other clients
through the classical VSS scheme. Since in the classical VSS
scheme, the reconstruction of the original value needs to
combine the shared values ofmost participants, and the coalition
ofmalicious clients is difcult to obtain the rotation angles of the
quantum states and the encryption keys of quantum input.
Hence, a coalition of malicious clients cannot obtain the input
and output information of other clients if the used classical
multiparty computation and VSS scheme are secure. □

Theorem  . Te proposed MDQC protocol is (8/9)

verifable.

Proof. Te deviation between the correct result and the
incorrect result can be defned by Kraus operators [25],
which are expressed as linear combinations of Pauli oper-
ators σi ∈ I, X, Y, Z{ }. Pauli σi acting on the qubit k is
denoted as σi|k, and if the qubit k is an output qubit,
σi|k ∈ X, Y, Z{ }; otherwise, σi|k ∈ X, Y{ }.

We denote Pinc as the maximum probability that clients
accept an incorrect computation result. If clients accept the
incorrect computation result, it means that the attack did not
disturb any trap. Ten, Pinc is determined by the probability
of the attack acting on the trap qubit, diferent σi acting on
the trap qubit, and the values of θ and r related to the trap
qubit. Let T represents the positions of trap qubits and p(T)

denotes the probability that the qubits in positions Tare trap
qubits. p(θt) and p(rt) represent the probabilities of
choosing θt and rt, respectively. According to [25], the
following formula can be obtained:

Pinc ≤ max
i∈Ei

􏽘
T

p(T) 􏽙
t∈T

􏽘
θt ,rt

p θt( 􏼁p rt( 􏼁 〈ηvT

t σi|t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ηvT

t 〉􏼑􏼐
2⎛⎝ ⎞⎠,

(4)

where |ηvT

tβ
〉 � |+θtβ

〉if the qubit t is an output qubit;
otherwise,|ηvT

tβ
〉 � |rtβ

〉.
To maximize the value of the probability Pinc, the best

strategy is to make only a single attack. Assume that the
position of the single attack is β and Fβ represents the lo-
cation of qubit β, Fβ � PO

v if β belongs to the output qubit,
and Fβ � PNO

v if βbelongs to the nonoutput qubit. According
to 􏽐

T

p(T) � 􏽐tβ∈Fβ
􏽐t∉Fβ

p(T) � 􏽐
tβ∈Fβ

p(tβ), we can obtain

the probability as follows:

Pinc ≤ max
i∈Ei

􏽘
tβ∈Fβ

􏽘
θtβ

,rtβ

p tβ􏼐 􏼑p θtβ
􏼒 􏼓p rtβ

􏼒 􏼓 〈ηvT

tβ
σ

i tβ

􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ηvT

tβ
〉􏼡􏼠

2

,

(5)

where σi|tβ
is the identity if tβ ≠ β; otherwise, it is

nontrivial, and p(tβ) represents the probability of the qubit β
as a trap qubit.

If the nontrivial attack is acted on the output qubits, we
can obtain Fβ � PO

v and

Pinc ≤ 􏽘

tβ∈PO
vβ

􏽘
θtβ

,rtβ

p tβ􏼐 􏼑p θtβ
􏼒 􏼓p rtβ

􏼒 􏼓 〈+θtβ
σ

i tβ

􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+θtβ
〉􏼡􏼠

2

�
1

16 P
O
vβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

tβ∈PO
vβ

􏽘
θt ,rt

〈+θ σi tβ

􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+θ〉􏼡􏼠

2

≤
1
16

16 ·
P

O
vβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 1􏼒 􏼓

P
O
vβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
+ 8 ·

1
P

O
vβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

�
5
6

,

(6)

where p(θtβ
)p(rtβ

) � 1/16 since θtβ
∈ 0, π/4, . . . , 7π/4{ } and

rtβ
∈ 0, 1{ }, 􏽐

θ
(〈+θ|σi|+θ〉)2 ≤ 4 for σi ∈ X, Y, Z{ } and

1/|PO
vβ| � 1/3 since trap qubits account for 1/3 of the output

qubits.
If the nontrivial attack is acted on the nonoutput qubits,

we can obtain Fβ � PNO
v and

Pinc ≤ 􏽘

tβ∈PNO
v

􏽘
θtβ

,rtβ

p tβ􏼐 􏼑p θtβ
􏼒 􏼓p rtβ

􏼒 􏼓 〈rtβ
σi∣tβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌rtβ
〉􏼓􏼒

2

�
1

16 P
NO
v

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

tβ∈PNO
v

􏽘
θt ,rt

〈rtβ
σi∣tβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌rtβ
〉􏼓􏼒

2

�
1

16 P
NO
v

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘
rt

8 · P
NO
v

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 1􏼒 􏼓 + 8 · 〈rtβ
σi|tβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌rtβ
〉􏼓􏼒

2
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�
1
16

16 ·
P

NO
v

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 1􏼒 􏼓

P
NO
v

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

� 1 −
1

P
NO
v

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
8
9

,

(7)

where Pinc � 8/9 if the attack is applied to added vertices
of DT (G), since trap qubits account for 1/9 of the added
qubits.

Tus, the probability that clients accept the incorrect
computation result in the worst case is 8/9. In other words,
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the protocol is (8/9) verifable. If the protocol is repeated d

times, the probability can be (8/9)d which approaches 0 if d

is large enough. □

6. Comparison with Typical DQC Protocols

In this section, we compare the proposed MDQC protocol
with other typical DQC protocols [15, 16, 19, 40] in Table 1
from the following fve aspects: the quantum capability of
the client, the quantum capability of the server, the number
of clients, verifability of computational results, and the
required qubits.

In the BFK protocol [15], the MF protocol [16], and the
FK protocol [19], only the case of one server and one client is
considered, while in the proposed protocol and the KP
protocol [40], the case of multiple clients cooperating to-
gether to complete the computation on a server is consid-
ered. In terms of the quantum capability of the client, in the
proposed protocol and the FK protocol, the client requires
the ability to prepare quantum states |+θ〉, |0〉, and |1〉. In
the BFK protocol and the KP protocol, the client requires the
ability to prepare quantum states |+θ〉, while in the MF
protocol, the client requires the ability to measure single
qubits on XY-plane bases. In addition, all these protocols
require the server to be full quantum.

As for the verifability of computational results, it cannot
be achieved in the BFK protocol, the MF protocol, and the
KP protocol. However, in the proposed MDQC protocol,
each client can verify the correctness of their calculation
results by using trap qubits, and it is (8/9)d verifable
as analyzed in the previous section. Besides, the FK protocol
can be (2/3)⌈2d/5⌉ verifable.

Te number of the qubits required in these DQC protocols
is also analyzed. In the proposed protocol, the construction of
a graph state DT (G) requires 3N + 9cN qubits, whereN is the
number of vertices in the base graph G and c is the maximum
degree of the vertices of G. In the remote state preparation of
the proposed protocol, each client needs to send one qubit to
the server for each vertex in the graph state, and inAlgorithm 4,
to enforce the client to send qubits honestly, the server selects
only one of 2m + 2 qubits sent by the client for computations.
Terefore, the number of the qubits required in this proposed
protocol is 2mn(3N + 9cN). Since n, c, and m are much
smaller than N, they can be treated as constants, and the
number of the required qubits is linearly dependent on N

which can be denoted as O(N). Similarly, the number of the
qubits required in the KP protocol is also O(N). Te FK
protocol requires 3N(3N + 1)/2 qubits for the computation
and verifcation, and the qubit cost can be taken as O(N2).
Both the BFK protocol and theMF protocol use only one graph
state to complete the computation, so the number of the re-
quired qubits is O(N).

7. An Example of the Verifiable MDQC
Protocol for Three Parties and Its Simulation

In this section, a three-party example of the verifable
MDQC protocol is given and considered to be implemented
on IBM’s quantum platform. We suppose that there are

three clients, C1, C2, and C3, and the states of their real input
qubits are |+〉, |+π/2〉, and |+π/4〉, respectively. Tey want to
implement the target circuit as shown in Figure 7 on the
quantum server.

Example 1. A specifc three-party verifable MDQC protocol
and its simulation are given.

Input: Te client C1 generates three input quantum sates,
a real input state |+〉, a trap state |+〉, and a dummy state |1〉.
Similarly, C2 generates |+π/2〉, |+〉, and |0〉, and C3 produces
|+π/4〉, |+〉, and |0〉.

7.1. Te State Preparation Phase

(1) Te three clients generate the corresponding DT (G)
graph shown in Figure 8 according to the circuit in
Figure 7 and send it to the server.
For each input qubit i ∈ I

(1) One client C1 chooses α1 � 1 and θ1 � 2π/3 to encrypt
the input |+〉 and sends the encrypted state
Xα1Z(θ1)|+〉 to the server. Ten, C1 shares α1 and θ1
with other two clients by using a classical VSS scheme.

(2) Te other two clients C2 and C3 also send qubits to the
server. Te server determines whether these qubits are
correct or not by using Algorithm 4. We suppose that
C2 sends fve qubits |+π/2〉, |+π/3〉, |+π/4〉,
|+π/2+1×π〉,and |+π/3〉 to the server, and the server
randomly selects four of them into two pairs of qubits
|+π/2〉􏼈 , |+π/3〉}(c1 � 0, c2 � 0), |+π/2+1×π〉􏼈 ,

|+π/3〉}(c1 � 1, c2 � 0) and uses the circuit in Figure 5
to verify whether the two pairs of qubits are correct. For
each pair of qubit, if the measurement result of the
second qubit in the circuit is equal to c1 ⊕ c2, this pair of
qubits is correct with high probability. Note that the
circuit in Figure 5 is equal to that in Figure 9 which can
be implemented on IBM’s quantum platform by using
the principle of deferred measurement. After the ver-
ifcation circuit for these two pairs of qubits is run
1024 times on the platform, the probabilities of the
measurement results are shown in Figure 10. Te
probability that the measurement result of the second
qubit is equal to c1 ⊕ c2 is 100%, so the remaining
quantum state |+π/4〉 is correct with high probability,
and the server obtains |+π/4〉 from C2. Similarly, the
server can obtain a quantum state such as |+3π/4〉 from
C3 via Algorithm 4.

(3) Te three clients need to jointly encrypt the input
quantum state XZ(2π/3)|+〉 sent by C1. Te server
executes Algorithm 1 on XZ(2π/3)|+〉 sent by C1
and |+π/4〉 and |+3π/4〉 from C2 and C3 to obtain the
fnal result which should be XZ(δ)|+〉, where
δ � 2π/3 + (−1)(b1 ⊕ b2)+1π/4 + (−1)b2+13π/4, and
b1, b2 represent the measurement results of the frst
two qubits in the circuit of Algorithm 1. Te cor-
rectness of the result is verifed by measuring the
third qubit in the circuit. In order to be able to
perform simulation on IBM’s quantum platform, the
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Figure 7: Te target circuit for the three clients.
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Figure 8: (a) Te target circuit. (b) Te base graph for the measurement-based quantum computation corresponding to the target circuit,
where each edge of the base graph represents a CZ gate, and H gate and RZ gate in the circuit are realized by adding qubit 4. For example, if
the state of qubit 2 is |ψ〉, the state of qubit 4 is |+〉. After measuring qubit 2 on the basis | ± −π/4〉 and obtaining measurement result s, the
state of qubit 4 becomes XsHRz(π/4)|ψ〉. (c) A dotted base graph transformed from the base graph. Te qubits 1, 2, 3, and 4 correspond to
qubits 1, 2, 3, and 4 in the base graph. Qubit 5 is added to construct the DT (G) graph, which is a dummy qubit. (d) Te DT (G) graph
corresponding to the target circuit, where the green subgraph is used for computation and the black subgraph and white subgraph are used
for verifcation. Te qubits 1, 2, 3, 4, and 5 correspond to qubits 1, 2, 3, 4, and 5 in the dotted base graph.

π/3+γ2π

π/2+γ1π

Rz (–π/2)Rz (π/2) Rz (–π/3) H

Figure 9: Te real circuit for implementing the logic circuit shown in Figure 5 on IBM’s quantum platform.

Table 1: Comparisons between the proposed protocols and other BQC protocols.

Te number
of clients

Te quantum
capability of

clients

Te quantum
capability of
the server

Verifability Te qubit
cost

Te KP protocol [40] Multiple clients Preparing single-qubit states Full quantum None O(N)

Te BFK protocol [15] A client Preparing single-qubit states Full quantum None O(N)

Te FK protocol [19] A client Preparing single-qubit states Full quantum Yes O(N2)

Te MF protocol [16] A client Measuring single-qubit states Full quantum None O(N)

Te proposed protocol Multiple clients Preparing single-qubit states Full quantum Yes O(N)
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circuit in Algorithm 1 is transformed by using the
principle of deferred measurement, and the trans-
formed circuit is shown in Figure 11. In addition, the
double-controlled RZ gate can be realized by using
a series of quantum gates composed of the controlled
RZ gates and CNOTgates, as shown in Figure 12.Te

probabilities of the measurement results after 1024
runs of the circuit on the platform are shown in
Figure 13, and the probability of obtaining result 0 by
measuring the third qubit is 100%. Terefore, the
correct result can be obtained by the circuit in Al-
gorithm 1. Assuming that the obtained measurement
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Figure 10: (a) Te probabilities of the measurement results 00 and 10 after implementing the circuit of Algorithm 4 for a pair of qubits in
states | +π/2〉 and | +π/3〉 are 48.9% and 51.1%, respectively.Te frst bit and second bit of 00 (and 10) represent themeasurement result of the
frst qubit and that of the second qubit, respectively. So the measurement result of the second qubit is 0 with probability
100% � 48.9% + 51.1%, and it is equal to c1⊕c2 � 0⊕0. (b) Te probabilities of the measurement results 01 and 11 after implementing the
circuit of Algorithm 4 for a pair of qubits | +π/2+1×π〉 and | +π/3〉 are 50.6% and 49.4%, respectively. So the measurement result of the second
qubit is 1 with probability 100% � 49.4% + 50.6%, and it is equal to c1⊕c2 � 1⊕0. (a) | +π/2〉, | +π/3〉􏼈 􏼉(c1 � 0, c2 � 0).
(b) | +π/2+1×π〉, | +π/3〉􏼈 􏼉(c1 � 1, c2 � 0).
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Figure 11: Te circuit for simulating Algorithm 1 by using the principle of deferred measurement, where the red box represents the
measurement on the X basis and the green box and blue box represent encryption and decryption, respectively.
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Figure 12: Te realization of the double-controlled RZ gate by using the controlled RZ gates and CNOT gates.
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results of the frst two qubits are b1 � 1 and b2 � 0,
the fnal encrypted input quantum state obtained by
Algorithm 1 is XZ(π/6)|+〉, and the server returns b1
and b2 to all clients. Te other fnal encrypted input
quantum states will be produced by Algorithm 1
similarly.
For each noninput qubit i ∈ Ic

(1) C1, C2, and C3 send |+π/2〉, |+π/3〉 and |+π/4〉 to the
server also through Algorithm 4, respectively.

(2) Te server executes Algorithm 2 on these three
qubits, and the fnal result of the calculation should
be |+θ〉, where θ � π/4 + (−1)b2π/3 + (−1)b1 ⊕ b2π/2
and b1, b2 represent the measurement results of the
frst two qubits in the circuit for implementing Al-
gorithm 2 as shown in Figure 14. Te correctness of
the fnal result is verifed by measuring the third
qubit on the basis | ± θ〉. After all the operations have
been performed by using the quantum simulator
provided by the platform, the result is 0 with
probability 100% when measuring the third qubit
1024 times on the basis | ± θ〉, as shown in Figure 15.

It implies that, by using Algorithm 2, the three clients
are able to correctly prepare their jointly encrypted
noninput qubits. For example, if the measurement
results of the frst two qubits in the circuit are b1 � 1
and b2 � 1, then the server obtains a noninput qubit
|+5π/12〉 and returns b1 and b2 to all clients.
Graph state: the server entangles the previously
prepared qubits to form a DT (G) state.

7.2. Te Computation Phase

For each nonoutput qubit i ∈ Oc

(1) Tree clients calculate the corresponding measure-
ment angle of the nonoutput qubit by using classical
multiparty computation and send it to the server.
Suppose that the actual measurement angle of
a nonoutput qubit |+5π/12〉 is −π/4. C1 randomly
chooses r1 � 0 and shares it with the other two
clients. C2 and C3 also choose r2 � 1 and r3 � 0,
respectively, and make similar operations like C1
does. Te dummy qubits adjacent to this nonoutput
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Figure 13:Te probabilities of the measurement results 000, 100, 010, and 110 of all qubits in the circuit after implementing Algorithm 1 are
26.5%, 25.2%, 25.4%, and 22.9%, respectively. Te third bit of these classical results represents the measurement result of the third qubit in
the circuit, so the measurement result of the third qubit is 0 with probability 100% � 26.5% + 25.2% + 25.4% + 22.9%.
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Figure 14: Te circuit for implementing Algorithm 2 obtained by using the principle of deferred measurement. Note that the red box
represents the measurement on the basis | ± θ〉, where θ � π/4 + (−1)b1⊕b2π/2 + (−1)b2π/3.
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qubit are |0〉. Ten, by using classical multiparty
computation, the measurement angle should be
7π/6 � −π/4 + π(r1 ⊕ r2 ⊕ r3) + 5π/12 which is sent
to the server.

(2) Te server measures the qubit in the basis |± 7π/6〉 and
returns the measurement result t � 1 to all clients.
Tese clients get the actual result s � t⊕ r1 ⊕ r2 ⊕ r3 �

0 by using classical multiparty computation.
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Figure 15:Te probabilities of the measurement results 000, 100, 010, and 110 of all qubits in the circuit after implementing Algorithm 2 are
23.9%, 23.5%, 25.9%, and 26.7%, respectively. Te third bit of these classical results represents the measurement result of the third qubit in
the circuit, so the measurement result of the third qubit is 0 with probability 100% � 23.9% + 23.5% + 25.9% + 26.7%.
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Figure 16: Te probabilities of two measurement results obtained after the trap qubit |+π/2〉 are measured on the basis | ± 7π/4〉. Since an
incorrect measurement basis is used for the measurement, the probability of getting the result 0 is small.
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Figure 17: Te measurement results of the target circuit and that of the given example for the proposed verifable MDQC protocol. (a) Te
measurement results of the target circuit. (b) Te measurement results of the given three-party verifable MDQC protocol.
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(3) If the qubit is a trap qubit, it can be used to verify
whether the server performed the measurement
honestly. If the state of the trap qubit is |+π/2〉 and
measured in the basis |+π/2〉, the correct result 0 can
be obtained. But if it is measured on a wrong basis
such as |± 7π/4〉, the probability of getting the correct
result 0 is small as shown in Figure 16.
For each output qubit i ∈ O

(1) Te server sends the output qubit to the corre-
sponding client.

(2) If the output qubit |+3π/4〉 is a trap qubit, the mea-
surement angle 3π/4 can be obtained by using
classical multiparty computation, and the corre-
sponding client measures the trap qubit on the basis
|+3π/4〉. If the measurement result is incorrect, the
client can know that the server returned the wrong
output qubit.

(3) Tree clients decrypt their real output qubits to get
the actual results.Te decrypted output qubits can be
measured to make comparisons with the measure-
ment results of the target circuit as shown in Fig-
ure 17. According to Figure 17, the measurement
results are almost the same as expected.

From the above example and the results of the simu-
lation, it can be concluded that the proposed MDQC pro-
tocol can be correctly simulated on IBM’s quantum
platform. However, once the real quantum system is used to
realize this protocol, the error rate will increase due to the
use of large number of real imperfect quantum gates.

8. Conclusion

We have proposed an algorithm that enforces the clients to
send qubits honestly to the server without revealing the
positions of trap qubits in the graph state and a verifable
MDQC protocol based on the given algorithm and DT (G),
in which each client can verify the correctness of the
computation. Furthermore, the proposedMDQC protocol is
secure against a dishonest server and against a coalition of
dishonest clients. It can be applied in quantum networks to
solve the problem of multiple clients cooperating together to
complete a calculation on an untrusted server. In addition,
the proposed protocol has been compared with similar other
BQC protocols to show its advantages. A specifc example
for three parties also has been given and implemented on
IBM’s quantum platform to show the feasibility of the
proposed verifable MDQC protocol. However, in order to
satisfy the property of verifcation, clients need the ability to
prepare dummy qubits and trap qubits in the presented
protocol. Terefore, whether a verifable MDQC protocol
can be implemented by reducing quantum capabilities of
clients or using less quantum resources deserves further
investigation.
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